RAMNARAIN_NILESH_00635805

by Nilesh Ramnarain

Submission date: 05-Sep-2022 10:56PM (UTC+0100)
Submission ID: 185726944

File name: RAMNARAIN_NILESH_00635805.pdf (1.87M)
Word count: 12864

Character count: 59615

Harvesting Volatility Risk Premia using
Deep Reinforcement Learning

September 5, 2022

A thesis presented for the degree of
Msc Mathematics & Finance 2022

Department of Mathematics
Imperial College London

Author: Nilesh Ramnarain CID: 00635805

Acknowledgements

I would like to express my gratitude to Professor Vladimir Lucic for his all of his insights
and patience over the past few months. We grew quite close during this time period and
his incredible support and guidance throughout this thesis was invaluable.

Additionally T would like to extend this thank you to all the lecturers and staff of the
Maths Department at Imperial in being able to deliver an outstanding Masters course and
teaching experience despite the covid pandemic.

Finally T wanted to thank my parents, friends and family, little Milou and my Chou for
their constant love and support during the tenor of my Masters; this would not have been
possible without them.

Declaration

The work contained in this dissertation is my own work unless otherwise is stated.

Contents

1

Introduction
1.1 What is VRP?

1.2 Existence of VRP e

1.3 How do we harvest VRP?

Mathematical Preliminaries

2.1 Black-Scholes Pricing Model
2.2 Variance Swap Introduction Lo .

Elementary Foundations of Reinforcement Learning
3.1 Introduction to Reinforcement Learning
3.2 Markov Decision Proces

3.3 Optimal Policies and Rewards
4 Policy Improvement and Tteration.

3.
3.0

Temporal Difference Learning . . .
3.5.1 Q-Learning: Off Policy TD C{;llll{;l
3.6 Deep Q-Learning . . .

3.7 l—u:lf{;l\ml:thumlN{l\\{;lk'-............................
3.8 Dueling DOQN L e e

Delta-hedging options with DDQN

4.1 Dueling-DQN Setup & Algorithm

Backtesting SPX Weeklys
5.1 Contract Speecs and Backtester Setup

5.2 Constructing the Strategy Index and P{lf{;lllmllu M{llu'- e e
5.3 DBacktesting Volatility Carry Strategies

5.3.1 Systematic Short Strangle Backtest . .
5.3.2 Systematic Short Synthetic Variance Bmklul
5.3.3 Stress-testing the Backtester

5.4 Trained RL Agent - Short Synthetic \:lll:llll{ B:lll{l{ '-.t e e

Conclusion

1ii

N = b

-1

18
18
18
19
21
21
22
23
23
24

26
27

30
30
31
32
32
34
35

43

1 Introduction

Volatility is considered to be a somewhat tricky asset class and it's variety of connotations
can often be misunderstood amongst many investors. In this research piece we aim to ex-
plore volatility strategies in order to harvest volatility risk premia (VRP): where risk premia
is defined as the persistent premiums that exists in the marketplace caused by exogenous
factors, which provide returns over the risk free rate.

Volatility in a simple sense, looks at the changes in an underlying asset price irrespec-
tive of the direction it takes. There are a number of derivatives that can be utilised in
order to trade volatility, and we will see later on the piece how we will use some of these
instruments to harvest volatility risk premia.

This is a fairly technical piece that assumes the readership audience is familiar with volatil-
ity, however due care will be taken to explicitly define terms as we go along in order to help
with some of the notions. There are two key flavours of volatility, and we begin by outlining
a few formal definitions below.

Definition 1. Returns - Asset price returns refer to the amount gained/lost of holding an
investment over a given period of time. More formally, if we have a price series §,, where
n € {0, ..., N} then we define the log returns R,, of the price series as follows:

SJ L

R, =logs,, —log S, 1 = log
=1
Definition 2. Implied Volatility (IV) - Is the market’s forecast of the likely movement in
an asset price. It is a quantity that is often inferred from the market via option prices.

Definition 3. Realised Volatility (RV) - Is defined as the annualised standard deviation of
returns (using a trailing window) over a given time period. This is a quantity that can be
computed directly from a time series of asset price returns, taking care to scale appropriately
depending on the frequency of returns.

.y _'\'r}
R,,: then the realised volatility is computed as follows:

Mathematically, suppose we have observed N asset log returns R, where n € {0,.
N

n=1

with a mean return of g = % 3

TrYv =

Usnally in practise, the definition of realized volatility is:

TRV —

Where the mean return g is often set to 00, because it’s impact on price is negligible (i.e. when
considering returns of an asset on a daily basis, the expected average daily return is 1,/25274
of the money-market rate.), thus the drift of the underlying asset price is assumed to be zero.

Given that volatility is quoted as an annualised number (by longstanding industry stan-
dards) appropriate scaling is taken to annualise the volatility after computation. As an ex-
ample, if we consider the observation of N daily asset log returns R,, where n € {0,....,N};
where the asset has a 252 trading days in a year, then the annualised realised volatility is
given by:

To avoid any ambiguity, this is how we'll refer to realised volatility throughout the piece.

Definition 4. Subsequent Realised Volatility - Is defined as the annualised standard devia-
tion of returns using a forward looking (not trailing) a given time period. This is a quantity
that can be compared with the market implied volatility, retrospectively to as one form of
measure to see how accurate the market was in forecasting expected volatility as of a given
date.

In Chapter 1, we aim to explore and define what is meant by volatility risk premia. We
aim to provide some intuitive insight into it's existence, as well as outlining a framework for
harvesting volatility risk premia, by exploring the number of financial securities that can be
used in order to trade volatility. Chapter 2 will outline the mathematical underpinnings of
option pricing as well as numerical method techniques used for further pricing.

We then begin by exploring the foundations of reinforcement learning in Chapter 3, and
outline some of the key concepts and algorithms that govern this machine learning method.
We additionally discuss Neural Networks and different architectures used. We then end the
section by discussing how these networks tie into Reinforcement Learning.

In Chapter 4, we spin out a mini project in order to test that we have implemented the
Deep Reinforcement Learning algorithm correctly. We train an agent to hedge a European
call option by learning the BS-Delta within a theoretical setting.

Finally in Chapter 5, we will introduce our back testing engine, which will utilise SPX
options to harvest VRP and explore what contribution a trained deep reinforcement learn-
ing agent can make to the performance of the volatility harvesting strategy.

Volatility Risk Premia (VRP)
1.1 What is VRP?

Volatility risk premia has many different connotations, but put simply it is defined as the
spread between implied volatility (IV) and realised volatility (RV) typically of an ATM
option i.e:

P-RP = T — ORY

We remark that some investors can also look at VRP along the tails (OTM options). We
recall that implied volatility (IV) is annualised volatility that is observed from market prices
of options and here we define realised volatility to be the subsequent annualised standard
deviation of returns i.e. we subtract the realised volatility of the underlying asset returns
for the subsequent period of the option tenor, from the implied volatility.

1.2 Existence of VRP

There are many explanations for the existence of VRP. One of the main drivers behind the
existence of VRP comes from the fact that option sellers wish to be compensated for large
but infrequent losses that may occur. E.g. sellers of put options on the SPX demand a
higher premium in the event of a gap move to the downside if the US equity market suffers
a crash. Another reason that VRP exists arises due to supply/demand imbalances that
occur in the marketplace. Le. there is a a demand for OTM options as they are in fact
cheaper than buying ATM options and this also leads to the so-called " volatility smile” or
skew as we will refer to the shape of the smile.

We illustrate the existence of VRP with an example on the S&P 500. VRP in this

example is computed as a ratio of rolling 1M ATM IV /1M subsequent RV, which we see in
Figure 1 below.

'
\

|,'|'”|‘L w\,"l.ku\‘h‘l -I‘Hh ﬂ ” || 'Ll i) | ’ﬁ- le } r” w J[ﬂ\' \J.uld “ ||

“ ||I 08711

Figure 1: 1M Implied to Realised ratio of Volatility in the S&P 500 options market, Source:
Bloomberg Market Data

When this ratio is above 1, we have existence of VRP and the mean of this spread over
the last 20 years is 1.4 which gives us a leading indication that there is VRP in the options
market which can be harvested here. We remark that this spread is not a directly tradeable
instrument and there are a munber of ways one can trade this spread accurately which will
be discussed in the next section.

1.3 How do we harvest VRP?

There are many different instruments one can use to harvest VRP. Some of these methods
range from selling listed option strategies (i.e. selling straddles, strangles, or even outright
put/call strips) to OTC-swap based strategies involving Volatility and V

ariance Swaps.

Exposure to VRP and the efficiency of extracting it can vary significantly between dif-
ferent methods, factoring in not only market accessibility but also operation efficiency of
maintaining the positions as well as considering investor risk profiles.

There are a number of pros and cons associated with each of the implementations and
can play a big role in the choice that an investor decides to make. We aim to briefly sum-
marise the pros and cons associated to each method of harvesting VRP in the table below.

Instruments Risk premia | Conditions for +ive | Pros Cons
exposure P&L

Variance swaps | Implied-realised | Implied VarStrike > RV Clean exposure to | OTC (non-
variance (vol VRP; higher strike | transparent);

squared)

than
swaps

Volatility

convexity exposure
to vol spikes

Volatility swaps

Implied-realised
volatility

Implied VolSwap strike =
RV

Clean exposure to
VRP

oTC (non-
transparent):

very heavily model
dependent; lower
strike than Var-
Swaps

Delta-hedged Path dependent | Low RV around the strike | Tailored (delta- | Imperfect exposure
straddles/stran- | implied-realised | (gamma highest in thisre- | hedging program) | to VRP as options
gles vol (scaled | gion) & Targeted strike | are path depen-
by gamma exposure to VRP | dant: additional
weighted RV) (custom strikes can | costs of delta-
be traded):; listed | hedging execution
instruments are
more liquid across
asset classes
Non delta- | IV-RV Underlying cannot deviate | Targeted strike | Indirect exposure
hedged strad- outside the strike range exposure (custom | to VRP (P&L
dles/strangles strikes can be | purely dependant
traded); listed in- | on delta, i.e. where

struments are more
liguid across asset

classes

underlying is trad-
ing at expiry)

Listed VarSwap
Replication

Implied-realised
variance (vol

squared)

IV = RV, provided under-
ling remains within chosen
strike range

Clean exposure to
VRP using listed,
liguid instruments

Operationally in-
tensive; lower VRP
than OTC Var-
Swaps

Table 1: Methods of Harvesting VRP

In general, Volatility & Variance Swaps provide the cleanest and most direct exposure to
harvest VRP; whereas delta-hedged option strategies have the drawback of path-dependency

and are alot more operationally intensive. Option strategies however take great benefit from
being listed instruments, which in general are more liquid than their OTC counterparts and

also allow for a greater customisation of VRP exposure.

In the later stages of the report, Variance Swaps (VarSwaps) will be discussed in further
detail, providing additional context to their mathematical preliminaries as well as how one

can go about static replication of a VarSwap using listed options; a key strategy we will be

using in order to harvest VRP.

2 Mathematical Preliminaries

2.1 Black-Scholes Pricing Model

In this chapter, we aim to provide the fundamental basics of the famous Black-Scholes
pricing framework. As usual we begin in a risk neutral setting using a filtered-probability
space ({2, F;, () and assume that an underlying stock price S, follows a Geometric Brownian
Motion i.e.

dS, = rSydt + 08,dW ?
Where W2 is a standard Brownian Motion under risk-neutral measure . We recall that
the price a European Call option is given by:

C(S.t) = BY[(Sr — K)*]

Where St denotes the asset price at expiry. From lectures, we have seen that the above can
be solved to yield the following call price at time t:

1 S, o?
—— |log 2t + (r+ I) (Tt
o\.f’T—.{U?_’I\’—F({—F 2)()}

dy =dy —ayT —1

C(S,t) = S,N(d)) — Ke """ N(dy)

f!l—

Where N(.) is the standard cumulative normal distribution funetion:

1T e
Niz)=PX <z)= / e T dr
Viim o
Similarly recalling the relationship of put-call parity for European options, one can
immediately deduce the price of the put as follows:

C(S, 1) —P(S, 1) =8 —Ke "7 — P(S,t)= 8 — Ke 778 4 C(8.1)

P(S.t) = Ke "T~UN(—dy) — S,N(—d,)

Additionally, we remark that the above equations for the call/put price can also be derived
from the famous Black-Scholes PDE i.e.

et 02 et

ac 1 4 ,0°C ac

I S o =0
N T -

BS Delta

An option’s delta represents the option premium’s sensitivity to the underlying asset. It
can be found by taking the partial derivative of the option price w.r.t. the underlying asset
S;. From this we can deduce that the deltas for calls and puts respectively are as follows:

ac(S.1)

Ar'raH - 95

= _N—(le

OP(S.1)

A =
Pl (f)sw

= —_'\'r(—f!l) = _'\'r(ffl) —1= Ar'raH —1

BS Gamma

Option gamma is a second order greek and represents an option delta’s sensitivity to the
underlying asset. It can be derived by taking the partial derivative of an option’s delta
w.r.t. the underlying asset. It can be shown that an option’s gamma satisfies:

9N N'(dy)
TS SoyT—1

BS Vega

Option vega here measures the sensitivity of an option’s price w.r.t. a 1% change in implied
volatility. It can be derived by taking the partial derivative of an option price w.r.t. o and
it can be shown that option vega satisfies:

ac(s.t)y dP(S,t)
o T o

= SN'(d)vT —t

Newton-Rhapson Root Solving for IV

Given a series of option prices, it is often useful to deduce what the IV is of the option. In
practise this is done via a Newton-Rhapson approach and we aim to show the steps involved
in extracting the IV numerically. This is often done with an initial guess to what the IV is
which we will denote as . WLOG we consider "backing out” the IV for a call option as
follows. Here we parameterise the option price as a function of volatility ¢ and we recall
that the price of a call option using our initial guess of IV is given by:

C(F) = SN(d1) — Ke """ N(dy)
Where in the usual sense d; and dy are defined above only this time o is replaced with &.
We also recall that call option vega is given by the following expression:

v=_Cg)=SN'(d)vT —1
Now via a first order Taylor series expansion between the actual IV o and the initial guess
7 we deduce the following expression:
Clo) =Cla)+C'(a)do
=C(a)+ (&) (o — &) (2.1.1)
=(C(a)+C'(d)o — C'(d)0
Re-arranging this equation to solve for the true IV i.e. o we deduce that:
Clo) —C(o)+C'(o)a
o)

By iterating through this expression until o is closely approximated by & given some small
epsilon error threshold we can deduce the IV of the option.

Inverting BS Delta-strike to Fixed-strike

It is often industry standards to quote delta-strikes for options as opposed to fixed numer-
ical strikes. This is because as the underlying forwards move over time, one needs to keep
track of the fixed strike and it's distance away from the underlying forward which makes it
difficult when comparing option strikes of two different assets.

For this reason, the delta-strikes are commonly used in practise as the "moneyness” or
(relative position of forward to strike) is embedded in the delta; making it an easy way
to compare option strikes even across asset classes. Given a call delta-strike A, a simple
inversion of the BS Delta formula means we can back out the fixed strike algebraically i.e.

A N(d,) \'(! {1 -S“'+(+"2)(T z)D
call = Nldy) =N | ——— |log — 4 — —
1 1 oV —1 2 7 3

Re-arranging the above formula for the call fixed strike "K” we obtain that:
g

K, =
exp [oVT —IN-Y(AL) — (r+ 302)(T — 1)]

And via put-call parity for option deltas, we can deduce that the put fixed strike "K”
as:

K g
=
P T —iN-1 —(p 4+ Lg2 —

exp [J\,-T INTYHA, +1) = (r+ 50%)(T i)]
We remark that the fixed strike obtained from this re-arranging may not be a market trade-
able fixed strike. In practise, the fixed strike obtained is then rounded to the nearest strike
using the option strike contract specifications and the minimum strike increment.

In practise, under a flat vol skew assumption (ie. implied volatility is constant across
all strikes) the o475y can be used to proxy what these strikes will be. Generally speaking
this technique works well in FX options which tend to exhibit the flattest skew smiles; how-
ever steep put skew is often pronounced in equities, meaning that this approach of using
the ATM IV may not be suitable when backing out the strike from delta.

Decomposing option P&L

We recall that a European call option is of the form C'(S, o, t). By applying Ito’s lemma to
this expression we deduce the following:
ac 19°C ac ac
—dS + - ———=dS? + —dt + ——d
a5 o™ Tyttt gs et

1
= Acds + 5TdS? + fcdt + vdo + ..

= Delta PnL + Gamma PnL + Theta PnL + Vega PnL + ...

dC =
(2.1.2)

Now recall from option pricing theory that if we have a portfolio II made up of a long
delta-hedged call option ie. IT = C'(S,t) — A.S then looking at the instantaneous change
in this portfolio we deduce that dIl = dC' — A.dS. Thus we can deduce that the change in
option price (i.e. PnL change) can be decomposed as follows:

Delta-hedged Call PnL = Gamma PnlL + Theta Pnl + Vega PnL + ... (2.1.3)

We leave this expression for PnL above, as it will become useful when discussing the static
replication of Variance swaps in the next section.

Harvesting VRP via Delta-Hedged Options

In this section we briefly aim to discuss how we can harvest VRP through selling delta-
hedged options. By assuming that the stock price S; follows the GBM:

dS; = rS,dt + oS dW 2

And by denoting call option price C(S;,t), one can apply Ito's formula to deduce that:

. , tac, troc, 1, ,0%C,
Cy— Cy _[[] Eu’su +£ (En =+ 59 Sy 757) du

We can replace the expressions in the integral with terms from the Black-Scholes PDE to
deduce:

' '
C,=Cy +[ALdS, +[r{C, —A,S,)du
0 0

We now consider a portfolio I, consisting of a hedged call option struck at K ie. C(K.,t,7)
with corresponding option delta A, = A(K,t,7) units of the underlying stock S;. The PnL
change of the delta-hedged portfolio II; between (t. 4 7) can be defined as:

4T t+T
M, =Cipr — Cy+ [A,dS, + / P (Cy — A,S,) du
[3 L

i.e. this governs the portfolio PnL of the delta-hedged option; where the net cash earns the
risk-free rate. The expected value of this expression as highlighted in [4, Bakshi & Kapa-
dia, 2003] corresponds to the expected excess rate of return for the delta-hedged portfolio IT,.

We now consider being short delta-hedged options with implied volatility . It can be
shown that by substituting the Black-Scholes PDE with the new implied volatility, into the
PnL change of the delta-hedged portfolio and applying Ito’s lemma that the VRP harvested
can be deduced as:

'
VRP, = %[Iu. S,)9‘5 (&2 — 02] du
=40

We remark that the quantity %PSE is the total dollar gamma of the portfolio and a short
position in options allows for a net positive portfolio gamma a.s.

2.2 Variance Swap Introduction
In this brief section closely follow the work done in the paper by [2, J.P. Morgan]|; we outline
a few preliminaries and background to variance swaps as well as their synthetic replication
using options. We introduce this section because one of the ways we will be harvesting VRP
will be done through VarSwap replication through option strips.
Definition 5. Variance swap - A variance swap is a derivative in similar fashion to a forward
contract, which allows an investor to trade realized variance against a pre-determined strike
price (where the current IV? forms the strike price of the variance swap).
The final payoff of the variance swap is given as follows:

Sar Swappaye = Variance Notional x { Final RV? — Strike?

| Ppayaff
Where the variance notional is given by:

Vega Notional (in USD)

Variance Notional = - -
2 x Strike

We remark that the payofl of a VarSwap is convex in volatility as illustrated in the plot
below. Mathematically we deduce this from Jensen's inequality where we recall that:

E [\x \-"zu-inu(:e] < +/E [Variance]

Exhibit 2—Variance swaps are convex in volatility

Payoff
€1,500,000
Variance Swap
struck at 21.6
€1,000,000 - ™
€500,000 4
Realized Volatility
€- T]
- 10 30 40
€-500,000 —
~w__ Volatility Swap
struck at 20
€-1,000,000 1~

Figure 2: Variance swap payoff example. Image taken from [1]

More on Delta-hedged Option P&L

We have previously showed that delta-hedged option PnL can be broken down and expressed
as follows:

1
dV = 5ms*? + 0dt + vdo + ... 2.21)

= Gamma PnL + Theta PnL 4+ Vega PnL + ...

10

In the absence of stochastic volatility (i.e. assuming that implied volatility is constant) and
in a world where riskless interest rates are zero: we have that the daily option P&L can be
expressed as follows:

1
dV = sTds? + 0dt
= Gamma PnL. + Theta PnL

Assuming that there are "no free-lunches” we should have that the PnL = 0 i.e. we can

equate:
1
—31“(15‘2 = fdt (2.2.3)
Taking the expectation of hoth sides i.e.
B ST I
-E ;Pf!S‘ = E [Adt] (2.2.4)
Yields the well known expression that links together both Gamma and Theta i.e.
Lo 2o 55
—5lo”57dt = dt (2.2.5)
Le. 1
0 == —;PJZSZ (2.2.6)

Where 5 is the current underlying spot price level and o is the current IV of the option.

i Ay 2
By writing (AS)? = (%) 5§52, and substituting the expression for theta back into equation
(5), we can express the daily PnL in terms of the squared returns and squared IV i.e.

2
Daily PnL = %PSZ X (A—:) — o2 At (2.2.7)

Now we focus our attention on the first term i.e. (%) can be thought of as % returns i.e.

daily percentage changes in the stock price; thus squaring this quantity can be thought of

as realised variance over one day. The second term oAt can be thought of as the daily
implied variance (since we are squaring the volatility).

Summing together all of the daily PnL’s per day until option maturity means we can deduce
an expression for the final PnL of the option i.e.

) l n
Final PnL = — E ol [1,2 - UZA!.] (2.2.8)
2 Ve [Ti
=0
The expression above tells us that the final PnL of a delta-hedged option is closely re-
lated to the spread between realised-implied variance. It very closely resembles the payoff
of a variance swap, with the exception that the weights in the expre

on above depend on
the option’s gamma through time; whereas in the variance swap the weights are all constant.

11

Static Replication of VarSwaps Using Options

Previously we have seen that a delta-hedged option strategy essentially replicates the payoff
of a variance swap which is weighted by the options dollar gamma. In this section we aim
to remove this weighting to have a 'non-gamma-weighted’ variance swap replication method
using options.

We begin by exploring what the dollar gamma looks like as a function of the underly-
ing forward level (i.e. by strikes); we demonstrate this with a plot below using an arbitrary
strike range:

1200 K=2%
K =50
. — KE=T73
W0e | o yop
—_— K=125
aop | — k=150
- K=175
H — k=200
3 oo K =225
B Aggregate Dallar Gamma
Z
a0 e —
200
N >

o 100 200 300 400 500 600
undertying level

Figure 3: Option Dollar Gamma w.r.t. Underlying Level

From the above plot, we can see that the dollar gamma of the options is proportional
to the underlying level. Hence. our first intuition into "fattening” the aggregated gamma
across the underlying strikes is to proportionally weight higher strikes with a larger weight-
ing and vice versa for smaller strikes. i.e. increase the weights for lower strike options and
increase the weighting for higher strike options.

We now aim to prove a proposition that shows flat gamma can be achieved with a weighting
that is proportional to %5

Proposition 1. (Replicating State-Contingent Payoffs with Options) Given European op-
tions C, P (priced under some pricing formula) and for simplicity we assume that the state
of an economy is distingnished by stock index level S only and let p(St.T: S;. t) denote the

state-price given stock level S+ and time T.

Suppose we have function g which is twice continuously differentiable, then the value of
a state-contingent claim' with payoff g(S7) satisfies:

-
Ei(9(Sr)|Si) = g(F) +] g"(K)P(Si. K. T)dK +] ¢"(K)C(S.K.T)dK (2.2.9)
0 I

!Further details regarding contingent claims can be found in the original paper [Breeden & Litzenberger
(1978)] Prices of State Contingent Claims Implicit in Option Prices

Proof. We denote T as the expiry of the contract with 0 < ¢ < T then the state-price
satisfies:

PP(S, KT PC(S, K, T)

— oz [s7=k= — KT lsz=k
Where C(5,, K,T) and P(S5,, K,T) represent option prices; and the state-price can be de-
rived by taking the second partial derivative of each of the option prices w.r.t. the strike
price K. Hence the value of a state-contingent claim with payoff g(Sy) satisfies:

p(Sr.T: S t) = (2.2.10)

E,(g(S7)|S) = [G(K)p(K.T; S, t)dK
0

o a2 - (a7 w) 2 .r -
_[q(]\’)wﬂ{_i_[H(}{)wﬂ{
F

0 K2 K2

(2.2.11)

Where F is the T-forward price of the index at time t. Integrating the above by parts yields:

- 5 LOP(S, K. T) /}" s OP(S, KT
Edg(S1)150) = a(K) T I — [o/ T a
L OC(S, KT = OC(SL KT ..
Ky—— T K)—————— "~ dJF 2.2.12
+9(K)—— I7 /} j (K)——F—dK ()
F 3 - oo I ¥al -
poe OP(S, KT / o QO[S KT
=g(F)— K)y——————~dK — K)y————=dI
g(r) A g K)— K 9 (K)——5 IK
Finally we apply integration by parts a second time to yield:
- }I‘
E(9(S1)|St) = 9(F) — ¢'(K)P(St, K, T) | +/ g"(K)P(S;, K.T)dK
0
—¢'(K)C(S,, K.T) |¥ +f" g'(K)C(S,, K, T)dK (2.2.13)
F
o o0
=g(F)+ / g"(K)P(S,,K.T)dK + / g"(K)C(S, K, T)dK
0 ¥

The above equation tells us that any twice continuously differentiable function g due at time
T may be replicated by an infinite strip of eall and put options with maturity at time T.
Ofcourse in practise this is not feasible as the exchange has a limited number of strikes that
are available for trading as well as liquidity constraints with deep OTM options. O

13

Our goal is to flatten out the total dollar gamma profile when across the different strikes.
If we were to assume a constant dollar gamma derivative exists; how we may go about finding
such a derivative? From the definition of dollar gamma for this derivative ¢ we have:

g o

Us(F) = 57z

(2.2.14)

Where g, F are the prices of the derivative and underlying respectively. A constant dollar
gamma would imply that for some constant ”¢” we have:

g ¢ .
— = 2.2.15
OF” (2.2.15)
Solving the above PDE yields the solution:
g(F) = —clog(F) + dF + e where . d.e € B (2.2.16)

Where we can interpret the above derivative with constant dollar gamma as being a log
contract, along with the underlying forward and some units of residual cash. We now intro-
duce the notion of log contracts more formally below.

14

We recall that long positions in variance at maturity pay the difference between the
fixed implied variance strike and the realised variance over the lifetime of the swap. We
now introduce log-contracts and these derivatives are crucial when it comes to the pricing
of variance swaps. We consider the log-contract with payofl ¢(St) as follows:

g(St) =log (9‘;

=) (2.2.17)

With partial derivatives satisfying:
! l iy F
9(5r)= o (2.2.18)
2T
1
5z

Using the method of option spanning in Proposition 1 above, we have that the price of the
log contract is as follows:

9"(Sr) = — (2.2.19)

Sr F o i Y L i i
E (log(FI) S,_) = log 7 + | —FP(S,_: K.T)dK +]} e C(S,. K, T)dK
e P(S.'.: I\r: T) - > C’(S.'.: I\r: T) -

(2.2.20)
Hence we deduce that the log contract can be replicated using an infinite number of option
strips (both calls and puts) where each individual option is weighted by %;; this provides us
with some intuition of a sizing factor we can apply to "flattening” out the aggregated dollar
gamma across the strikes we had above to remove the "dollar-gamma” weight per strike.

We applied this weighting to see it’s effects on the total aggregated dollar gamma across
strikes using the arbitrary strike range before and the results of the weighting are illustrated
below:

n20
015 — =25
- ¥ =50
i —_— =TS
. — K=100
2 — k=125
- — k=150
2 oo K=175
5
E —_— K =200
¥ =225
—— Aggregate Dollar Gamma
oos
000

] 100 200 300 00 500 600
Underiying level

Figure 4: Option Dollar Gamma w.r.t. Underlying Level weighted by

Kz

15

From the above plot, we have gained a linear region of flat gamma across the strikes using
this weighting. As mentioned earlier, in practise it is impossible to trade an infinite munber
of strikes; however this result is fundamental when it comes the valuation of constructing a
synthetic variance swap with options.

For completeness we add a reference to the $Gamma interpretation from a truncated BS-Log
Contract above [6, Volatility Notes]. We start off by taking a log contract V' € {Put,Call}
and differentiating this twice yields the following expression (under flat volatility skew as-
sumption):

L PV o PV
e = K ——,
aF? dK?
We have, with ' denoting the market forward, the following expression for the truncated

Log Contract on [L.U|, L < F < U,

F V € {Put,Call}. (2.2.21)

T pPut(K, T U Ccall(K, T
L(F;L.U) = / L‘,) dK + / L,) dK,
L K? ral K?
q27 U
BSTruncated Log Contract$Gamma = Fz%(ﬁ'; LU) =] p(K)dK =P (St € [L.U]).
are L

where p{-) is the probability density of the underlying. We conclude that for L =0, U = o
we recover flat $Gamma equal to one, as expected, but also that truncation of the region of
integration has the effect of reducing exposure by P(Sr < L)+ P(Sr > U).

16

3 Elementary Foundations of Reinforcement Learning

3.1 Introduction to Reinforcement Learning

We begin this chapter by providing an elementary grounding in the concepts of Reinforce-
ment Learning. The topics discussed in this introduction closely follow the Reinforcement
Learning textbook from Sutton & Barto [9].

Reinforcement Learning simply put is the training of an agent’s decision making process
within a specified environment where the goal of the agent is to take a series of actions in
order to maximise his expected reward. The rewards setup can be done in such a way that
the agent either chooses to maximise it's suecess, either in the suhsequent long or short term.

The challenging part of RL comes in the design of the framework, i.e. defining the en-
vironment, states, actions and rewards that an agent can perform. The flexibility and range
of choices contribute to the powerful applications of RL. We begin by providing a simple
overview of the baseline components used in the RL paradigm:

1. Agent: An RL agent is the entity which we are training to make correct decisions.

2. Environment: The RL environment is the surroundings in which the RL agent inter-
acts with. The agent can only control it’s own actions and cannot manipulate the
environment.

3. State: States define the current situation that the agent finds itself in.

4. Action: The choice that the agent makes at the current time step. The set of actions
that an agent can take a known as a priori and the feasible action that an agent takes
may subsequently affect the state that the environment transitions to.

5. Reward: The reward signal defines the main goal of the RL problem. At each time
step following an agent’s action, the environment sends the agent a single munber
called the reward. The goal of the agent is to maximise it's set of rewards over some
time horizon and must be able to distinguish hetween good and bad events.

6. Policy: A function that maps the agent’s states to actions.

In order to build an optimal policy (i.e. sequence of decision making) the agent must make
decisions trading off between the reward signals it obtains as well as exploring new states.
This trade-off is known as Exploration vs. Exploitation. In order to strike a right balance,
the best overall strategy may involve short term sacrifices hence an agent should collect
enough information to make the best decision in the future.

3.2 Markov Decision Processes

We introduce this section on finite Markov Decision Processes (MDP’s) as they form the
mathematical basis for RL problems. MDP’s model decision making in diserete, stochastic
environments.

At each time step, the agent observes the state S; of the environment, chooses an ap-
propriate action A, € A(s), receives reward R, , € R and subsequently transitions to the

17

next state 541 € &. This sequential process of state, action, reward, next state, next action
is often referred to as SARSA (i.e. S, A, Ry, Sip1. Argr...). The following diagram taken
from [9] depicts the sequential decision making:

:‘.@

state| |reward action
5 R, A

R,
_s., | Environment

Figure 5: Agent-environment interaction in MDP setting

In the setting of a finite MDP, the tuple (S,.4,R) have a finite number of elements
and have well defined discrete probability distributions. We can define the dynamies of
this distribution depending solely on the preceding state and action with &, R as random
variables as follows:

p(s'irls,a) =P(S, = " Ry =r,|S 1 =84, =a) (3.2.1)

for all s".s € §,r € R,a € Als). We remark that as p defines a probability distribution, we
must have that the following holds:

Z Z p(rls,a) =1 (3.2.2)
s'eSreR
for all s € S,a € Als).

3.3 Optimal Policies and Rewards

We recall that the objective of the RL agent is to learn and maximise the cumulative reward
it receives. Given a sequence of rewards R, R, 0, ;3 we define the discounted expected
rewards after time t as follows:

.
Gi = Ripr +7Gip1 = Y7 Riyinn (3.3.1)
i=0

Where discount factor 4 is a parameter satisfying (0 < ~ < 1. The discount rate is a factor
in determining the present value of future rewards and at the limits, if ~ is close to (0, then
the agent seeks to maximise it’s immediate returns and if ~ is closer to 1, the agent seeks
to maximise it'’s longer term rewards.

We recall previously that the mapping between states and actions is called a policy. To
define this more formally, a policy is a mapping from states to probabilities of selecting each
possible action. An agent that follows policy 7 given that he is in state s, chooses an action
a with probability 7(a|s). For deterministic policies, we denote m(s) as the action chosen,
given the starting state s.

18

We now proceed to defining the state-value function and action-value function which are
fundamental in Reinforcement Learning.

State-Value Function
The state-value function of a state s following policy m is given by:

va(s) = B[Gi|Si = 8] =B [Y 7' Rigina|Si = s (3.3.2)

i=0
We remark that the value of the terminal state (if any) is always (.
Action-Value Function

The action-value function of taking action a starting in state s following policy m is given
by:

{fﬂ("": “) - E[G.{'s.{ = 8, -4.'. - “] - E?: E ‘:”R-'. titl |s.'. = 8, -4.'. =a (333)
i=0
From the recursive nature of these functions, one can easily deduce the Bellman Equations
as follows:

g=(8,a) = E;[G|S: = s, A = d]
=E.[R, +7G41|S: = 5,4, = q]

S 3 pls' ks,)+ 1B GuralSerr = o1
SESreER

(3.3.4)

= Z pls' rls,a) |r+~ Z mla'|s" g, (s a")

eSS reR a'c A

and similarly for the the state-value function we have:

vr(8) = Ex[Ry +9G141|S = 8] = Z m(als) Z pls' r|s, a)[r + yux(s)] (3.3.5)

ac.A s'ES reER

A policy 7 is defined to be better than another policy 7' if # = ' iff v (s) = v (s) for all
s € & The policy that is better than or equal to all other policies is denoted by the optimal
policy m,. Under the optimal policy we have the optimal state-value function and optimal
action-value function as follows:

ve(8) = maxvg(s) (3.3.6)
for all s £ & and
q.(s) = maxq,(s,a) (3.3.7)

for all s € §,a € A. Using the optimal policy value funetions above, we can deduce the set
of Bellman-Optimality equations as follows:

v, (s) = 1_}1;.)&.] Gr. (s,a) = 111;1)& Z pls' rl|s,a)fr +yvq, (8] (3.3.8)
a€Als) SESTER
qu(s,a) = Z pls' r|s,a)[r + 7 max g, (&', a')] (3.3.9)
SIES TER “

19

3.4 Policy Improvement and Iteration

By using the Bellman equation for v, as an update rule for a sequence of value functions
V. U1, Ug... we have the following iterative representation for v, as follows:

Vip1ls) = Z m(als) Z p(s' s, a)[r + v (s)] (3.4.1)

ac A seSreR

Where the initial state value vy is chosen arbitrarily. For simple episodic problems the
sequence {vy } can be shown to converge to v, as k — oc. One way of optimising a certain
policy 7 given state s, is by changing action a # 7(s) and observing whether ¢, (s.a) = v.(s).
If this relation holds, then selecting action a yvields a better value function that following
the original policy 7. This process is called the policy improvement theorem.

Theorem 1. (Policy Improvement) Let 7 and 7' be any pair of policies such that:

Gn(3.7'(3)) = va(s)
holds for all s € §. Then policy =" > .

We now introduce the notion of a greedy policy ', It is a natural consideration to consider
changes at all states to all possible actions that appear best according to ¢.(s,a). We do
this as follows: ,
' (s) = arg maxq,(s, a)
w

=argmaxE[R, 1 +yv.(Sii1)

S =84, =4d

= arg max Z p(s' 7|8, a)[r + yva(s)]
* seSrer
The greedy policy 7' is at least as good as the original policy . This process of chang-
ing the original policy to be greedy w.r.t. the action value function is known as policy
improvement; which adheres to the policy improvement theorem. Policy improvement and
policy evaluation can be combined together to yvield policy iteration. The way in which this
works is policy evaluation improves the approximation in the value function vy, and policy
improvement improves policy 7. The following sequence diagram depicts this:

E 1 E 1 1 E oo
Mg —F gy —+ T —F Vg, —F Moo =+ T, —+ U, (3.4.3)

Where I represents policy improvement and E depicts policy evaluation. Further details can
be found in [9, Chapter 4.3, Pg 78-80].

3.5 Temporal Difference Learning

We remark that the update rule given above is computationally inefficient as it involves
sweeping through each of the states as well as the actions one can take in that state. For
a small number of states and action sets this may he feasible; however for more complex
problems the computational time grows exponentially.

Instead we now consider Temporal Differencing (TD) methods: which update current es-
timates of the value function based on previously learned values and unlike Monte Carlo

20

methods (more on this in [9, Chapter 5]) which require the end of the episode to be reached
in order to make an update to V{S,); TD methods are only required to wait until the next
time step £ + 1. A one step TD(0) update can be written as:

V(Se) « V(S) + a[Re1 + 1V (Ses1) — V(S1)] (3.5.1)

We note that this transition makes the update to state S,,; whilst receiving reward R, ,.
This is a special case of TD(A) which can be found in further detail in [9, Chapter 7, 12].
We also note that the there exists a corresponding algorithm for action-value function which
is as follows:

QS A) = QS A+ alRy +7Q(Si1. Av) — QS Ay (3.5.2)

This update is done after every transition from a non-terminal state S;. If S;41 is in fact
a terminal state then we have that (S, 1. 4,41) = 0. This update rule uses the tuple
(Se. Ay, Rigr, Sig1, Aggr) that makes up a transition from one state-action pair to the next
one; and gives rise to the name SARSA for the algorithm. It is an on-policy algorithm,
which means that it tries to evaluate/improve the current policy that is being considered.

3.5.1 Q-Learning: Off Policy TD Control

We state the update rule for an off-policy TD(0) control algorithm as follows:
QS A +— QS A+ aRiyr ++ 111;1)1(2[5;_ p1a) — QS Ay (3.5.3)

We recall that an off-policy algorithm aims to evaluate/improve a policy different from that
used to generate the data. The learmned action-value () aims to directly approximate g,
independent of the policy that is followed. It can be shown under certain assumptions that
() converges to g, with probability 1. We outline the pseudo code for the algorithm below:

Algorithm 1: Q-Learning (off policy TD control) for estimating = =~

1 Algorithm parameters: step size o € (0, 1], small € > 0;
2 Initialise Q(s,a) for all s € 81, a € A(s),arbitrarily except that Q(terminal,.) =0
3 foreach episade do
4 Initialize S;
5 while step of episode do
6 Choose A from S using policy derived from () (Le. e—greedy;
7 Take action A and observe R, 5™
8 Apply update rule:
QS Ay) — QS Ar) + f‘t[Ra. 1+ ymax, Q(Sey1,a) — QS -4.1.)]'-
9 Update § « S"
10 Until § is terminal;

3.6 Deep Q-Learning

So far we have only considered tabular methods for reinforcement learning as states and
state-action pairs were mapped to singular values. This indirectly assumed that the car-
dinality of states we were considering |S| was finite. In a trading setup this may not be
entirely accurate, and there may be infinitely many states attainable.

In this section we aim to introduce a continuous setting in which we can handle infinitely
many states, which is attained via Deep Q-Learning (DQN). The goal of DQN is to predict
the action-value function g : & x A — R using a neural network. The input to the network
are the states ¢ with the output being the predicted action-value function qy.

Under this setting, the state s can take on the form of continuous variables and may be of
higher dimensions; and the actions taken may be of the form of a non-trivial function. These
combined aforementioned factors make Artificial Neural Networks a suitable candidate for
tackling these types of problems.

3.7 Feedforward Neural Networks

In this section we briefly introduce the key definitions and notions behind Feedforward
Neural Networks (FNN). Neural networks are multidimensional composition functions that
comprise of several layers: the input layer I € M, a set of hidden layers and an output layer
0 € N. More formally we define the structure for a FNN as follows [7, Definition 2.1]:

Definition 6. Let I,0,r € N. A function f: B/ — RY is an FNN with » — 1 € {0,1,..}
hidden layers, where there are d; € M units in the i-th hidden later for any i = 1,...,r — 1
and activation functions of the form e; : B4 — R% where d,. = O if f has the form:

f=ea,cL,c...00y oLy, (3.7.1)
where L; : R4 — B% for any i = 1,r is an affine function of the form:
Li(x) = Wix +b',x € R~ (3.7.2)

parameterised by weight matrix W = [ﬂ; , € REdict qlong with a bias

vector b’ = (b, ..., b:';l) e R, with dy = 1.

We provide a graphical representation of a Newral Network taken from [9, Figure 9.14
Chapter 9] to provide some context into FNN's:

Hidden
layer

Input
layer

Output
layer

Inputs
Outputs

Figure 6: FNN with 3d input layer, 1 hidden layers and a 2d output layer

In our application and implementation of FNN's, we will be using the same number
of units in each layer and the activation function we will be using is based on the ReLlU
function defined as follows:

ReLU(z) = max{x, 0} (3.7.3)
The training of a Neural Network involves fine tuning of the weights and biases, sampling
disjoint mini batches across multiple epochs (the number of times a learning algorithm sees
the complete data set). Neural Networks tend to work by minimising a loss function. Op-
timisers are the algorithms used in back-propagation and the goal of an optimiser is to find
the optimum set of weights and biases which minimize the loss function. A commonly used
method of minimisation is called stochastic gradient descent (SGD).

We briefly discuss the topic of Experience Replay as it is a fundamental concept that we
will be using in our application of Deep Reinforcement Learning, We start of by defining
a queue data structure with a fixed memory size M, which we call the replay buffer. The
replay buffer adheres to a FIFO data structure in which episodes and experiences of the
agent are fed into this container.

After a predetermined number of timesteps have elapsed, a subset (mini-batch) is sam-
pled from the replay buffer and is then fed back into the network in order to train it. The
experience of the agent at time t, are episodes that are of the form SARSA ie. the quintuple
(Sp. Ay, Bygr. Sigp1. Aggq). The final step is to determine target vector Y, which depends on
the type of problem we wish to solve. Once this has been determined, we fit the network to
the new observation using SGD. Further details on the SGD algorithm can be found in |7,
Algorithm 3.1, Pg. 36].

3.8 Dueling DQN

This section on DDQN elosely follows the work performed by [3]. We recall that we have
state-value and action value functions following policy m as follows:

Vi(s) = E[G|S, = 5] (3.8.1)

Qx(s,a) = E[G/|S: = 5,4, = q] (3.8.2)

We now define the advantage value function as follows:

Ar(s.a) = Qn(s.a) — Vi (s) (3.8.3)

Intuitively one may interpret this advantage value function as depicting how advantageous
it is selecting an action relative to others in a given state: since the () value represents the
value of selecting a particular action in a given state and the V value is the value at a given
state regardless of the action taken.

The Dueling-DQN algorithm proposes a slight change in the final layer, and is split into two
parts to estimate the advantage function A and state-value function V in order to predict
(). Since the actions that we take don’t necessarily affect the state in which we are currently
in - it is sufficient to learn only the state-value function. This very much fits the paradigm
of our application of DQN since the target vega that we aim to sell, is independent of where
the market may end up and we will see this later on in the report.

In the paper [3, Wang et al] learning the Q-value by re-arranging the above relation i.e.
Q=V+A, is not feasible as there are infinitely many solutions to this problem. The paper
suggests a trick, which is to foree the largest ()-value to be equal to the value V. thus making
the highest value in the advantage function be zero and all other values negative. Thus we
have the exact value for V, and we can calculate all the advantages from there, solving the
problem. To add further clarity the training looks as follows:

Qs,a: 0,00, 3) = V(s 0, 3) + (Als, a:0,00) — 11_1_;\./); Als,a: 0, o)) (3.8.4)

The paper also suggests an alternative to using the maximum and replacing this quantity
with the mean, which is the implementation we went with in the report:

Qs,a:f,a,3)=V(s:0.3)+ (Als.a:0,a) — ﬁ Z Als,a’i 0, a)) (3.8.5)

Further details can be found in the paper; and the stabilisation has been optimised without
losing any rank information from an e—greedy policy.

4 Delta-hedging options with DDQN
In this theoretical setup we aim to train an agent to learn how to delta-hedge an ATM
call option by learning the BS-Delta in a theoretical setting. This experiment acts as a
stress-test and provided us with a foundation when applying Deep Reinforcement Learning
in the trading setting. We formulate the problem as follows:
We start off by assuming that a stock price evolves with a GBM:
dS; = rSydt + oS, dW,

Where W, is a standard Brownian motion. The solution to this SDE is:

. . 1 5 .

Sp = Syexp |(r— ;J‘)T + oWy
We begin by diseretising the time step so that incrementally we have:

S.. = 5Si , exp [u-—éo?)u,-—x,- D)+ oW, }

Now we aim to price the following 3M ATM call option with the following parameters:

Option parameters Values
Initial Stock Price (Sn) 50
Strike 50
Maturity 90/365
Volatility 10%
Risk-free rate 0%

State Space:

In this framework we model the state space to contain a two-pair tuple; such that at time
t, each state is comprised of the stock price at time t and the time to maturity left on the
option denoted by 7 = T — 1t so that we have:

s ={S,7} €8
Action Space:
As we wish to learn how to delta-hedge the option, we recall that a call option delta A,
satisfies the following inequality 0 < A, < 1. We partition this interval into 101 uniformly

sliced intervals so that an action set takes the form:

a; €40,0.01,...,099,1}

Reward Function:

We deduce the reward fuinction directly from the delta-hedging PnL. Thus taking the incre-
mental change in the option price yields us with the following conditional expectation as a
reward:

= _|Ea [fla. |1(s.l, —sa,) - (C'a, —C’a,)] |

Here the agent is penalised for an incorrect delta-hedge and rewarded more for a delta-hedge
that is closer to the true delta of the option.

4.1 Dueling-DQN Setup & Algorithm

During the initial stages, the agent acts greedily and the maximum of all the Q-values will
be chosen in accordance to the DDOQN algorithm we specified in the previous section:

a* = arg max (s, a; 0, o, 3)
a' A(5,)

The tuple (S;, As, Riq1. Siq1) is appended to the replay memory. We run a total of 10000
simulations for the stock price and respective option delta-hedge. After every 100 simulations
have been run, the agent then makes a prediction from a random batch sample of 62 time
steps to train the network. The target vector is then determined as follows:

Yi(Ay) = R + |~ argmax Q(S,1.a)
ac A{Siy1)

Where the Q-values are determined under the usual Dueling-DQN paradigm as defined

earlier:

Qs,a:f,a,3)=V(s:0.3)+ (Als.a:0,a) — ﬁ Z Als,a’i 0, a)) (4.1.1)

The network then minimises the Mean-Squared Error loss function between the target vector
and predicted vector as follows:

n

MSE(Y,Y) = = Z(}; —Y;)? (4.1.2)
T o1

26

The neural network is comprised of a 2-dim input layer, 2 linear hidden layers and a
1-dim output layer; each using the ReLU function as an activation function. The output
layer equals the number of actions which can be taken in this case a singular munber for
the chosen delta-hedge target.

The codebase for building the reinforcement learning algorithm was heavily inspired by
[8, PyTorch DQN Tutorial] and [11, Deep Q-Network Tutorial with PyTorch].

Algorithm 2: Dueling-DQN for Target Delta

1 Initialise DQN Agent, with algorithm parameters: a = 0.0005 (learning-rate), v =
(.99, initial-¢ = 1.0, e-decrement = -0.001, minimum-¢ = (.01 score = -9999,
Initialise Network architecture:

2 training-score = ();

3 while Episode < No.of Episodes do

4 Generate stock price path S;: Initialize state S, :

5 done = False;

6 b=

7 while True do

8 e-greedy agent chooses delta-hedge action Ay:

9 Compute next stock price increment S, and reward Ry :

10 Add (S¢, Av. Riqr. Siq1) to replay memory:

11 Inerement memory-counter;

12 if memory-counter = bateh — sizememory then

13 Sample batch-size from replay memory;

14 Determine target vector Y for bateh-size:

15 Fit Network of the DQN Agent:

16 if t == 360 then

17 Save PnL;:

18 break:

19 if # Episode (mod) 100 = () then

20 Simulate 50 stock price trajectories;

21 Predict 3M ATM Delta;

22 Update aggregate scorve and store best model;
23 Update ;1 = min(e—e-decrement, minimum-e);
24 episode += 1:

In the below plot we have the training rewards per episode after every 100 simulations, and
observe the aggregated training reward based on the sample of 50 stock prices. As we can
see the agent effectively learns very well as the rewards begin to converge quickly towards (
alter 25 episodes where it maintains a stable training score profile.

ﬁf’w'-'mmmu'mi'hﬂmﬁw alka's ;\"\"”"W\MNM Iwwm’\m
|
.,)
T

i

Figure 7: Episodic Training and Rewards gained by RL agent

0.5

Expected Training Reward
A
o

3.5

Episodes

Finally we load the best stored model and output the predictions for the delta of the 3M
ATM Option. In addition to this, we wanted to test how good the model was at predicting
OTM deltas. We sampled a range of stock prices and plot the corresponding delta in
"moneyness”. Overall the results were quite pleasing and there wasn't a huge scope of error
in predicting OTM deltas despite being trained solely on an ATM option.

10{ — BS Delta e N
— Trained Agent Delta

0.8

Option Delta
)
@

=]
=

0.2

0.0

Moneyness

Figure 8: Final Output from RL agent on BS-Delta

This brief section gave us a practical introduction to the Dueling-DQN architecture and
acted as a sanity check and the framework outlined provided us with a solid foundation for
tackling Deep Reinforcement Learning problems. In the next section, we will introduce the
concept of backtesting option strategies and we will be applying this network architecture
to a much more complex trading setting.

5 Backtesting SPX Weeklys

5.1 Contract Specs and Backtester Setup

We begin by introducing the backtest setup as follows. we are trading SPX weeklies with
the attached contract specs from CBOE:

Comparison of SPX Option Products

SPX Options - SPX Weeklys and Mini-SPX SPDR S&P 500
Traditional End of Month Index Options ETF Options
Options Chain SPX SPX ASP SPY
Root Ticker Symbel SPX SPaw xsp SPY
AM or PM Settlement AM-settled PM:-settled PM-settled PM-settled
Weeklys:

. . Mon., Tue., Wed., Th., Fri Fridays or

Settlement Date 3rd Friday End of Month: Fridays End of Quarters
Last Trading Day of Month

Appresimate Motinnal Sire $350,000 $390,000 $39,000 539,000
Settlement Type Cash Cash Cash Physical Shares of ETF
Exercise Style European European European American
Global Trading Hours Available**** Yes Yes No No

Figure 9: Overview of contracts specified by CBOE [5]

Our backtester aims to sell SPX Weeklys and End of Month options, as short gamma
explanation is richest here.

Backtest Methodology

In this small section we provide a top level overview of the backtester and the components
that are required to be specified in the trading configuration in running the backtester. The
following attributes of the backtester can be found below:

1. We specify the strategy to be traded which involves the following attributes to be set
in the trading configuration file:
e The delta strikes and direction of the option strategy to be traded
e The frequency of entering a new leg of the strategy (e.g. entering legs weekly)
e The hold period of the strategy until unwind (e.g. hold to maturity or unwind
after 3 days)
e The frequency of delta-hedging (e.g. daily, weekly, at inception)

2. Compute the Strategy Index by amalgamating all of the individual leg PnL per day
and summing this across all the overlapping legs (if any)

29

5.2 Constructing the Strategy Index and Performance Metrics
Strategy Index Calculation

In this section, we outline the ecalculation of the Strategy Index produced from the back-
tester. The strategy index is comprised of the total PuL of the strategy which makes it a
useful and effective tool in comparing the performance of several strategies. By default, we
have a strategy index level which starts at 100 at fg.

The index at time t ({;) is computed as follows:
Iy =1, + AL, (5.2.1)

where
AL= Y Ui (ci-ci). (5.2.2)
Component i

nl} stands for the number of units of component i (either a future or option), and Cf is
the $ value of the that component, both ohserved at time t.

Performance Metrics

Upon construction of the strategy index, we then define a set of industry standard metrics
to evaluate the performances of the strategy.

Definition 7. Sharpe/Information Ratio (SR/IR) - The Sharpe Ratio is defined as the
annualised return of a strategy per unit risk (annualised volatility of the strategy), and is
an industry standard unit of measure for the performance of a strategy. Mathematically it
may be expressed as:

Ann. Return of ptf. II; — Avg. Risk-free Rate r

SR
Ann. Volatility of ptf. oy

(5.2.3)

Definition 8. Maximum Drawdown (MDD} - The maximum drawdown of the strategy is
defined as the maximum observed loss of the strategy from a running peak to trough. More
formally it is computed as:

MDD = min(Il;, — maxII,) (5.2.4)
' (S
Definition 9. Calmar Ratio - Is another risk-adjusted return metric only this time we
divide the annualised strategy returns by the max drawdown.

Definition 10. 5% c¢VaR (Expected Shortfall) - The 5% c¢VaR measures the tail-risk for a
particular strategy by averaging the worst x% returns at the tails below a specified quantile
level . Mathematically we recall the definition from [10] as follows:

1
cVaR, (L) = ﬁ[Gl L)du (5.2.5)

X

30

5.3 Backtesting Volatility Carry Strategies
5.3.1 Systematic Short Strangle Backtest

We demonstrate the backtester by selling OTM vanilla option strangles (1 call and 1 put at
different strikes where K. > K) and we illustrate the payoff diagram for this short volatility
strategy below taking S&P options as an example:

200

3000

-200

=== Short Call
=== Short Put
—— Short Strangle

—400

Pl

—600

—B00 1

-1000 4 , .

Figure 10: Short 1M 4050/4250 ESU2 Strangle (expiry: 16th Sep 2022) with futures ref:
4130.25 as of 1st August 2022

The PunL profile of this option strategy is that we collect the full preminm if the forward
price remains in-between the strangle strikes, however we have theoretically unlimited losses

should the forward trade far beyond the strike range.

The backtest configuration for the systematic strategy of selling strangles is outlined as
follows:

Backtest Parameters

o Option Strategy: We enter a short position in 40d strangles on SPX

e Leg Entry Frequency: We enter new strangle legs weekly

Leg Hold Period: Each leg is held to maturity

e Leg Sizing/Leverage: 10bps target vega (to control leverage)

Delta-hedging Paramelers: Each leg is delta-hedged daily

31

Backtest Results

The results of the backtest are illustrated below:

SPX Weeklys - Short 40d Strangle

= Unhedged (10bps. vega target sized)
1151 — Daily delta-hedged [10 bps. vega target sized) J/“-'

f L
II s In'
110 |~ 14 f

5 ;ﬂ 5 W
w00 M’]) W/M 1/‘1\' al K
. W "’w W /u/

o e

2014 2015 2016 2017 2018 2019 2020
Time

Strategy Index {Tetal Ret.)

Figure 11: Systematic selling of 40d SPX strangles

Strategy Ann. Return | Ann. Volatility | Sharpe/Info Ratio 5% cVaR
% %

Unhedged 6.12 13.2 0.51 -0.07

Daily delta- | 3.24 10.1 .24 .06

hedged

Table 2: Short 40d Strangle Backtest Metrics

We observe that in this backtest, that the unhedged strategy outperforms the daily-delta
hedged counterpart on a risk-reward adjusted basis (Sharpe). This is because short gamma
strategies tend to lock in losses at every delta-hedge (e.g. selling underlying futures low and
buying high). However we comment on the fact that the variance of the PnL volatility is
greatly reduced by daily-delta hedging (i.e. lower PnL volatility) which is in line with the
theory of delta-hedging and trading options. The strategy has a positive annualised return
over the 6 year of backtest history, indicating that on average we have positive carry in the
short gamma strategy.

5.3.2 Systematic Short Synthetic Variance Backtest

In this section, we begin by illustrating selling synthetic variance via option strips.

outline the backtest parameters:

Backtest Parameters

We

e Option Strategy: We enter a short position in synthetic variance by selling strips of

calls/puts from 50d to 5d
e Leg Entry Freguency: We enter new option strips weekly
e Leg Hold Period: Each leg is held to maturity
e Leg Sizing/Leverage: 10bps target vega (to control leverage)
e Della-hedging Parameters: Each leg is delta-hedged daily
The results of the backtest are illustrated below:

SPX Weeklys - Short SPX Synthetic Variance

140

— Unhedged (10bps. vega target sized)
Daily delta-hedged {10 bps. vega target sized) ‘

I

\
\
)
{
|
L

1

100 e _ | rrﬂ"r/
m ._—L_—_—f"_r

Strategy Index {Total Ret.)
{

2014 2015 2016 2017 2018 2019 2020
Figure 12: Systematic selling of SPX synthetic variance
Strategy Ann. Return | Ann. Volatility | Sharpe/Info Ratio 5% cVaR
% %
Unhedged 13.4 13.3 (.98 0,04
Daily delta- | 5.23 13.2 (.42 -0.07
hedged

Table 3: Short Synthetic Variance Backtest Metrics

We briefly mention that again this strategy has an average positive return over the 6
vear backtest history and has a positive carry profile. This is again in-line with our findings

on the existence and harvesting the VRP that exists withing SPX options.

33

5.3.3 Stress-testing the Backtester

In order to stress test the backtester, we conducted the following simple experiment. On the
day we entered a new option leg, instead of using the actual forward to price the options at
time t, we instead ran a simulated forward price starting with the forward price at time #g
using a discretised GBM. We then priced the options using this "simulated” forward price
with a fixed constant implied volatility.

S, =8, ,exp|(r— %02)(!.,- —tiq) + oWy,
This experiment served as a good stress-test when harvesting VRP. If the realised volatility
from the simulated forward price was lower than the implied volatility of the options then
we would have a positive VRP to harvest which meant that we should be harvesting vol
risk premia and have a positive carry profile for the strategy; and the converse also holds.
We would also expect that when the IV = RV we should have a relatively flat PnL profile
over time. The following exhibits depict the result from this simulation:

Flat vol: oy = oy = 209

SPX Weeklys - Short SPX Synthetic Varance (simulated forward)

= — Unhedged {10bps. vega target szed)
(= Dl defta-bmfged (10 by, vega taret sized)
U]

?‘“ o~ f'l‘q“h‘h 'ﬂ M
W IR J}F
C v o=l
BN et =Y U

2014 - 2018 016 i e 2019 2070

Figure 13: Flat VRP synthetic Var Backtest

34

Positive VRP: opy = 10%. 05y = 2

SPX Weeklys - Short SPX Synthetic Variance (simulated forward)

edged |10bps. vega targes seed)
— Duily delta-hedged (10 bps. vega target sized)

o /
2014 2015 2016 2047 2018 2008 2830

Figure 14: Positive VRP synthetic Var Backtest

N{){.’;Elli\u’{) VRP: Ty = :i[]lr‘{ Ty = ‘)[]l;‘f:

SPX Weeklys - Short SPX Synthetic Variance (simulated forward)

100 —— Unhedged (10bps. vega target sized)
—— Daily defta-hedged (10 bps. vega target sized)
BO
@
=
=
o B0
£
x
3
1
= w0
&
z
3
a0
]
2014 2015 2016 2017 2018 2019 2020
Time

Figure 15: Negative VRP synthetic Var Backtest

To summarise this section, the results of the backtest were inline with our expectations
meaning that we saw a positive PnL carry for short gamma strategies when VRP was
positive and the converse held for when VRP was negative. This gave us the confidence
that our backtester was robust and running as expected.

5.4 Trained RL Agent - Short Synthetic Variance Backtest

In this section we trained an RL agent to learn the optimal portfolio vega to short when
performing the same short synthetic variance backtest we saw in (5.3.2). Using a similar
architecture to the training of the agent to delta-hedge we now proceed to define the RL
setup.

RL Setup

Under this setup we recall that the strategy index is a function of the individual leg units
involved in the strategy (options and futures in our case); taking data with a time horizon
up to time t. We adopt the RL terminology and call the index strategy a policy. We define
our policy to be:

7 (f(nUL CL L)) — AnU}

Here the function f() allows us to pass deterministic transformations of units and prices as
features to the model, and also provide additional market data and portfolio metrics such
as BS-Delta/BS-Vega which we will see later on.

In our formulation of the problem, we restrict the strategy to using pricing information
available from time ¢ — 1; thus:

7 (f(UF,Ci_y,..)) = AnUj

We then allow for the policy to produce an output which we can then transform into inere-
mental units. Thus it makes sense as an approach to have the model output incremental
"bet sizes” which can be seen as leverage controllers in the strategy - to deleverage and
leverage up where appropriate. If we denote function g() as this transformation then our
policy 7 becomes:

T (UL Cly,) — g AU}

Here we see that f(nUj, Ci_|,...) corresponds to a state s, and g~ *(AnlU}) corresponds to
an action a;, so that we have 7 :— a, and g(a,) = AnU;. We will now define the spaces
and action sets in more detail.

State Space:

We define our states to be the total portfolio vega at different bumped levels of futures
prices denoted as F:

- 20% 15% 10% 5% 0% 5% 10% 15% 20%

E (P Y i Y Y D A S A)
So that the state s; takes the form:

8 = {(U.{ 2[]%-: ...:I/’J_I 2[]%-)} c8

Where J/’E‘{% represents the total portfolio BS-Vega (i.e. the sum of all the individual leg
BS-Vega contained in the strategy at time t) evaluated at each of the different bumped
futures prices. More formally we define this 9-tuple as the Vega Ladder of the portfolio at
time t, held by the strategy.

36

Action Space:

For the DQN agent, we choose a predetermined bound of min/max total portfolio vega
that the agent is allowed to short. By keeping the total portfolio vega range fixed, the agent
is prevented from selling unlimited quantities of vega when VRP is rich; thus the net vega
exposure of the strategy is capped, meaning that the strategy isn't subject to any direct
systemic risk.

We define the portfolio vega bounds below:

Min Short Portfolio | Max Short Portfolio
Vega Vega
0.15% 2.25%

And the action set is split into 101 uniformly sliced elements ranging from the mini-
mum,/ maximum bound of target vega specified above.

Reward Funetion:
The most obvious choice for defining the reward function is linking it directly to trad-

ing PnL. The DQN Agent is more penalised for negative PnL and rewarded for trades with
a positive PnL. We define the reward as follows:

| n |
rp=—|E; [ag, Z nUy (C'r:. b1 C‘T)) ‘

i=0

Where a,,; denotes the action i.e. amount of vega to sell and nU%, C'" denote the number of
units and price of component respectively. When the agent acts greedily, the maximum of
all the Q-values will be chosen in accordance to the DDQN algorithm we specified earlier:
a* = arg max (s, a; 0, o, 3)
a' €A(S,)
The tuple (Si, A¢, Riy1, Siq1) is appended to the replay memory and once one week of data
has elapsed (i.e. 5 trading days) a random batch sample of 32 trading days is chosen from
the replay memory to train the network. The target vector is then determined as follows:

Yi(Ay):= Ry + | v argmax Q(Siy1.0a)
ac A(S, 41
Where the Q-values are determined under the usual Dueling-DQN paradigm as defined
earlier:

Qs,a:f,a,3)=V(s:0.3)+ (Als.a:0,a) — ﬁ Z Als,a’i 0, a)) (5.4.1)

And the network then minimises the Mean-Squared Error loss function between the target
vector and predicted vector as follows:

MSE(Y,Y) = 1 Z(}; —Y;)? (5.4.2)

=1

37

The neural network is comprised of a 9-dim input layer, 2 linear hidden layers and a 1-dim
output layer; each using the ReLU function as an activation function. The output layer
equals the number of actions which can be taken in this case a singular number for the
chosen vega-target to be sold.

We describe the architecture for the applied RL problem with the following RL diagram:

Agent

New state : Action :

Reward : r
Vega Ladder IAREEES S Target Vega

-

Environment:
5t Strategy & Market Data

.

Figure 16: RL Diagram for Target Vega

DDQN RL Backtesting Algorithm

Due to the lack of data points based on the history of the SPX weekly options; we were
restricted to only training the agent on data every week between 1st September 2009 to 1st
January 2014, Ideally we would have liked to have trained the agent on at least 10 years
worth of data history as well as extending the training to 50 agents sampling the best 5
performing agents to jointly make the trading decision (called the ensemble method).

The implementation of the algorithm was crucial and a fine balance between managing
a flexible data pipeline (i.e. manipulation and storage of data) as well as managing compu-
tational efficiency of the code with acceptable run time.

Algorithm 3: Dueling-DQN for Target Vega

1 Initialise DQN Agent, with algorithm parameters: a = 0.0005 (learning-rate), v =
0.99, initial-e = 1.0, e-decrement = -0.001, minimum-¢ = (.01 score = -9999,
Initialise Network architecture:

2 training-score = ();

3 foreach episade do

4 Initialize Vega Ladder State S,;

5 while step of episode do

6 e-greedy agent chooses action A, (target vega position) to sell;
7 The next Vega Ladder state is determined from next trading day Sy1:
8 Compute Reward R, :

9 Add (5, Ay, Riy1. Siq1) to replay memory:

10 Increment memory-counter;

11 if memory-counter (mod 5) = (0 then

12 Sample batch-size from replay memory;

13 Determine target vector Y for bateh-size:

14 Fit Network of the DQN Agent:

15 if training-score = score then

16 Store model and update Network parameters and score;
17 Update ;1 = min(e—e-decrement, minimum-¢);
18 episode += 1;

19

39

As we can see below, the training of the agent did seem to converge to a somewhat sub
optimal solution and learned well particularly during 70-80 episodes in which the learning
rate seemed to converge and stabilise. As mentioned previously, the lack of data points in
SPX weekly options meant that the agent may not be able to learn as efficiently how to
cope with certain tail events that arising from systemic risk in the market place.

(Target Vega) Training Rewards vs. 5 Episodes
M l,’u“’“"\/ww V»WHPH] mlr’\f\/\ V/WMI”P'IJMV\JM'M'
| |
ol | |
|
| I

0.8

Expected Training Reward

o 20 40 &0 a0 100 120 140
Episodes

Figure 17: Training rewards for RL agent on a weekly basis over 140 episodes

In the below diagram we outline the empirical distribution of the target Vega sold,
we can see from the learning process that the agent was a lot more conservative in the target
portfolio Vega sold given that the distribution was slightly more skewed to the right. This
means that the overall strategy has less leverage and will have a much lower volatility than
the constant Vega counterpart; which is favourable amongst investors in yielding a much
more stable PnL profile.

Empirical Distribution of Vega Sold

i agent
012 constant target vega

0.10

o
1
&

0.06

Probability

0.04

1] 0 40 60 80
PHf. Vega Sold

Figure 18: Distribution of target Vega sold

40

The final results of the backtest are illustrated below:

SPX Weeklys - Shert Synthetic Variance

—— Unhedged Short Variance (1% Ptf. Vega Target)
140 { = Unhedged Short Vanance (AL Trained Vega Target)

-
130 r‘ -

£ A\ %

3] /LCH,L r

I; 120 P | J— ‘L.L‘_

£ o S

[=

o 110 e _J'r
H,.L,M—"” bt ——-—L,|
J

100
2014 2015 2016 2017 2018 2019 2020

Time

Figure 19: Strategy Index of RL trained Synthetic Variance vs. Constant Vega Target
Backtest

Strategy Return Vol Sharpe 5% cVaR Max DD. 5% Calmar

1%

constant | 0.13 .13).98 -0.04 -0.14 (3.90
ptf. Vega

RL Trained | 0.11 0.09 1.24 -0.03 -0.09 1.23

target Vega

Table 4: Strategy Performance Metrics

We can see from the PnL profile that the strategy had a far more stable PnL profile over
time; with a 30% reduction in overall PuL volatility; and a significant increase in Sharpe
Ratio (27% improvement). The max draw down was also reduced with a lower leverage;
however this came as a consequence as the overall annualised strategy returns were slightly
lower than the constant Vega counterpart.

41

6 Conclusion

In this project we were able to get a glimpse into applying Deep Reinforcement Learning
technigues to trade non-linear risk premia utilising a combination of Neural Networks and
Reinforcement Learning algorithms. Deep Reinforcement Learning has had a significant
presence in financial markets in recent years due to it's successes and some of it’s appli-
cations are currently being pioneered at Bulge Bracket Investment Banks such as Bank of
America, J.P. Morgan and Societe Generale.

This project began by covering many topical aspects of volatility, including it’s various
definitions, some misconceptions on volatility as well as introducing various methods to
trade volatility to harvest alternative risk premia. Systematic trading strategies benefit
ereatly from a time perspective since market timing of when to enter a trade is less of a
concern and execution slippage is widely reduced. One drawback to the backtester is that a
trading cost model was not implemented iLe. including execution costs/rebates from trading
listed Equity options.

It is also worth mentioning that the exchange data set that was used in the project wasn't
entirely the best and granular. It required a lot of cleaning/parsing and a lack of data
points for listed SPX Weeklys meant that the RL agent training could only be performed
on a small subset of granular data points, when a ten year history for training would have
been preferred. Additionally having intraday futures data would have greatly helped since
it meant that we could have delta-hedged intraday which would ultimately lead to a larger
scope for training of the RL agent.

Despite the computational challenges of modelling and trading a neural network in this
setting, we were able to demonstrate a successful VRP harvesting systematic trading strat-
egy of selling synthetic variance on a weekly basis with an agent controlling the overall
leverage (target vega) of the portfolio on each day.

There is significant scope for future work on this project; different neural network architec-
tures (e.g. DDPG), experimenting with different layer sizes and activation functions in the
neural network, training multiple agents and aggregating the best-performing agents via the
ensemble method to name a few.

Owerall this project was incredibly challenging, particularly with the complexity of building
an option back tester from scratch as well as embedding and implementing a reinforcement
learning agent to work in conjunction with the back tester; turned out to be a an extremely
strenuous task which involved deep knowledge of Python and design patterns to optimise
code production and keep execution run times within capacity of the machinery used.

References

(1]
2]

(3]
[4]

(5]
(6]

(7]
(8]
(9]
[10]

(11]

Sebastien Bossu et al. Introduction to Variance Swaps. Willmott Magazine, 2006.
Sebastien Bossu et al. Just what you need to know about Variance Swaps. J.P. Morgan,
2005.

Ziyvu Wang et al. Dueling Network Architectures for Deep Reinforcement Learning.
https://arxiv.org/abs/1511.06581, 2015.

G. Bakshi and N. Kapadia. Delta-Hedged Gains and the Negative Market Volatility
Risk Premium. http://dx.dol.org,/10.1093/rfs/hhg002, 2003.

CBOE SPX Index Options Factsheet. CBOE, 2022,

Vladimir Lucic. Volatility Notes. https://papers.ssrn.com /sol3 /papers.cim?abstract;d =
3211920, 2019.

Dr. Mikko Pakkanen. Math97231 - Deep Learning Lecture Notes, Dept. Of Mathemat-
ics, Imperial College London, 2020,

Pytorch DQN Tutorial https:/ /pytorch.org/tutorials /intermediate /reinforcement , earning. html,
2022,

Andrew Barto Richard S. Sutton. Reinforcement Learning An Introduction 2nd. Edi-
tion. 1992, 1sBN: 9780262193986.

Daniel Schwartz. MATH97108 - Quantitative Risk Management. Dept. Of Mathemat-
ics, Imperial College London, 2020,

Chao De-Yu. Deep }-Network, with PyTorch. https://towardsdatascience.com/deep-
g-network-with-pytorch-146bfa939dfe.

43

Source Code

All of the project source code has been uploaded to github in a private repository with the
following URL: https://github.com/nileshram/RL_VRP

14

