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Abstract

NP-complete and NP-Hard problems cannot be solved in polynomial time and usually require
the use of heuristics to get approximated solutions. The progresses in guantum computing and
quantum optimization over the last decade have allowed the use of innovative search policies.
Quantum Annealing is one of these heuristics, derived from Simulated Annealing, and relying on
the exploitation of the Adiabatic Quantum Theorem and quantum tunneling effects. The arbitrage
detection problem for European Call Options can be stated in a binary integer programming which
is NP-Complete. It can be translated into a specific Quadratic Unconstrained Binary Optimization
form suited for the D-Wave quantum annealers. Finally, the embedding performed by the D-Wave
Advantage used in this thesis encodes the problem into a Hamiltonian with a ground energy level
corresponding to the problem’s solution. Samples with the lowest energy level can be examined as

approximations of the optimal solution.

Keywords: Quantum Annealing, Binary Integer Programming, NP-complete, Arbitrage Detec-

tion, QUBO, Hamiltonian, Adiabatic Quantum Compuling.
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Introduction

The Efficient Market Hypothesis stated by Engene Fama in 1970 [1] assumes that securities have
a fair price which reflects all information available at each moment. However, in some cases, this
efficiency can show some weaknesses, especially when liquidity is low, leading to short-lived op-
portunities called arbitrages. An arbitrage can be simply defined as an investment which offers a
loss with a null probability and a gain with a positive probability. Its detection therefore arouse
strong interests of the investors and different methods have already been explored for arbitrage
research on the market. The methods used usually depends on the nature of the arbitrage that
aims to be detected and the underlying asset. Whereas merger arbitrage [2] would focus on trying
to anticipate some corporate actions, currencies arbitrage detection would use more quantitative

tools to search graphs and cycles in the FX market [3].

Indeed, the arbitrage detection can result into complex mathematical problems which could re-
quire sophisticated methods to be solved, when it is possible. This thesis deals with an arbitrage
detection problem on a portfolio constituted exclusively with European Call Options that will be
represented by a vector of binary decision variables associated to each Call Option. The full de-
scription of the mathematical variables and the optimization problem associated will be presented
in Chapter 1. It is intuitive that the complexity of this kind of problem is likely to grow exponen-
tially with its size. Results from [4] classifies it as NP-complete as a binary integer programming

problem and justifies the use of stochastic search policies rather than deterministic methods.

Quantum Annealing is one example of meta-heuristic that could provide promising results with
this kind of NP problems. It is a search policy derived from the classical Simulated Annealing,
itself inspired of the thermal annealing processes, and enhanced with properties inherited from
quantum mechanics. Recent progresses in quantum computing have seen companies like D-Wave
releasing systems that are able to fulfill the physical conditions necessary to observe quantum el
fects and perform quantum annealing. The functioning of those quantum annealers will be detailed

in Chapter 2.

To use D-Wave systems and Quantum Annealing to solve the arbitrage detection problem, it has
to be stated into a particular quadratic, unconstrained and binary form that is well tolerated by
the tools allowing a remote connection to quantum annealers. Then, an embedding is performed
and encodes the constraints of the problem into a Hamiltonian. Finding the solution of the prob-
lem will become equivalent to finding the ground energy level of the Hamiltonian. Therefore, a
translation work has to be done and will be detailed in Chapter 3 where the constraints will be

carefully encoded and the implementation methods and parameters will be presented.




Finally, Chapter 4 will expose the different results, assessing especially whether the gquantum
algorithm manages to detect arbitrage or not. Its performance in terms of accuracy and speed will
be compared to a benchmark using a classic search policy. The last step will be to discuss the

potential limitations of Quantum Annealing and more generally of quantum computing.

To sum up, the main aim of the thesis is to translate the arbitrage detection problem for European
Call Options and solve it with Quantum Annealing. The secondary goal is to give a more general
example about how a NP-complete problem can be handled by this quantum meta-heuristic and

what are the prerequisites to use it.




Chapter 1

Arbitrage Detection for Call
Options

This first chapter aims to set up the mathematical formulation of the Arbitrage Detection problem
to solve. Pirstly, some definitions of arbitrage will be given as well as the notation used to describe
and quantify it. Then some simple example will be provided to illustrate it in a practical appli-
cation. Finally, from the starting point which is a financial problem, the arbitrage detection in

a portfolio of call options will be translated into a mathematical version as an optimization problem.

1.1 Description of the Call Options Portfolio

Assume n European Call Options on a common underlying risky asset S, denoted Sp at maturity,
are given with a same maturity 7" and different strikes K;, with 1 < i < n, such that the order
Ky < Ky < -+ < K, is assumed. A portfolio with binary variables can be built using a vector
x = (71,...,7,)7 constituted only with 0 and 1 values. If the Option i is kept in the portfolio, the
it coordinate of the vector x is worth 1, and 0 otherwise. To model the distinction of long/short
position, the classical payoff functions will include a multiplicative factor «; whether the payoft
corresponds to a long or short position for the Option. There will be no restriction associated to

short-selling. The respective payofl functions at maturity are denoted v (.) are:
Ui(S7) = 0 (Sp — K;) "

where «; is equal to +1 or —1.

Inn this document, Call Options portfolios will have in scope both long and short position for each
strike K;. This implies that for n selected strikes, the total number of options in the scope is 2n.
For more clarity, n will be referred as the total number of options, which is also the number of
decision variables in the following. This representation is used to keep the problem simple and to
already have a binary formulation which will be useful later.

Thus, the portfolio’s payoff at maturity II* can be easily computed by adding all payoff functions

weighted by the z;:

I1(St) = ) " xhi(St) = x"9(Sr)
=1




where 1 is the vector of the payoff functions ;. 1I* is a function of St interpreted directly as the
aluation at maturity of the portfolio.
Moreover, the initial cost IT¥ of the portfolio is defined as the sum of the costs of each Option 1T,

times the decision variable z;:

I =) ll = x "
i=1

where IIj is the vector of all Call Options initial cost II}. It is noted here that the initial cost II
for a short position in an Option, with therefore a a; = —1 coefficient in its payoff function, would

likely be negative

1.2 Arbitrage Definition and Example

1.2.1 Arbitrage Definition

From there, a definition can be given for the two main types of arbitrage that can be encountered:[3]

e Arbitrage of type A:

A portfolio described by a binary vector x is an arbitrage of type A if I = 0 and II*(Sp) = 0

for any Sr.

e Arbitrage of type B:

A portfolio described by a binary vector x is an arbitrage of type B if II¥ < 0 and II*(S7) = 0

for any St.

1.2.2 Arbitrage Example

Let’s give now a concrete example about an arbitrage opportunity for a portfolio with size n = 2
composed of European Call Options and described with a vector x with only 0 and 1. This simple
example only aims to illustrate how the arbitrage phenomenon can occur and does not aim to be

realistic. It is important to recall that arbitrages are not frequent and natural for markets as they

translate a short-lived lack of efficiency.

Let’s assume an agent has access to a market with the two following European Call Options:

Position | Price | Maturity | Strike | Underlying Stock
Option 1 | Short 10 1 year 100 XYZ
Option 2 | Long 10 1 year 90 XYZ

Here all transaction fees and differences between bid and ask prices are ignored to keep the
example simple. In this example, both options have the same price, maturity and underlying asset
but different strikes, which offers an arbitrage opportunity. Indeed, if the agent buys one unit of
Option 2 and sells one unit of Option 1, or, in other words, if he builds a portfolio with the vector

x=(1,1)", it leads to a 0 cost portfolio and the two following respective payoffs at maturity:

10
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Figure 1.1: Payoff Diagrams for Option 1, Short (top left plot), Option 2, Long (top right plot)
and portfolio x (bottom plot)

Here, the arbitrage opportunity is clearly illustrated in the bottom plot of the portfolio x pay-
off, in which there is a non-negative value anywhere for the payofl at maturity. Therefore, the
portfolio never suffers a loss and offers gain in some scenarios, when the underlying asset is above

90. In other words, there is a null probability to suffer a loss and a positive probability to earn gains.

Remark 1.2.1. Finally, an important remark here is that, in the case one can only sell or buy
1 unit for each option, the value of the payoff function at S = K;, where K is the strike of any
option in the portfolio, will be a multiple of the gap K; — K1, considering this gap is the same
among all the strikes. In a case where one would like to keep the values of the payofl function close

to 0, a solution would be to re-scale the strikes to tighten the gap between them.

1.2.3 Link with Asset Pricing Theory

A parallel can be made with some results of the Asset Pricing theory, for example using definitions
of super-replicating portfolio.

Let Y be a derivative with a certain payofl at maturity Y7 and x a portlolio with a payofl’ at
maturity X¢ which aims to replicate the derivative. It said that x super-replicates the derivative
Y if for every possible outcome, X1 > Y.

Thus, this arbitrage detection problem has for solution a portfolio x, with a non-positive initial

cost, which super-replicates a derivative Yp that has a null payoff at maturity.

11




1.3 Integer Programming

Now that the financial problem is clearly defined and that the different notations were introduced, it
is possible to translate it as a mathematical problem. Indeed, the first step of the arbitrage detection
solving with quantum annealing is to formulate the problem with a Binary Integer Programming
problem, which is an optimization problem that will be consistent with the method used further.

Notations and assumptions introduced in Section 1.2.1 will be used.

1.3.1 Optimization Problem

Let’s first convert the arbitrage detection problem into a very basic constrained optimization
problem. Let x be a vector of binary variables describing a portfolio of n European Call Options

T

and with initial cost 1} = x'II;. For remind, its valuation at maturity is:

I1%(Sp) =x"y(S7) = > 2(Sr) = Y _ w0 (Sp — Ki)F
i=1

i=1

The binary optimization problem which directly translates the arbitrage of type B is the following:

minimize le[[}
(1.3.1)
subject to II*(Sp) >0, Spres8

where & is the set of all possible values for Sp.

From here, and with the definitions provided in the previous section, it is clear that negative so-
lution will represent an arbitrage of type B opportunity. Unfortunately, the set & can be infinite,
which implies that the optimization problem above has infinitely many constraints. To convert it
into a Binary Integer Programming problem, it is mandatory to convert it into a problem with a
finite number of constraints. The next step is thus to shift from a problem with infinitely many

constraints to a problem with a finite number of constraints.

1.3.2 Reduction of constraints number

To this aim, it is convenient to use the piece-wise linearity property of the European Calls payoft
function. And, as each Call Option has a piece-wise linear payoff function, the portfolio’s payoft

function ¢ is obviously piece-wise linear. [t then allows the following proposition [3]:

Proposition 1.3.1. For a portfolio, The payoff function of n European Call or Put Options with

ordered strikes (K )i« j<p. Its payoff function ¥(.) 15 non-negative if and only if:
PK;) =0, 1<j<p
WL+ Kp) = ¥(h)

Where p is the number of strikes. For recall, the corresponding number of options is n = 2p (1
long and 1 short per strike).
This exactly means that, to ensure a non-negative payoft, the payoff diagram must be non-negative

at each strike on the r axis and non-decreasing after the last strike on the right edge.

12




Therefore, the constraints of the optimization problem can be modified in the following way:

xW(K) =0, 1<j<p

!

IT*(S7) = x"(S7) = 0,
xT((1+ K,) —¥(K,)) =0
Which leads to the following Binary Integer Programming Problem, that has a finite number of

constraints:
minimize le[U

x"W(K;) >0, 1<j<p (1.3.2)
subject to
xT(P(1+ K,) —¢(K,)) =0
This is a new optimization problem with this time p+ 1 constraints. Now we can finally formulate

the Binary Integer Programming Problem in a very general form:

inf r'Tx_. subject to Ax = b (1.3.3)

X
‘here b and ¢ can easily be identified as b = @, 41, ¢ = 1l and the matrix A € M, ,,(R) which

includes the p+ 1 constraints can be detailed as:

U (K1) U (K1) e U (K1)
U (K4) Uy (1) . U (Ky)
A=
i (K ,) U (K,) U (K,)
(14 K,) — g (K,) a1+ K,) —a(K,) oo (14 K,) — i, (K,)

The expression of matrix A gets simpler using the Call Options payoff’ functions that read:

o (K — KG) it =i
i) = (K, — K =
0 otherwise

Moreover, the first constraint and therefore the first line of the matrix can be deleted. Indeed, as

(K1) =0 for any 1 <4 < n, it will result in a 0 > 0 condition that is always verified.

This leads to:

a1 (I — K1) 0 0 0
ay (I — Ky) an(Ky — IKy) 0 0
A=
ay (K, — K;) (K, — ;) as(K, — Ky) - 0
U (14 K,) —i(K,) (14 K,) —vn(K,) va(l+K,) —s(K,) - a1+ K,)

13
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From there, it is possible to interpret the solution of this Binary Integer Problem as an existence

or not of an arbitrage in the portfolio, thanks to the following Theorem:

Theorem 1.3.2. There is no arbitrage if and only if the binary integer programmaing problem

admits a strictly positive solution.

Now, let’s make a few remarks about the matrix A that for now includes all the problem
constraints. The matrix A gathers p constraints: p-1 constraint of the form x"W(K;) = 0 trans-
lating the positiveness of the payoff function at each strike K; and a p-th constraint of the form
x! (91 + K,) —(K,)) = 0. However, this p-th constraint is different from the n-1 previous,
as it characterizes a monotonous direction as from some point K, and not only a value at one
point K;. For this reason, it would be convenient for the following to encode the last constraint,
corresponding to the last row of A, into a separate vector @. In this way, the problem would read:
and x' @ >0 (1.3.4)

infe'x, subject to  Ax = O,
X

With the matrix A and vector @ defined as:

O = (1 (1+ Kp) — () (1 + K o) — Un (K)o n (1 + Kp) — Un(K,)) € B

(Ky— Ky) —(Ky — K;) 0 0 0 D
(s — K1) —(Ks— K1) (Ks—K2) —(K3— K 0 e 0

A= € JVT,,_ 1n(R).
(W, —Ky) —(K,-Ky) (K, -K,;) —(K,—K,) (K,—K;) - 0

Thus, from the very first definition of an arbitrage in the beginning of this section, it is now

possible to state its existence as a solution of a Binary Integer Programming Problem.

1.4 NP-completeness of the problem

Now that the Binary Integer Programming problem is stated, it is convenient to estimate its
complexity and some other properties which may gunide to adapted ways to solve it. In fact, this
problem can be characterized as a special case of the decision version of Mixed-Integer Quadratic
Programming (MIPQ), which is defined in [4] as an optimization problem with a quadratic objective
function to be minimized over an integer-restricted polyhedron.

Furthermore, [4] categorizes MIPQ's decision versions as NP-complete. Indeed, they are also known
as NP-complete combinatorial optimization problems. But what is NP-completeness?

In a simplified way, NP-complete problems are problem which do not have any Polynomial-Time
algorithins, oppositely to P problems. It is important to recall that so far there is no proof that
P # NP. One of the most famous NP-Complete problem is the Traveling Salesman Problem with
Transportation [6]: If you are given a list of cities along with the distances between each others,
what is the shortest possible route which allows you to pass by each city once and finally get back

to your starting point?

14




Therefore, deterministic algorithms are not suitable for this arbitrage detection problem classified
as NP-complete as they would not be able to find a solution in a reasonable time. For NP-complete
problems, the time required to find a solution closed to the optimal one is likely to be exponential
with the size of the problem. which explains why it is not convenient to use classical methods.
It is recommended to rather use probabilistic methods, usually search policies named heuristic,
to estimate an approximation of the solution. Quantum Annealing is one of these heuristics and
will be the privileged solution here. But to understand precisely how does the quantum annealer

processes, it is first convenient to recall basics of gquantum computing.

15




Chapter 2

Quantum Annealing Theoretical

Overview

This chapter aims to provide theoretical notions related to quantum annealing that are necessary
for the understanding of the document. It is recommended to have knowledge of the basics of
quantum mechanics that will not be covered.

The first part will focus on general principles of Quantum Computing, articulated around 3 postu-
lates, whereas the second will look closer to the Quantum Annealing process that is used to solve

the Arbitrage Detection problem.

2.1 Quantum Computing Basics

Classical computers and Quantum computers have different ways of managing memory. Indeed,
classical computers store information coded in binary digits (bits) that can take two distinet and
deterministic states: 0 and 1. Quantum computing uses the framework of states superposition,
introduced by quantum mechanics, in which a general state is, before measurement, a combination
of different 0 and 1 states, weighted by their probability of being measured. They are called

Quantum Binary Digits, also known as gbits.

2.1.1 Quantum Binary Digits
As explained above, gbits are used to store and carry information in quantum computers. It must
be adapted to the description of a closed system. To describe a quantum state i as a superposition
of two 0 and 1 states, we nuse Dirac’'s notation |.) as below, for example:

[y = |0) + 31} (2.1.1)
where o and /# are complex numbers representing probability amplitudes and therefore verify:

leaf? + 187 =1

When measuring the state |17}, the state |0) is expected with a probability a? and the state |1} is

expected with a probability 32.

16




This is a direct result from the 1% postulate of quantum mechanics which allows describing the

state of a closed system |7]:

Theorem 2.1.1 (1* Postulate). The state space of a physical system is an associated complex
inmer product space (Hilbert Space). The system is fully described at any time t by its state vector,

which 1s a unit vector belonging to its state space.

The state 1-gbit |7} thus depends only on the two coefficients e and 3 and it is therefore
convenient to represent it as a vector of two complex coefficients:
. . 1 210 o
[y =a|0) + 3]1) =« + 8 =
0 1 g
Now that the notations are clear for a single qbit, let’s look closer to quantum states with more
than one gbit. An n-gbit system requires specifying 2" probability amplitudes to be described.

For example, a two-gbit system will require 4 probability amplitudes to be specified:

1 0 0 0] [a
0 1 0 of |8
Uy = al00)+ 301+ [10) + 8|10 =a | | +8| | +v| |+6] |=
[¢) = [00) + 3[01) +~[10) + §[11) ol TPl T I 0 .
0 0 0 1 5
lal* + 182 + 41> + 18]* =1

As information is stored as vectors, quantum computers can manipulate it and transform it easily

with matrix operators named "quantum gates” that will not be detailed here.

2.1.2 Schrodinger Equation

Now that the framework to describe a quantum state has been presented, it is important to know

about its dynamics and how is it likely to evolve through time in a closed environment [7].

Theorem 2.1.2 (2" postulate). A quantum system is composed of particles in a superposition of
states, which each have an associated level of energy. It is likely to evolve through time and this

time evolution is described by the Schréidinger Equation

4|

il 0

=H ()

where h is Planck’s constant and H is a Hermitian operator known as the Hamiltonian of the

system

In the case of a closed system, the Hamiltonian is time independent. The Hamiltonian is a
key operator as it allows understanding fully the dynamic of the system. It is an operator which
maps the quantum state to its associated energy level. As it is Hermitian, it can be written with
a spectral decomposition [8]:

H= Xles) (eal (2.1.2)

Ael
where & is the set of the eigenvalues A associated to the normalized eigenvectors |ex). The Hamil-
tonian is a mathematical operator with a spectrum that can be interpreted as the collection of all

possible energy levels measurable.

17




Its eigenvectors, called the eigenstates, are associated to their eigen-energy which is a well-
defined level of energy. The lowest level of energy, that is the eigenvector associated to the lowest

eigenvalue, is called the ground state.

2.1.3 Measurement

The Hermitian property allowing the spectral decomposition seen in equation 2.1.2 leads to the
374 postulate which translates the interaction of the quantum system with external system. The

Hermitian operator H has a quantum state

Theorem 2.1.3 (3" postulate). Before measurement of the state |¥) of a Hermitian operator A

with eigen functions (1)) we have the following decomposition given the spectrul theorem describing

|&) = Z a; [1;)

All the possible outcomes are its eigenvalues (i) associated to the eigenfunctions, with a probability

the uncertainty of the outcome:

pi = || to be measured.

After measurement of the outcome A, the state of the system immediately collapses to
|‘l!} = |l‘:"(}

This postulate allows extracting classical information from gbits after measuring their quantum
state. However, as the ontcome is probabilistic, one needs to perform multiple measures to produce

significant statistics.

2.2 Quantum Annealing Principles

Now that the basics of quantum computing have been introduced, it is possible to describe the
process of Quantum Annealing used to solve the optimization problem stated.

Indeed, Quantum Annealing can be delined as meta-heuristic which is a search policy to find
solutions of a problem. Those solutions are most of the time not global but are good approximations
of the best one. There exists many different meta-heuristics to solve optimization problems that
have their advantages and inconvenient. For example, gradient descent is a quite efficient search
policy but could get easily trapped in local minima. The Quantum Annealing is derived from

another famous search policy: the Simulated Annealing.

2.2.1 Simulated Annealing

Simulated Annealing is a meta-heuristic for bounded unconstrained optimization problems. The
idea is to use thermal fluctuations modelling to avoid the search to be stuck in a local mininum
and slowly cool down to stabilize the system after having explored enough. Let f be the objective
function to minimize and define a convergence criterion that allows the search to stop, the algorithm

below details the search process:
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Algorithm 1 Simulated Annealing
Draw an initial point = = z
Compute f(x)

while convergence criterion is not attained do

Choose a random neighbor y of © and compute f(y)

if f(y) < f(z) then
Set z « y

else
Set @ < y with probability p = exp (— M)
Keep = with probability 1 —p

end if

end while

The crucial step of this algorithm is when f(y) > f(z) and the decision to set # = y can be
taken with the probability p defined above. Ewven if it can seem erratic to choose to switch for a
less optimal solution, it actually allows avoiding being trapped into local minima as it favorites
the exploration of other solutions. Now, let’s look closer to the parameters on which depends the
probability p. It is a decreasing function of the distance |f(y) — f(z)]. The further is f(y) from
the current solution, the less likely it will switch to it. Indeed, the exploration happens more likely
with rather close solutions, in order to keep a quick convergence. And finally, p depends on a
critical parameter which is T interpreted directly as the time-decaying temperature of the thermal
annealing. At the beginning, the temperature is high. which brings p close to 1 and allows more
exploration and large moves whereas, at the end, when it is low and when p is close to 0, x stays
around its current solution. The high temperature at the beginning, provides energy to the system
to make it able to cross the potential energy barriers between two minima.

This idea is at the origin of the quantum annealing meta-heuristic

2.2.2 Adiabatic Quantum Computing

The other result on which Quantum Annealing is founded is Adiabatic Quantum Computing.

A process is said to be adiabatic when is no energy exchanges between the system and the outside.
Based on this property, Adiabatic Quantum Computing is a promising method to solve high
complexity optimization problems. To use it, the prerequisite is to have encoded the objective
function in a Hamiltonian Hp, that for remind, is the mathematical operator describing the energy
levels of a quantum closed system, in order to get its solution by measuring its ground state. There
is then an equivalence between finding the lowest energy level and the solution of the optimization
problem.

However, measuring the ground state of a Hamiltonian encoding an objective function can be tough
and that is why one may use the quantum adiabatic process.

To clarity, the idea is to start from an initial Hamiltonian Hy which has a simpler form and where
one can easily determine the ground state. Then the idea is to make the Hamiltonian of the system

evolve from Hj to the wanted Hamiltonian Hyp:
Ht) =r(t)Ho + (1 —r(t))Hr (2.2.1)
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where the function r(.) is the time decay with initial condition r(0) = 1 and terminal condition

r(T) = 0. An example of time decaying path would be:

t

Ht) = (1 - 7)Mo + 1

From there, the Adiabatic Theorem can be nsed [9]:

Theorem 2.2.1 (Adiabatic Theorem). Let a quantum system start in the ground state of a Hamal-
tonian Hy . If the Hamiltonian of the system evolves sufficiently slowly through time, the system

remains in the lowest energy level until time T,

Therefore, to find the ground state of a complicated Hamiltonian, representing the solution of
an optimization problem, it is possible to start from the ground state of a simple Hamiltonian H,
and make an adiabatic evolution.
The energy levels graph below illustrates the process. As it is shown, there is an energy gap
between the lowest energy state and the upper level. Therefore, to move up and leave the ground
state, the system needs energy. In adiabatic conditions, when the system evolve slowly, the system

doesn’t receive any energy from the outside and stays in the ground state.

EA T T, . T Ty 4 T

o
-
o

Figure 2.1: Time Evolution of the Quantum State’s Energy during an Adiabatic Process

2.2.3 Quantum Annealing

Finally, Quantum Annealing is combining ideas of Simulated Annealing with a quantum adiabatic
process. For remind, it is assumed that the optimization problem to solve can be encoded into a
special Hamiltonian My in a way that finding the solution of the problem is equivalent to finding
the ground state of this Hamiltonian operator.

Thus, if the starting point is a simple initial Hamiltonian H in its ground state, it can evolve
slowly enough towards the final Hamiltonian ‘Hr which encodes onr problem, the adiabatic theorem
ensures that one can measure the solution as the quantum system will remain in the ground state.

The figure below from (9] well illustrates this idea:
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Figure 2.2: Adiabatic Evolution from Initial to Final Hamiltonian during Quantum Annealing

On this figure, the Hamiltonian is clearly expressed as a mapping from a state to an energy
level. For some simple Hamiltonian, it is usually easy to know which state corresponds to the
lowest energy level (black dot on the figure), but it may not be obvious when the mapping is more
complicated and includes local minima. Adiabatic evolution would ensure staying in the global
minimum.

Another major point of difference in comparison with the simulated annealing and enabled by the
quantum properties is the local hills management. Whereas thermal annealing provided energy to
jump other loeal hills, here the system will use the quantum tunneling phenomenon to get through
the local hills as long as they are thin enough. The figure below illustrates well both phenomena

[10]:

Energy

Solution Solution

Quantum Tunnelling Adiabatic evolution

Figure 2.3: Quantum Annealing and Tunnel Effect

Quantum tunneling is a phenomenon proper to quantum particles [11]. It refers to how particles
could simply pass through (tunnel), some potential energy hills for which they do not have the
energy to climb. It would be impossible for any classical physical entity. But a quantum particle,
which can be described as an oscillating wave, would not likely be stopped by an energy barrier.
Instead, it will cross it but with some cost on its amplitude, that is directly interpreted as the
probability of being found at a certain place. The thinner the barrier, the less the amplitude of
the particle’s wave will be affected and therefore, the more likely it could be found on the other

side of the hill.
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2.3 D-Wave Quantum Annealer

Recently, some of the biggest tech firms such as Google, IBM or Intel, have developed quantum
chips, in order to be able to build entire quantum computers in the long run. D-wave is one of
those firms and has developed components particularly suited for quantum annealing. Even if the
size of the newly developed quantum computers is still limited, it has become popular with for

example the D-Wave 2000() quantum annealer, allowing 2048 gbits.

2.3.1 Physical Description

It is possible to find a few details about how D-Wave gquantum annealers are built, especially in
the D-Wave 20000) Technology Overview [12]. Quantum annealers are very sophisticated systems,
as they must ensure the control of several extreme physical constraints. That’s why their size is

important and could recall some of the first CPUs built in the XX century as [12]:

Figure 2.4: D-Wave 20000 (L:10", W:7", H:107)

The D-Wave 20000) has to keep its Quantum Processing Unit (QPU) close to absolute zero
(0K which is merely equivalent to —273° C). A temperature of 15mK is managed to be reached in
the shielded enclosure thanks to refrigerator using liguid helium. The reason why it is necessary to
keep this extremely low temperature is that the qbits constituting the QPU are made of metal loops
which can become superconductors and demonstrate quantum effects only under those conditions.
Moreover, the system has to erase any magnetic field noise which can pollute the process and is
therefore using high-permeability and superconducting materials to make a magnetic shield. The
figure below gives an idea about how are arranged the different components inside the black case
[12]:
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Figure 2.5: D-Wave 20000Q) major components

2.3.2 QPU Architecture

In addition to the restriction on the total number of gbits available on the machine, there are
restrictions on how the gbits are interconnected with each other. Indeed, it is organized into a
same uniform lattice scheme, sometimes called chimera unit cell, as it is represented on the figure

below talken from the D-Wave documentation [13]:

Figure 2.6: On the left, general grid architecture of gbits, on the right, the two possible represen-

tations for a chimera unit cell (vertical columns or cross)

The way qbits are interconnected within a same lattice is referred to as internal coupling. As it
is shown on the figure, internal coupling is possible between two groups of 4 gbits in this scheme.
Therefore, one would think it is impossible to couple a gbit with more than 4 other qbits which
would be a huge constraint to solve most of the problems. Nevertheless, it is possible to couple

more gbits using external coupling as well, as it is shown on the figure below [13]:
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Figure 2.7: On the left, general grid architecture external coupling, on the right, zoom on unit

cells external coupling

Thus, the adjacent lattices can have two ¢bits connected from their extremities. If they are
coupled in a way such that they are always equal, it is equivalent with having enabled more possible
external connections to one gbit, as it would benefit of the connections from both lattice. This
more commonly called a ¢bit chain and also referred as external coupling.

The QPU architecture of quantum annealers have to respect these internal and external coupling

constraints which lead, for the D-Wave to the following scheme [13]:
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Figure 2.8: On the left, a zoom on a 2x2 unit cells structure, On the right, chimera graph
implemented on D-Wave 2000Q) systems

For remind, the physical realization of this QPU is possible only by keeping the system into

. . . .
cryogenic temperatures and erasing any magnetic field’s interference.

2.3.3 D-Wave Advantage and Pegasus topology

Among the different versions of the D-Wave quantum annealers that have been released since 2011,
the one that will be used in this document is the D-Wave Advantage, the latest up to date. It has
been released in 2020 and has a capacity of 5640 ¢bits which is significantly more powerful than
the 2048 qbits previously offered by the D-Wave 20000). One other major difference compared to
the 20000Q) is the topology, which refers to the QPU architecture, as the Chimera has been replaced
by a Pegasus topology which corresponds to the following layout of the gbits [13]:
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Figure 2.9: Pegasus Topology implemented on D-Wave Advantage system

As for the chimera graph, the gbits are still arranged within a grid, as vertical and horizontal
bars but are shifted and no longer perfectly aligned. Here, in addition to the internal and external
coupling, each qbit has some odd-coupling, which is why each gbit is represented by two aligned
bars. In this way, each gbit is paired to another gbit with this odd coupling, which enables more
internal and external coupling. On the figure above, the nsual internal coupling of the gbit number
1 is represented by the vertical intersections. [t is therefore internally coupled with qbits from 3 to
8. The external coupling is possible with horizontal adjacent gbits, as it i3 shown with gbit 2 and
9 on the figure above. With this new topology, the number of couplers has been increased from 6
to 15 [14], which enables wider nsage of the QPU.




Chapter 3

Problem Translation and

Implementation

This section aims to translate the basic mathematical formulation of arbitrage detection that has
been stated in 1 to an unconstrained formulation adapted to the quantum annealer used. After
having obtained a mathematical formulation adapted, the different tools and resources used for

implementation will be presented

3.1 QUBO Representation

3.1.1 QUBO Definition

As explained, the quantum annealing is a search policy which aims to find minima in an objective
loss function. This objective lunction has to represent fully the problem to solve as well as all its
constraints. In Chapter 1, the arbitrage detection problem was stated as binary and quadratic but
constrained. To convert it, it is convenient to use the Quadratic Unconstrained Binary Optimiza-
tion (QUBO) formulation which is common for Quantum Annealing. Indeed, it is represented by

a loss function L(x) that is quadratic with respect to the binary components x;. Its general form

is:
n n n
Lgupolr) = E a;T; + E E bija (3.1.1)
i=1 im1j=i+1
linear quadratic

The loss function will include the maximization or minimization criteria of the optimization prob-
lem as well as its constraints. Its is built into additive penalties that will increase the overall loss
whenever some constraint is not respected. For example, an equality constraint such as u"x = 10

“an be translated into the following penalty function:

n

2

I{x) = A E u;r; — 10)

i=1

 is ar that t alt; i as s as t straint is 8 i his
It is here clear that the penalty will grow as soon as the constraint is not respect. Adding this
penalty term to the overall loss function of a problem is equivalent to adding a constraint to this
problem. Here, the positive coeflicient A is critical becanse it can be chosen by the user and is

directly interpreted as the weight allocated to the constrained.
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If it is a critical constraint, an important coefficient A may be used for this penalty term, com-
paratively to the other terms weights, whereas if the constraint is more a preference that can be

relaxed, a low coefficient may be used.

3.1.2 Introduction of Slack Variables

Thus, the Binary Integer Programming Problem stated in Chapter 1 of this paper and which is
constrained, can be translated into a QUBO problem, which is unconstrained. For remind, the

problem stated as in Chapter 1 is:
infcTx, subject to  Ax > O, ; and x'® >0
X

Where the matrix A and the vector @ are detailed in section 1.3.2. Therefore, the loss function

will be decomposed in three components:

where L,(x) is the loss function associated to the minimization criteria of ¢'x, Lo(x) is the loss
function associated to the p-1 constraints contained in the matrix A and Ls(x) is the loss function

associated to the p-th constraint contained in the vector ®.
L, (x) can be easily set as:

Ly(x) = )\l(_‘T)( =M Z ].['[.’;J

i=1

Here, it is clear that the more expensive the initial portfolio is, the higher will be this penalty term.
One import question that can arise from here is, what would arrive if this initial price is negative?
Indeed, as all penalty terms are additive, it would offset the other penalties and confuse the results.
However, here, it is assumed that by setting a high coefficient on the loss functions L, and Ly, a

negative initial price will occur only in case of an arbitrage and therefore, rarely.

The other penalty terms Lo(x) and Ls(x) require however more attention. A naive formulation

for L,(x) conld be to set it as:

n

La(x) = —)\1(2 Z ;T ;)

i=1 j=1
Indeed, the penalty would be positive if all the components of the product Ax are negative and
therefore increase the overall loss function. Howewver, similarly as for the first term, some offsets
could oceur, for example when some components do respect the constraint and some do not. In
some of these cases, the penalty could still be negative even if the constrained is not respected.
From this issue, one can recognize that translating inequalities constraints into a QUBO loss

function is not as straightforward as other constraints.

A solution to solve this issue is to nse what is called "slack variables” that will allow translating

an inequality into an equality. The main idea behind is that:

n n
If E r; < h  then there exists a positive binary expression s such that E ri+s=nh
i=1 i=1

27




The binary expression s usually admits the following decomposition:

I

&= E 2's;
i=0
where the s; are the slack variables associated to the constraint. Their number k is chosen arbi-

trarily and is obviously related to the amplitude with which the constraint is likely to be respected.

For this arbitrage detection problem, with n different options, there are § inequality constraints
which require slack variables that would increase the total number of variables.

However, it is preferable to keep this total mumber of variables as small as possible, as Quantum
Annealers have limited capacities. To this aim, one would have to keep the amplitude relatively
small and, as pointed out in the remark in section 1.2.2, this amplitude would be directly related
to the gap between two consecutive strikes. For this reason, the strikes will be re-scaled to ensure
K;— K; 1 =1for 2 <i<p Thus, the amplitudes of the payofl function would stay relatively

small, and it is possible to keep a small number of slack variables.

The choice is made to keep 2 slack variables for each inequality constraint, allowing therefore an
amplitude 0 < h < 3 and a total number of slack variables of 2 x § = n. This leads to the following

expressions of Ly(x) and La(x):

p-1 n
_ A, 0 g 142
Ly(x) =23 () Az — s? — 25))
i=1 j=1
where p = § is the number of inequality constraints (equal to the number of different strikes).
— 0 _ 9132
Ly(x) = —8,—25)

Here one can easily assess that as soon as > .| A;;x; is negative, then Y .| Az — Zizu 2P s,
will be negative for any positive binary expansion, and therefore it will generate a positive penalty.
However, if 31, A;jx; is positive and is within the amplitude given by then binary expansion,
then there exists a value of the & slack variables which gives a null penalty. To sun up, the QUBO

loss funetion for the problem is now:

n p—1 n

n

D 5142 U BN Ry
i— s —2s; )7+ As( E Dz — s, — 28]
i=1 j=1 i=1

Now, if one wants to nse a representation where all the decision and slack variables lie in a same
vector X, it is possible to concatenate the initial vector x of n decision variables with all the slack

ariables pairs [.9?_..9})1<,E<,,:
e R BN U | Bt 01 [ )
X = [0, @2y oy Ty 87, 87,89, 80y 00y 8 5] = [T1,00, 000y Tan |

X is a vector of size N = 2n. Using this notation, the objective function reads:

n p—=1 n n
LX) =MD Wz +xe Y (O Agzy — Tatai — 2on42i01)” + (Y @525 — w201 — 2720)
i=1 i=1 j=1 i=1
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3.1.3 Canonical form of QUBO

Now that the constraints for the initial problem have been translated into a single objective func-
tion, it is now convenient to express it in the canonical form of QUBOs stated in 3.1.1, with a vector
containing the linear part of the objective function and a triangular coupling matrix containing
the quadratic part. This canonical form of the QUBO will then be straightforward to implement
on a quantum annealer software interface which can perform the embedding from it. The best way
is to proceed term by term, and the result is easily obtained from basic sum manipulations.

The first term gives:

n n N
Ly(x) =AY e =Y NIl =Y ML,

i=1 =1 i=1

Where 1<, is an indicator function that is worth 1 when j < n and 0 elsewhere.

The second term reads:

p—=1 n
Ly(X) = A ( Ai_;- — Tppzi — 2Tpq2it1)
i=1 j=1
p=1 n n n
=M (( Ax'_] €Ly I Apry) — 2( Afj-lj](-l-u+2x' + 2204 0i41) + (Tugoi + 200 40i41) )
i=1  j=1 k=1 i=1
p—1 n n n
_ A Ao e 5 A V[ - .2 A . A2
= Az E (( E E Az Ay — 2( E Ay (Togoi + 2Tnq0i01) + (Thg + 40421 T0 241 + 42 u+2i+]_))
i=1  j=1k=1 j=1
n n p-1 n p-1 p—1
= )\2( E E E Af_ij&-- E—2 E E Ai;i‘l-_,l Tpgoi + 2T 40i41) + E (@ n42i T AT 4 2iTr i 41 —4-1-”+2x+1))
G=1 k=1i=1 4=11i=1 i=1
N N p—1 N N
= )\Z(E > (1.'}<u-.3r<u > Ai.fAf&-)- R D) (]lm-_;m'—zh-m A itz k(2 X L + =4 X 1 e
j=1k=1 i=1 j=1k=1

+3 Y hucjen-obuckeN-2mk jus + 4 X Lk, +4 % ]1_f=x+1,..;aN—:aJ-i'.y-i-'&-)

j=1k=1
N N p—1
= E E Az [(1j<u__&-<n E ijr'lm-) + (]]-ue;_',i{N—Z]]-k-<u/‘]-_]_”_g,,g:-'fz—”:__.k-(_‘z KL, —4x 1;) +
j=1k=1 i=1
>
Paf :

+ (lug.fm'—u]lu<x-<:\'—u(]1.f=&-,..y,,,f,f TA XL, T AX ]l_-,i=1<-+l;.;i<N—3))}-3'.'}-”

-

Cy

N N

- Z Z A (Cr + Co + Cy)xjag

j=lk=1
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With similar manipulations, it is possible explicit L3(X) into a canonical form:

X) = A3 (Z ‘I’j-i‘j — Ton-1 — 2-1‘2“)2)

=1
=303 00 — 2agn-s + 2220) Z@ 1+ (B, g + Ap atan + 41,))
,'—].:i—l
—M(ZZ Licn ken®; Pr) zjry —ZZ 2N ke Py — AN pen i) TR+
;_1&—1“_‘*'_’ i=1 k=1
N N
ZZ Wi—np>N—1+Li—Nr=N —LJ!;M)
j=1k=1

Dy

I
M=
M-/

A3(D1 + Da + Ds)zjmg
Lk

1
A

i
Which leads to the following canonical QUBO representation of the entire objective function:
N

N N
LX) = > (ML) + 30 (MalCr + Co + C) + 25Dy + Dy + Dy) )

1=1 j=1 k=1

linear guadratic

From this expression it is possible to explicit directly the triangular coupling matrix of the problem

ariables given by the quadratic part of the objective function:

JU' On.”
M.-.,‘..]];a.g = N P

where M, N and P are:

o1
Mg 4 = Ao ’ZAJ;-_{AJ;__;; + MA@y for 1<i<n and 1<j<n
=1
—2Mp 414 =210 —2Xp 4y —2MA
—dAp Ay —dAp Ay o =X Ay —dA Ay,
—2\2 451 —2A2 A5 2 —2X2 A5 0 —2MAsp
—4ApAn s —dAp Ay o =4 Ay —4Xa Ay,
N=
=2hoAp a1 —2hedy 10 0 20400 —2A04, 0,
—‘1)\251,)—1,1 —4X Ap— 12 —4/\2Ap—1,u—1 —P)\QA;)—LH
—2A3D, —2A3D0 = —2A3D,, 4 —2M39,,
—4A39, —4A3P2 —4N3 Py —4M3 D,
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3.2 Implementation

This simulation will use the D-wave systems and its presented architecture to attempt to solve our
QUBO problem stated in the previous section. To this end, it will be convenient to use the Ocean

Python package, which is particularly snited for this.

3.2.1 Data Used

The data used for this arbitrage detection problem are prices of European SPY Call Options taken
from the CBOE website [15]. The entire data set includes Options with strikes from 180 to 620,
but not all the options will be considered as it is preferable that the size of the problem to remain
within the limits of Quantum Processing Units.

Thus, the simulation will be run for the following mumber of options: n = 8, n = 10, n = 16,
n = 26 and n = 46. As explained before, for one strike, two options are used: one corresponding
to a long position, with an a; = 1 and relying on the ask price, and one corresponding to a short
position, with an o, = —1 and relying on the bid price. For example, the head of the data set is

n

shown below to illustrate the data used for n options (and therefore § strikes):

Index | Price Strike | Direction

0 218.32 | 180 -1
1 221.54 | 180 1
2 213.6 185 -1
3 216.81 | 185 1
n-1 0.25 600 -1
n 0.6 600 1

Table 3.1: Data Used on European SPY Call Options from CBOE website

3.2.2 Ocean package

D-Wave Ocean is a python library allowing to use D-Wave samplers for various type of problems,
including Binary Quadratic Models, with the Dimod library. It is an open-source software that
allows a connection to a solver which then will use a CPU, GPU or QPU depending on the sampling

method specified.




The Problem Inspector is one of the popular and enjoyable feature of the Ocean Software as it
directs the user to a special interface after having run the solver, to observe the results and analyze
it.

In this implementation, two samplers will be used to solve the problem and will be compared:
e Simulated AnnealingSampler : a sampler using the classical Simulated Annealing algorithm

o DWaveSampler: a sampler using D-Wave Advantage quantum annealer

3.2.3 Setting QUBO Hyperparameters

A final task before implementation is to set the hyperparameters Aj, Ay and A3. These parameters
have to be precisely calibrated in order for the samplers to be able to find arbitrage whenever it
occurs. If ever it was not well calibrated, for example, if one of the three encoded constraints was
over-weighted, then the two others will be under-weighted and therefore the solution found might
not match the constraints defining arbitrage.

But, to assess whether some model is good or not at detecting arbitrage, it is necessary to know if
there is indeed an arbitrage in the data used. As searching for a data set containing an arbitrage
an be long and tedious, a good shorteut is to create an artificial arbitrage in the data used by
manipulating some prices. Then the idea is to modify the parameters until the artificial arbitrage

is found by a classical algorithm. The hyperparameters obtained by this method are:

M| 1.6
Az | 30
A3 | 125

Table 3.2: QUBO Hyperparameters




Chapter 4

Results and Interpretation

This chapter aims to expose the results obtained from the simulations realized with the set-up
described previously, using the D-Wave sampler provided by Ocean. Firstly, the different metrics
used to assess the performance of Quantum Annealing for this arbitrage detection problem will
be presented. Then comparisons will be made between simulations with different numbers of
problem variables and each of this simulation will be compared to a benchmark using a classic

meta-heuristic.

4.1 Sampling Solutions

The two samplers used provide as output all the samples found as solution for each read grouped
by energy levels and ranked in an increasing order for energy level. Thus, at the top of the list it
is possible to read the best solution found among all the trials as well as the number of times this
solution was found. In the following, illustrative examples will be presented for the sinmlation with
a number n = 10 of options, corresponding to a total number of variables of N = 20 and therefore
offering 2%° possible states. Given that the munber of possible states is very large relatively to
the number of reads (which is limited to a maximum of 10 000), it is normal to expect that the
mumber of oceurrence for most of the energy level found is 1. But by gathering energy levels by
buckets, it might be possible to observe a distribution of the solutions’ energy levels.

For example, find below the first rows of the D-Wave sampler’s output for the simulation with 10

options:
X | X | X3 | X4 | X5 | Xg | o | Xas | Xae | Xa7 | Xag | Xig | Xoo | Energy
1 1 0 0 1 w1 0 0 0 0 0 -21.6
0 1 1 1 1 1 w1 0 0 0 0 0 -21.36
0 0 0 1 1 0 .. |0 0 0 0 0 0 1937.2
0 1 0 1 0 1 .. |0 1 1 0 0 1 2204.384

To access the best solution, one can extract the state in the first row corresponding to the
best energy level. Then, it is necessary to remove the slack variables and keep only the decision
ariables, here from x1 to x1p, which will indicate on which options the investor should take position
to take an arbitrage, in the case an arbitrage is found. However, the Ocean package can provide

arious and precious post-processing information.
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4.2 Metrics for Quantum Annealing performance

To assess the performance of the D-Wave Quantum Annealer for this problem, the first thing to
assess 18 whether the solution provided is an arbitrage or not. Here, the arbitrage character is
assessed with two elements: the payoff diagram of the portfolio corresponding to the solution that
must be non-negative everywhere and the price of the replicating portfolio that must be negative.
Nevertheless, other criteria can be used to evaluate the evolution of performance with respect
to the number of the problem variables. Ocean comes with a Problem Inspector interface which
provide several useful information and metrics about the Quantum Annealing performed. It is
then possible to compare these data for different number of problem variables. Among the data

that can be useful, the comparison done further will be focused on:

¢ Samples Distribution

e QPU Architecture

e QPU sampling time

e Number of Qbits used on the QPU comparatively to the initial mumber of problem variables

e Execution time

4.3 Results

The results provided below aim to compare the D-wave sampler’s performance for the arbitrage
detection problem with 8, 10, 16, 26 and 46 options, respectively corresponding to 16, 20, 32, 52

and 92 problem variables.

4.3.1 Accuracy of Solutions

The first critical assessment to do is, as explained previously, to check if the ground solutions found
by the samplers are indeed arbitrages. Simulations were realized with 10000 reads per annealing
for the D-Wave Sampler and 250 reads per annealing for the classic algorithm. The higher is the
number of read, the higher is the probability to find a global solution. The reason why the number
of reads is much lower for the Simulated Annealing is becanse it is way more time-consuming,.

Below are the results of the simulations gathered in a table:
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| N | Sampler Lower Energy Level | Non-negative payoff | Price | Arbitrage Found
16 | D-Wave -1.28 Yes -0.8 Yes
Simulated Annealing | -1.28 Yes -0.8 Yes
20 | D-Wave -0.38 Yes -0.23 Yes
Simulated Annealing | -21.6 Yes -13.5 | Yes
32 | D-Wave 53.94 No -3.79 No
Simulated Annealing | 5.94 Yes 5.5 No
52 | D-Wave 527.1 No 15.24 No
Simulated Annealing | 43.2 Yes 15.5 No
92 | D-Wave 1140 Yes 52.94 No
Simulated Annealing | 45.4 Yes 28.38 | No

Table 4.1: Global Results

Many comments can be made from this first table of results. Some solutions will be examined

through their corresponding payoff diagram to illustrate the table’s figure.

Payoft Diagrams of the Solutions

Firstly, for N = 16, the D-Wave sampler and Simulated Annealing sampler both converges to the

same energy level, The quantum state measured associated to this energy level is a portfolio which

has a non-negative payofl everywhere and a negative price of —(0.8. It is therefore an arbitrage and

both method did work quite well to detect it among the

diagram of this solution:

Figure 4.1: N = 16:
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Then, for N = 20, it is possible to observe some similar pavoff diagrams as, again, both
samplers manage to converge to some arbitrage portfolios with negative prices and non-negative
payoff. However, there is a difference now between the two solutions found by the samplers, as it

is possible to view it directly on the payoff diagrams which are slightly different:
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Figure 4.2: N = 20: Payoffs of the ground solutions find by Simulated Annealing (top) and
Quantum Annealing (bottom). Respective prices of the corresponding portfolios are -13.5 and
-0.23.

Indeed, the Simulated Annealing algorithm converges to a lower energy level than the Quantum
annealing. Owerall, both algorithms have well performed as they both found some arbitrage. The
classic algorithm found a portfolio with a slightly narrower window of positive payoff but with
a significantly cheaper price, which can explain why it is a "better” arbitrage. However, some
investors could prefer portfolios of cost close to 0 but offering the largest window of positive payoft
and would buy the portfolio found by the gquantum algorithm rather than the other. Using the
definitions given in Chapter 1. the solution provided by Simulated Annealing is an arbitrage of
type B whereas the one provided by Quantum Annealing is an arbitrage of type B as well but

closer to an arbitrage of type A.

Now, looking at results when the problem size increases to N = 32, N = 52 and N = 92, it
seems that the main trend is that both algorithms do not converge to an arbitrage solution but
that the Simulated Annealing seems more performing than the Quantum Annealing as each of its
solution has a significantly smaller energy level. This gap of performance seems to increase with

the size of the problem. Let's take a closer look at the cases N = 32 and N=52:
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Figure 4.3: N = 32: Payofls of the ground solutions find by Simulated Annealing (top) and

Quantum Annealing (bottom). Respective prices of the corresponding portfolios are 5.5 and -3.79
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Figure 4.4: N = 52: Payoffs of the ground solutions find by Simulated Annealing (top) and
Quantum Annealing (bottom). Respective prices of the corresponding portfolios are 15.5 and
15.24
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On the top figure, the portfolio found by Simulated Annealing seems to be still a better solution
as it respect all constraints on the payoff, whereas the one provided by Quantum Annealing shows
some negative payoff as from Sy = 17. But one could argue that it is more complicated to tell
which of the portfolio is the most erratie, as the first one has a positive cost and the second one a
negative cost. The reason why the top solution has a lower energy level and is judged as "better” is
because the setting of the QUBO hyperparameters done in subsection 3.2.3 has imposed a higher

penalty to non-negative payoff comparatively to positive price.

For the case N = 52, it is more obvious that the quantum algorithim is less performing than the
classical one. Indeed, now, both portfolios have a similar positive cost and respeet the conditions
to have a non-negative payoft at each strike K, (here the last and largest re-scaled strike is 21).
Nevertheless, it is clear that the solution provided by Quantum Annealing does not respect the
condition of a non-decreasing payoff on the right edge, imposed by the constraint related to vector
@, that leads to negative payoff as from St = 22. Thus, one can conclude that the Simulated
Annealing provides a less erratic solution even if it is not an arbitrage, which is consistent with
the energy levels comparison.

The payoff diagrams of the solutions found for N = 92 are provided in the appendix A.2. They

will not be detailed as the analysis could be similar as for N = 52.




Samples Distribution

Looking at the samples distribution is another illustration of how the Quantum Annealing struggles

to converge toward a solution when the size increases. It maps each energy level to the number of
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Figure 4.5: Samples Energy Distribution for N = 16 (upper), N = 32 (middle) and N = 92

(bottom). X-axis: energy level, Y-axis: sample occurrences

For simmlations with the smaller number of problem variables, it is possible to observe a quite
clear distribution of the samples with clear hills. Ewen if the hills do not correspond to a final
solution but rather to local minima in which the search policy enters recurrently, it proves there
is a decent trade-off between exploration and exploitation. This distribution is Hattening when
the number of problem variables increases, which shows that there are too many possible states to
consider and the algorithm do not manage to converge to a global minimum. It would be still quite
a good solver if the problem treated could accept some solutions that are not optimal but relatively
close to the best one. But the arbitrage detection has a rather binary output, in which any solution
that is not an arbitrage is considered as not profitable. Thus, without any time considerations, the

Simulated Annealing seems more accurate than the Quantum Annealing for this problem.
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4.3.2 Time Performance

Now that the accuracy of both methods has been evaluated, let’s focus on the QPU time perfor-

mance and characteristics.

For this metric, two kind of comparisons can be made:

e The first one is how the Quantum Annealing time provided by the Problem Inspector evolves

when the number of problem variables is increasing.

e The second one is a simple measure of the execution line time in the python environment, to

compare how this time evolve for both samplers when the number of problem variables.

The results have been gathered on the two following bar plots:
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Figure 4.6: Left plot: QPU Sampling times provided by the D-Wave Problem Inspector

Figure 4.7: Right plot: Time Comparison between Quantum Annealing and Simulated Annealing

On the left-hand plot, one can assess the that the QPU sampling time for a simulation with
10000 reads is quick and rather stable when the number of variables increases, which is the most

important.

On the right-hand plot, the time for the sampling execution line to be run in the python environ-
ment used. The values in absolute hardly have a meaning because the enviromment did not aim
to give competitive times, but the critical information is in how these times evolves for the two
sampler when the number of problem variables increases. It is clear that the execution time for the
classic Simulated Annealing skyrockets and is likely to get too slow to be used in some competitive
production environment such as algorithmic trading. On the opposite, the Quantum Annealing
running time is always much faster and the performance remain much more stable with a light rise
for N = 92.

As one could have expected, there seems to be a trade-off between the outstanding speed of Quan-

tum Annealing and its lack of accuracy compared to classical methods.
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4.3.3 QPU layout and limits

Finally, some last commentary can be made about some capacity limitations of the D-Wave Ad-
antage quantim annealer.

Ag explained in Chapter 2, the QP U is subject to several constraints for the coupling of the gbits.
That's why, the munber of gbits used on the QPU, referred also as the mumber of target variables,
is usually greater than the mumber of problem wariables, also referred to as the number of source
ariables. Therefore, even if some QP Us now allow more than 5000 gbits, it may be impossible to
use it with problems of 5000 source variables. Here below is the following number of gbits nsed on

the QPU for each munber of source variables used:

Number of source variables | 20 | 32 | 52 | 92

Number of Qbits used 53 | 137 | 383 | 1128

Table 4.2: Number of Qbits used vs Number of source/problem variables

The pictures below represent the qbits used on the QPU and their connections to each other:

Figure 4.8: QPU layout with Pegasus topology for: N = 16 (top left), N = 32 (top right), N = 52
(bottom left), ¥V = 92 (bottom right)

It confirms the fisures of the previous table that were indicating that, due to the internal and
external coupling constraints, the mumber of gbits nsed is significantly higher than the number of
initial problem variables. It is easy to see that the evolution of the number of gbits is quadratic

with the bar plots below:
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Figure 4.9:  Lelt plot: Number of Qbits used vs Number of problem variables

Figure 4.10: Right plot: Square-root of Number of Qbits used vs Number of problem wvariables

(with regression line)

Even if it is well known that QPU have limited capacity, one should not underestimate that
the total number of qbits available, which can be above 5000, is far from indicating a limit for the
number of problem variables that can be used. This limitation should be taken to account for any

commercial or industrial application which would likely have large size problems to solve.
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Conclusion

To conclude this thesis, let’s summarize the main points that have been explored. For remind, the
main goal of the paper was to propose an innovative solution to an arbitrage detection problem
on a European Call Options portfolio. The secondary aim was to give an example of how an
optimization problem can be translated and transformed into a problem that is suited for QPU

use.

Firstly, it was convenient to use from the very beginning a description for the portfolio that would
allow binary decision variables. The first arbitrage detection problem was stated as an optimization
problem with an infinite number of constraints that had to be reduced using the piece-wise linearity
of European Options payoff. The resulting Binary Integer Programming problem was qualified as
NP-complete which justifies the use of some stochastic meta-heuristics and, in this case, of Quantum

Annealing.

Quantum computing is a relatively recent topic which uses the framework of quantum mechanics
to propose a new way of encoding information and perform computations. Quantum optimization
has become popular thanks to companies such as D-Wave who have heen successful in building
reliable quantum annealers. Their latest D-Wave Advantage System, that has a capacity of over

5000 gbits, was used to solve the problem stated in Chapter 1.

To be able to use the QPU accessible through the Ocean Package which allows a remote connection
to D-Wave systems, it was mandatory to translate the problem into a QUBO, which is a quadratic
unconstrained binary objective function. It was necessary to introduce slack variables in order to
handle inequality constraints that are not straightforward to translate info a QUBO. The QUBO
was then translated into a Hamiltonian by the D-Wave system, and finding an optimal solution
was equivalent to finding the ground state of this Hamiltonian. After having stated the problem
into a canonical form, simmlations have heen run for a total number of decision variables of N = 16,
N =20, N =32, N =52 and N = 92, Data from the CBOE were used and modified in order
to introduce some artificial arbitrage in it, to be able to assess how performing are the algorithms
used at detecting it. The results were compared to the classical Simulated Annealing sampler nsed

here as a benchmark.

The first result assessed was the arbitrage nature of the solutions found by the D-Wave Sampler
and the Simulated Annealing Sampler. For small numbers of problem wvariables, both methods
converge to the same energy level and therefore to the same solution, which is indeed an arbitrage.
As the mumber of problem variables increases, both samplers’ performance is degrading, but the
classical Simulated Annealing seems to be more accurate as it always finds solution with lower

energy levels, which are closer to the optimal one.
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For N = 20, the two samplers both converge to arbitrage solutions but with different energy levels
associated, the more optimal being the one provided by Simulated Annealing. For larger problem
sizes, both algorithms do not converge to arbitrage, but again the Quantum Annealing seems to
provide less optimal solutions according to the energy levels and payoff diagrams.

However, regarding time performance, the Quantum Annealing shows significant speed compar-
atively to its classical equivalent. The QPU sampling time and time to run the execution line
in the Python environment remain low and quite stable when the size of the problem increases.
Conversely, the execution time for Simulated Annealing is higher and grows exponentially with
the problem size. There is therefore a trade-off between the accuracy and the speed for the two

methods, which may be adapted to different kind of problem.

The arbitrage detection problem is a problem which requires strong accuracy, as the arbitrage
nature of a solution is a binary output that does not allow approximated solutions. But it requires
great speed as well as arbitrage comes from lacks of efficiency on the market which may not last
more than several seconds. A good solution if one wants to keep quantum annealing as an arbitrage
detector would be to keep the problem size reasonable, below N = 20. Thus, one could focus on
Options with strikes strongly in the money and strikes strongly out of the money which are likely to
be less traded, less liguid and which therefore would allow more easily arbitrage. In this case, it is
hard to conceive that Quantum Annealing could be nsed for commercial or industrial applications,
unless if it is for problems which allow approximated solutions. Quantum computing is evolving at

a fast pace but still showing strong limitations such as gbits capacity, especially when considering

the conpling constraints, and its restriction to specific kinds of mathematical problems only. For
the first one, research on new QQPU architectures is active, as for example the Zephyrus topology
which aims to replace the Pegasus one for the next generation of D-Wave systems and will likely

relax the coupling constraints allowing more connections between the ¢bits.
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Appendix A

Results

A.1 Samples Distributions

Figure A.1: Samples Energy Distribution, from top to bottom: N = 16, N =20, N = 32,

N =092, X-axis: energy level, Y axis: sample occurrences
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A.2 Solution’s payoff for N = 92
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Figure A.2: N = 92: Payoffs of the ground solutions find by Simulated Annealing (top) and
Quantum Annealing (bottom). Respective prices of the corresponding portfolios are 28.38 and

52.94
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