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Abstract

The rough volatility model, which can reproduce the implied volatility's at-the-money skew, is
widely applied. However, one major drawback of the rough volatility model is the slow calibration,
which deep learning approaches can expedite. Because neural networks (NN are black boxes,
interpretability is a critical consideration.

In this research, we construct volatilities using the rough Heston (rHeston) model and the
Fourier inversion technique, then fit feedforward neural networks (FNN) to the synthetic data, and
last investigate the interpretability of the deep learning model we fitted.

We discover that FNN with basic architectures are capable of obtaining predicting accuracy of
more than 90%. The self-defined boundaries of parameters we specify for rHeston matter in the
predictive performance of the fitted FNN. Furthermore, when it comes to attributions for partic-
ular parameters, the model interpretation from rHeston matches the results from interpretability
analysis.
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Chapter 1

Introduction

We give an introduction by discussing why this topic is meaningful, what we do, and how we
contribute to the existing literature.

1.1 Motivation

The financial industry has developed drastically during the last decade. One major flaw in classical
stochastic volatility models is their inability to replicate the at-the-money (ATM) skew of implied
volatility that is seen in the market. It has been demonstrated (3] that approximate fractional
processes allow us to reconstruct the behaviour of historical volatility time series quite well. Rough
volatility models have been created to replicate the pattern of past volatility evidence and match
the volatility surface amazingly well with few parameters. The improved performance of the rough
volatility model pushes us to continue working on it.

In fact, one of the few possible limitations of such models is their complexity in execution, as
the calibration procedure is fairly sluggish. As a result, it is sensible to explore integrating deep
learning techniques to accelerate calibration.

On the occasion that it comes to machine learning models, interpretability, which is character-
ized as “the extent to which a human can comprehend the cause of a decision” [4] or “a human can
reliably anticipate the model’s conclusion” [5], is an essential consideration since it is beneficial for
troubleshooting the model and making informed judgments about how to improve it. Thus, we
work on the interpretability of the rough volatility model to study the contribution of each feature
(price/volatility) to the label (parameter of the rough volatility model).

The project can be divided into three parts broadly as illustrated in the Figure 1.1. First, we
generate a data set of volatilities/prices using rHeston, which maps the model parameters to the
volatilities /prices. Then, we fit the data set with the NNs and compare performances across them,
which maps the generated volatilities/prices back to the model parameters of rHeston. Finally, we
study interpretability of the deep learning models we fitted.
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Figure 1.1: Framework of the project




1.2 Literature review

Previous work related to our project can be categorised in three subgroups: pricing with the rough
stochastic volatility, deep calibration of the volatility model, and interpretability of NNs.

1.2.1 Pricing with the rough stochastic volatility

According to Gatheral et al. [3], a fractional Brownian motion (fBm) has a similar behaviour
pattern to the logarithm of realised variance. Specifically, it is like fBm with Hurst exponent H
of order=0.1. This was achieved by evaluating the history of realised variance using recent high-
frequency data. The final Rough Fractional Stochastic Volatility (RFSV) model exhibits striking
agreement with the financial data over time. This introduced the rough volatility model.

On the other hand, the variance of the rough wvolatility model is not semi-martingale due to
the reason that the Markovian property no longer exists. Then, it's highly likely that the option
payofl cannot be represented in a direct analytical stochastic process. The characteristic function
of the density of these processes can be projected to the payout in Fourier space to obtain the
option values. The inversion methods are a product of this approach. Stein and Stein [6] initially
suggested the inversion approach as a way to determine the distribution that underlies a stochastic
volatility model. Then, Heston [7] discovered an analytical method for European option pricing.

There are two types of inversion procedures described in the literature. Bankshi and Madan [3]
propose a Black-Scholes-like formula for inverting the cumulative distribution function for option
pricing. Having gained insights from the fast Fourier Transform, Carr and Madan [9] devise a
numerical technique directly projecting the Fourier transform to the whole option price by the
characteristic function.

1.2.2 Interpretability of NINs

Machine learning has grown in popularity in recent vears, and its use has spread to almost every
industry. The review of the majority of current deep learning applications in finance is provided
by [10]. [11] offers extensive insights on the idea of interpretability in machine learning and widely
adopted interpretability models as a response to the black-box issue.

In reality, there are several ways to classify machine learning interpretability methodologies.
There are several points of view that set apart and could further segment these methodologies
([12]). Figure 1.2 shows a mind-map that highlights the various criteria that might be used to
categorise an interpretability model.

local: explain a single prediction ’

local vs
global
global: explain the overal| model
J— model specific: only applicable to some
mode | mode | s
interpretability || —1 specifc vs
nethods agnostic . .
model agnostic: applicable to any model
tabular
data types text
p—
image
Ne—

Figure 1.2: Classfication of interpretability models




The increased application of deep learning approaches, as well as their natural association with
the black-box mechanism, has resulted in a substantial quantity of experimentation and research
effort centred on them, as well as techniques for interpreting their results. LIME, which stands
for Local Interpretable Model-agnostic Explanations, is a solution proposed by [13]. It focuses on
interpreting individual predictions locally. The Gradient*Input method, which was used to cre-
ate saliency maps following the gradient method, was improved significantly by multiplying the
gradient with the input feature, which is indeed a Taylor approximation (with 1st order) of the
shift of the come with input as zero. DeepLIFT, as described in [14], is an improvement over this
method. By propagating backwards from predictions made by very complicated deep NNs, Layer-
wise Relevance Propagation (LRP) [15] is a breakdown of nonlinear classifier approach that makes
these networks interpretable. A game-theory based technique called Shapley Additive explanations
(SHAP) [16] aims to improve interpretability by estimating the significance values of characteristics
for certain predictions. It can interpret global model predictions. [17] experiment with a variety
of interpretability approaches, including gradient-based attribution methods like DeepLIFT, LRP,
Saliency maps, Integrated Gradients, and Gradient*Iuput, as well as perturbation-based attribu-
tion methods [18].

1.2.3 Deep calibration of the volatility model

There are two main groups of techniques in the literature using an artificial NN to calibrate rHeston.
Horvath, Muguruza, and Tomas [19] describe a two-step deep calibration technique in which a NN
first learns the map from model parameters to inferred volatilities, and then a standard solver
is used to calibrate the majority of optimum model parameters. Recently, Roeder and Dimitrof
[20] propose an alternative direct technique in which a FNN approximates the association between
implied volatilities and model parameters. Plus, they evaluate the findings of the direct and
indirect procedure, and calrify that the direct method of the rough volatility model calibration is
more efficient and accurate.

Additionally, the Heston model's results [2] show that the FNN performs better than the
convolutional neural network (CNN). In this project, described in Section 3, we reproduce the
direct inverse map technique and build a FNN.

1.2.4 Our contribution

Our work further develops the work in the following aspects.

First and foremost, we extend the study on deep learning interpretability of a general volatility
model (Heston) [2] to a rough volatility model (rHeston). Second, by comparing the performances
of different NNs with the volatilities/prices as the features and the parameters as the labels, the
project sheds light on how to calibrate the rough volatility model relatively fast as well as how
to choose the architecture of the NNs. What's more, the work highlights that the range of the
parameters matters in the performance of FNN.

Plus, employing NNs, the study carries out both local and global interpretability analysis
and assesses whether they are good enough to provide insightful information into the calibration
procedure.

Last but not least, the project provides a relatively fast approach to pricing with rHeston
by using inversion of the Fourier Transform as well as numerically solving the fractional Riccati
equation.

For further work, we suggest obtaining turn to the noisy actual market data.

1.3 Outline of the thesis

We organise the structure of the paper as below. Section 2 begins with an introduction of the rough
volatility model as well as an overview of various rHeston representations, then moves on to the
three steps of pricing using rHeston, and finally touches on the specific settings of our implemen-
tation. Section 3 discusses how we preprocess the data before fitting the NN, how we construct
the FNN architecture, how self-defined parameter boundaries affect FNN performance, and how
the fitted FNN behaves within and outside of the sample. Section 4 introduces several local inter-
pretability models, certain gradient-based explanatory approaches and one global interpretability
model (SHAP). The results of the interpretability study are then discussed and compared to the




interpretation of rHeston for each parameter. Section 5 summarises our contributions and suggests
the future study.




Chapter 2

Data generation with rHeston

2.1 rHeston: introduction

2.1.1 Rough volatility model

It's seen that the traditional stochastic models are not able to generate the real volatility surface
observed in the market. Statistical analyses on high-frequency market data support the notion
that spot volatility operates in a “rougher” manner than previously assumed [3].

The standard approach is to add extra volatility components. This is how the rough frac-
tional stochastic volatility model was introduced [3]. As a result, the financial industry has begun
to characterise volatility dynamics as fBm W# with Hurst parameter 0 < H < L. which is a
generalisation of the classical Brownian Motion (BM) previously used but the increments are not
independent.

The fBm is a continuous-time centred self-similar Gaussian process indicated as «{H-"!H;f € R}
on [0, 7], of which the mean for all ¢ € [0,T] and the initial value are both zero. It has stationary

increments and covariance function is:

E ”!H Hf{] _ é {|f|2H 1 |3|2H —|t- S‘QH}

where H is a real number in (0, %], called Hurst parameter [21]. This parameter describes the
roughness /raggedness of the motion. For H = 3, the process is indeed a classical Brownian
Motion.

For illustration, I follow the Cholesky decomposition method [22] to simulate three fBm with
Hurst exponent H=0.2, 0.5, and 0.8, respectively. Figure 2.1 displays the three paths by simulation,
through which we notice H describes the smoothness of the process.

Hurst axpenent H=0.2 Hurst expanent H=0.5 Hurst expanant H=0 8
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wep n same
(a) H=0.2 (b) H=0.5 () H=0.8

Figure 2.1: Simulated fBm paths

To make it more clear, some important properties of fBm are listed as below:

e Bm W} is a Gaussian process. To be more specific, it is with mean of zero and variance of
one.

e fBm W is self-similar with Hurst exponent H. Mathematically,

v t_,gt{ d 21 v 1-"'!H

10




where k should be positive, and 4 ndicates that the processes on both sides have the same
distributions.

o fBm W has stationary increments across time. Mathematically,

; g dist
Wi, —wi = wil
To put it in other words, increments of fBm with the same time intervals are identically
distributed. It should be highlighted that the average increments across time intervals are
zero all the time.

e It should be noted that the increments of [Bm are not independent of each other with the

correlation: ) . ) .
_ (fﬁl)zH7sz7(sz7(f71)zH)
P 2

where k is the time interval and t is the initial starting time. Furthermore, if f € (%. 1),
p=>0, then the process is called persistent. If H £ (0, %), p<0, then the process is called
anti-persistent. We can view the property in a way that if W was increasing in the past
across time, it is expected to grow as well in the future and vice versa. In a similar way, if
WH diminished in the past as time went by, it is expected to go up in the future and vice
versa.

e It should be emphasized that for H # £, fBm is not a martingale or a Markov process or a
semimartingale.

There are multiple representations of fBm in terms of BM. The most common one is the
Mandelbrot-Van Ness representation [23], where we are able to build a fBm W¥ from a two-sided
BM:

H 1 /U NH-1j2 o VH-1/2 i
W = s ) ((r 5) (—s) AW,
1 ! H-1/2
L R A
T(H - 1/2% ¢

The models which exploit the property of f{Bm are called rough volatility model with the general
formula [24]:

dSy = Iu.s:df + Ve (t) SedWe
dug(u) = Xt u, 1) d'L-'.-"iH
pdt = E [dW,dW ]
The parameter set is {g, 1, A, p} . The interpretation of the elements in the formula is listed
below:
o Wis BM, W# is fBm, p measures correlation between BM W and fBm WwH
e S is asset price, p is drift of asset price

e 14 is instantaneous volatility, which starts from g

The most notable improvement of the rough world is that the models can recreate better fitting
with not only the implied volatility surface but also the historical volatility dynamics. It should
be noticed that the rough fractional driver has limited memory, which is contradictory to the
traditional long-term memory of volatility.

2.1.2 Representations of rHeston

Specifically, to generate enough volatility smiles to train the network, this paper works on rHeston
to find a fast way to price options in the rough model. Plus, it would be a natural choice given
that the original study on this topics used Heston [2]. It is assumed in the basic Heston model
that asset price S¢ can be written in the form as below:

11




dS; = ,u.s;df - \/T@;dn-f"
dve = w6 — v )dt + E/red WY
pdt = E [dWdW}]

The parameter is set {u, 10, k.0, & p}. The interpretation of the elements in the formula is listed
below.

o W and W are BM with correlation p
e S, is asset price, p is drift of asset price

e 1, is positive instantaneous volatility with the Feller condition 2k > £2, 1y is the initial
value of the variance

e x measures how fast the process converges to the mean
e {}is the average variance of asset price over a long period
o £ is volatility of volatility

There is no formal definition of rHeston, thus different versions appeared in the existing litera-
ture. As proposed in [25], using the Mandelbrot-Van Ness representation, rHeston can be written

as:
% -V {deg /1o pfdb'f}
54

with

V., =Vi+ / > ds + / db’s, w >t
o H——} 1179%_ H——} (u—s)

All the free parameters are collected in the set {p, Vo, A, H, 8*, v}. The interpretation of the elements
in the formula is listed below.

e B and B are perpendicular BMs, which is the decomposition of the BM of the asset price .
p € [—1,1] measures the correlation between the asset price S; and the volatility fluctuations
.Bg.

e 1} is variance of the asset price, which start from V}

e 0(-) is the long-term mean parameter, which is JF;-measurable ensuring the consistency in
time

¢ x is rate of mean convergence
e 1 is volatility of volatility
o [ denotes the Gamma function

e H < (0, %) is the Hurst exponent, on the occasion of H — % the formula gives back to the
Heston model

Another version of rHeston can be rewritten in forward variance form as [25]:

ds
AL {deg VI pgdﬁf}
5
with
v A
RS A

which can be useful due to the reason that the observed forward variance curve & can imply the
ralue of A0* [26].

Vi = &lu) + dejs_. uw=t

12




2.1.3 Representation of rHeston used in the project

Our work builds up on the version of rHeston proposed in [27] where the long-term mean is constant:
dSt = Sg 4/ ]f:gd”rg

1 t Ho1 1 ‘ Ho1
Vi=Vy+ —m-r t— IR0 —V)ds + —————— t—. IRy VidB,
t 0 I'(H——L)ﬁ( s) fi o) ds ['(H—%) [}( s) kv VedB,

2

All the free parameters are collected in the set {p, V}y, k. H.0,v}. The interpretation of the elements
in the formula is listed below.

e p € [—1,1] measures the correlation between spot W and volatility moves B

¢ 1} is variance of the asset price, starting from V;

e {) describes the constant long-term mean

e r is rate of mean convergence

e 1 is volatility of volatility

e I' denotes the Gamma function

e H < (0, %) is the Hurst exponent controlling roughness of the volatility, when H — %, the

2
formula gives back to the classical Heston model

2.2 Pricing with rHeston

We aim to generate a data set of volatilities/prices with rHeston for the next step of deep calibra-
tion. Pricing here is done via reversing the Fourier transform for characteristic function. However,
the characteristic function is not obtainable in closed form for rHeston, which involves solving
the fractional Riccati equation. As there is no pure closed-form solution, the Adams-Bashforth-
Moulton numerical scheme is implemented to get a semi-analytical solution to the characteristic
function for rHeston.

2.2.1 Fourier inversion methods for pricing

Fourier transform methods are becoming more significant in asset pricing. To be more specific,
Fourier inversion methods are quite useful in deriving derivative prices, especially on the occasion
that the characteristic function for the price process can be computed analytically or numerically
all the time.

Compared with the approach to modelling the price with the aid of an analytical process, there
exists an easier way to obtain the option price for the complicated process, that is, projecting the
density’s characteristic function to the payout in the Fourier space. In the field of modern proba-
bility, the Fourier transform is widely applicable. In terms of implementation, the key takeaway for
the inversion of the Fourier transform is integrating the option price payofl over the distribution.
There is growing interest in employing characteristic functions and Fourier transforms to apply
these approaches since the simple Gaussian model described by the distribution no longer exists
and the models have become far more complex which are more simply derived by a characteristic
function instead.

For a random variable, it is at almost all times feasible to determine the characteristic function,
which contributes to the effectiveness of Fourier transform methods. Suppose we know the char-
acteristic funection (analytically or mumerically). In that case, we may compute the distribution
function using the Inversion theorem, which states that the characteristic function has a one-to-
one correspondence to the distribution and vice versa. An inverse Fourier transform connects the
two sides of the medal. Specifically, based on the representation developed by [28], the reciprocal
link between the characteristic function gx (u) and the probability density function fx(r) of a
real-valued random variable X can be written as:

oo

gy(u)=E :ei"x] :[ e fy(z)dx

oc
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1 o .
(@) =F 1 [gx (u)] = f e~ g x (u)du

=5/

where F|-] denotes the Fourier transform.
In literature, there are two classes of inversion methods:

e Based on the idea of Bakashi and Madan [8], the first approach develops a Black-Scholes
like pricing formula using the characteristic function. Assuming no dividends and constant
interest rates, the option price can be determined as :

C(Sy, T, K) =118, — e " TIL, K

where et
. E N f[} Re ( fugy(—i) ) du
1=5 T
) —iuleg (K)o
| f[}m Re (%) du
”.Q =4 T
9 T

Here gp(u) is characteristic function.

e Based on the idea of Carr and Madan [9], the second approach projects the Fourier transform
to derivative prices immediately through the characteristic function:

_ e—ok f_o"m e R () e _ e~ ok f[:‘“ Re (e~ k() du

Cr(k) 27 T

e_"TgT(u — (4 1)1)

U(u) = / el (k)dk = 3
—00 &

Lo —u? Li(200+ 1u

elk) =e"*Cp(k), a>=0
where (u) is expressed in reference to the characteristic function gr.

The project follows the Carr-Madan route, using the Lewis’approach [29] specifically. The main
idea is to represent the payoff function w(S¢) in Fourier space:

~iz+1
(z) = —

2% — iz
with z being a complex-valued number. Based on the general payoff transform, the inverse trans-
formation is )
1 iz;+00
wizx) = —] e " (z)dz
2m iz;—nc

Assuming there exists a well-defined characteristic function gr(u) for arbitrary price dynamics and
a transformed payoff 1(z), the option value can be obtained:

V (S0, K,T) = E%w(z)]e "
i iz4oe gy - —rT
B E¢ [ﬁ.zl_x e = w(:z)d:z] €
B 21
i2it00 ) [ —izz] =~ —rT
fiz,—:x EU le™™ ]w(z)dze
2m
izitoo . —rT
f(-zl_m gr(—z)w(z)dze
27

With the transformation, the Furopean call price is given by

Ke T giz—ee dz
C(Sy, K, T) = Sy — f e Hap(—2)—

R
2w sifoc z iz

14




with k = log % + 1. If we could move the contour to z; € (0,1) for integration, then by choosing

z; = £, we obtain a symmetric path of integration. Finally, we can change the variable z = u + £
and obtain these alternative formulas:

o, —rT poc .
o [S[}. K. T)= S[} _ L] Re [eiuk-gT (if. _ i)} du
0

2. 1
w? 4+ =

2w 2 I

In particular, in our implementation, we will evaluate the price with the last formula for pricing.

2.2.2 Characteristic function of rHeston

Having obtained the formula for the option price via the characteristic function, we now turn to
derive the characteristic function of rHeston. Our aim is to derive a rough counterpart of the
Heston model. For Heston, the closed formula for the characteristic function is obtained using the
property of the Markovianity and the time-homogeneity [27]. With the application of Ito’s formula
to the following function:

L(t,Vi,a)=E [e log(S7) | ﬁ] Ji=a (W, Bss<t).aekR,

then since the process L is a martingale, the Feynman-Kae partial differential equation for L can

be derived:

—dL{t, 0, 5. V) = (-_,(9 —V)a, + é(-_,u)?vaf,,, + %S?ve)i + pr/‘_,:.‘fl«"{')fv) Lit,a, 8, V)

with boundary condition L(T, «, S, V) = eel5)in Here the characteristic function of the log-price
X, = log(:g—‘) follows
E [eX] = exp (h(ev. )y + g, 1))

where h is the solution to the Riccati equation:

P, 22
Oih = a 5 @ ylicepry — 10w, 8) + W

h(ee,0) =0
as well as .
glot) = B‘ff hie, s)ds.
0
Then the characteristic function of X; can be expressed in the closed form, which is derived from
solving the Riccati equation.

However, rHeston, on the other hand, is not Markovian, and its variance is not semimartingale.
As a result, it appears impossible to adapt the standard Heston model to our framework.

Thus, we need to turn to an alternative approach. Following the method suggested in [27],
microstructural models known as Hawkes processes are used. These models can accurately mimic
the stylized facts seen in high frequency markets, and over time, they exhibit a rough behaviour.
In summary, an appropriate series of Hawkes processes can converge to rHeston, and their char-
acteristic functions, particularly, resemble the one of rHeston in the limit. The key finding is the
unexpected similarity in structure between the characteristic function of the log-price in rHestons
and that found in the Heston. The Riccati equation is substituted by a fractional Riccati equation,
in which a fractional derivative is used.

Mathematically, assume rHeston with a correlation p € (0, 7%) between the two BM. We have
L{c,t) = exp (g1 (e, 1) + Voga (e, 1))
where .
Qe t) = 9‘;[9 hio, 8)ds, gola,t) = I “hia ), t>0
and h{aq,-) solves the following fractional Riccati equation:
o —in (vv)?h? (o, 8)

Dh{a,t) = _T + hia, s)y(iapr — 1) + 2

15




I h(a,0) =0

with D% and I'~ the fractional derivative and integral operators. The fractional integral of a
function f with order r € (0,1):

t _ r—1
I"f(t) = Jot= 5 f(s)ds 'i,)(r) f(s)ds

and the fractional derivative of order r € (0,1):

4 [t ~
v @ ot —s) 7" f(s)ds
D f(t) = T

no matter when they exist.

Note that if & = 1, we get the same result as that of Heston. Nonetheless, it should be
highlighted that for e < 1, the solutions to such Riccati equations are not exact. Thus, we have
to calculate it numerically.

2.2.3 Numerical scheme to solve the fractional Riccati equation
We can rewrite the above equations as:
D?h(z,t) = F(zh(z,t), ' *h(z,0)=0

where , )
F(z,z) = % +lizpr — )z + (yv)z

These equations imply the following Volterra equation:

Jy(t = s)* 7 F (2, h(z,s))ds
T(2)

hizt) =

which has the property mentioned in [30] then we can follow the pseudo-algorithm described in
[30].
We write f(z,0) = £(z, h(z,1)). With a common time grid ({z), g, we estimate

Jo ™ (err — 5)° " F(z,8)ds

hiz tr) =

with . -
. .
Lt —8)7 flz8)ds
T(z)
where ; ; Pt
flz,t) = ;Lli_ff (z.t;) + r_:‘_ﬂffsfﬁ—ﬂ dEtti), 0 <k,
J J T J

which is a trapezoidal discretisation of the fractional integral. Then, the numerical scheme can be
written as

hz,tri1) = Z Zjkt1 F (ZJﬁl (zrf'})) + Zh1 k1 E (Z.Jﬁl (LH-H))

0<j<k
with A-

g1 = ——— (KT — (k= 2)(k +1)*

kA1 = FE ( (h J(k+1)%)

A ; +1 ; +1 -

Gk = T T (k—g+2)7 =20k—j+1)"") 1<j<k
AZ:
ZhA1E+1 = m

To start with, we need to give an initial estimation of i'ﬂa.(:z,f;‘._,_l] in order to plug it in the
trapezoidal formula. This predictor is denoted by A" (z,ty41):

1
I(z)

WY (2,t41) =

t
f (t— )" f(z.5)ds
]
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with )
flz,t) = flzt5) t € [tj,t501),0 <<k

So,
f-J.P(.‘Z,f;‘._'_l): Z FJj_g_'_li’(:z,.’-J.(:z,f_]))
0<j<k
where
b — A ((;._.'_1)2_(;._.']2) 0=<4q<k
it =y (g = j)*),0<j <k

To sum up, the numerical scheme can written as:

I (z,tpy1) = Z Zjk (”h (2_.?_.,;]) + Zhg k41 (Z,I;J.P(Z,f1+1)) .fJ.(z.ﬂ] =0.

0< <k

2.3 Implementation

In this section, we generate the features (volatilities across a combination of strikes and maturities)
and the corresponding labels (rHeston parameters P = {p, Vy, &, H,#,v/}) to build the training
dataset for later use of deep calibration.

The main idea of data generation is that we set values of the six parameters of rHeston and
calculate the corresponding implied volatility surface. For later deep learning training, one set of
six parameters is one label and one implied volatility surface is one feature. Following the approach
in |2], we set bounds for individual parameter as noted in Table 2.1, and create each parameter at
random following a uniform distribution. The bounds are set in accordance with the results using
the real SPX data [31].

parameter o Vo K H f v
lower bound | -0.7071 | 0.0262 | 0.1206 | 0.1286 | 0.0721 | 0.2720
upper bound | -0.5940 | 0.0778 | 0.5041 | 0.1766 | 0.1499 | 0.3748

Table 2.1: rHeston parameters with narrower range

As discussed in the section of training NNs, we further generate another data set following the
same procedure but with different bounds of each parameter. Specifically, we broaden the range of
each parameter by 40% stated in Table 2.2. But, it should be noted that the global lower bound
of p and H should be kept.

parameter 7] Vo K H f) v
lower bound | -0.7071 | 0.0157 | 0.0724 0 0.0433 | 0.1632
upper bound | -0.3564 | 0.1089 | 0.7057 | 0.4472 | 0.2099 | 0.5247

Table 2.2: rHeston parameters with broader range

For the out-of-sample test in the section of deep calibration, I build up another data set (Table
2.3) using the bounds with approximately 13% and 40% increase to the upper bounds of the
parameters stated in Table 2.2 as its lower and upper bounds respectively.

parameter 7] Vi K H f v
lower bound | -0.31 | 0.12 | 0.8 | 0.47 | 0.24 | 0.6
upper bound | -0.21 | 0.15 | 1.0 | 0.5 | 0.29 | 0.74

Table 2.3: rHeston parameters for the our-of-sample test

Next, we use rHeston pricer we built and compute the implied volatility surface. We assume that
the interest rate is zero and without divend, and the initial asset price is 1. Then, we use the most
liquid strikes and maturities following [31], that is strikes K = [0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3, 1.4]
and maturities T = [0.6,0.9,1.2, 1.5, 1.8, 2.0]. Thus, the dimensions of the volatility surface is 9 x
6. Notice that strikes set here are symmetric to the centre of the ATM strike which is the spot
price here.
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Finally, we

generate a data set including 10,000 sets of features and labels. Specifically, there

are a collection of 534 (= 9 x 6) volatilities as the features and the labels are 6 parameters of

rheston. Then
whole data set

following the same split ratio of the training and the test data[2], we divide the
into a training set with 8,500 points and a testing set with 1,500 points.

As seen from the Figure 2.2, the data generated does not guarantee a specific shape of the

volatility smile

. The data also doesn’t guarantee shape of the volatility surface shown in the

Figure 2.3. Here I use the data set generated using the parameters with a broader range for

analysis.
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Figure 2.2: Volatility smile with maturity 7" = 1.8
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Figure 2.3: Volatility surface

We consider the following parameters for a further numerical example of rHeston pricing versus

Heston pricing:

=

p=—05Vy =004 r=2H =012 =004, = 0.05.

We compare in the Figure 2.4 the ATM volatility skew produced by the Heston and its rough

counterpart.

18




0204

\ 02150 {
\ '|I |
\ 02125 ¢ |
\ | I|
\
02100 { '.I |
i \ [
02075 4 |
02050 { ||
\ | |
\/\ 02025 | ‘—\ [
|
\ 02000 { \ |I L
N\ o 01975 NN
T T . : , ; , .
025 050 075 100 125 150 175 200 025 050 075 100 125 150 175 200
maturity maturity
(a) rHeston (b) Heston
Figure 2.4: ATM volatility skew

19




Chapter 3

Calibration via NNs

On the occasion that the numerical computation for calibration procedures are slow, the fairly long
calibration time may restrict applicability of the model for industrial production, regardless of the
desired attributes of the model. This is particularly true for the generation of rough volatility mod-
els, of which the rough fractional Brownian motion in the volatility process renders it impossible
to use the conventional Markovian pricing models [32]. For the family of rough volatility models,
whose tremendous modelling benefits have been examined and dicussed in an increasing number
of scholarly works (see, for instance, [33, 34, 35]), the calibration bottleneck have so far been a key
limiting issue.

As a result, it is logical to develop deep learning approaches to speed up the calibration process.
We would exclusively concentrate on the design of the FNN in this work, which is supported by
evidence indicating FNNs outperform CNN in [2].

3.1 Problem setting

After using rHeston to construct the data set of volatilities and prices, we now proceed to calibrate
rHeston with the goal of determining the optimum solution of parameters s = {p, Vi, k, H, #, v} that
will best fit the data we generated. This technically is an optimisation problem with non-linear
restrictions, which is to minimise the difference between the volatilities calculated by rHeston
vol(s; K, T) and the inferred volatilities of the market vol™a k¢t (g K, T)(i.e., the volatilities we
generated here). It's expected that the loss L with regards to the parameter set should be reduced
on the occasion of tuning the parameters s to the actual market data:

L(.‘?; “O‘Irmru'k'rt) = f(i)(]l‘.’(.‘?; .[\,. T],i,‘()l'!““”.h.t )

where f is the loss function we set. The solution of the above equation s* can be written as:

s* := arg minkL (s; vol™rkety,

We follow the direct approach of deep calibration for the volatility model in [20] where the map
from the implied volatilities to the parameters of the pricing model is approximated by a FNN.
This direct approach [20] also proves to outperform the two-step deep calibration procedure [32].

3.2 Input data preprocessing

3.2.1 Scaling

It is generally recognised that large scale variances in the input data can make training challenging
and result in instability [2]. If the values of the features in the machine learning algorithms are
more similar to one another, it is more likely that the algorithm will be trained successfully and
quickly as opposed to a data set where the data points or feature values are very dissimilar from
one another, which would need more time to grasp the data and result in poorer accuracy. As a
result, if there exist data points far from each other, scaling is a strategy for bringing them closer
together. Larger discrepancies between input data points increases the uncertainty in the model’s
outputs.
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As a result, standardising the input data to numerically improve NN training is common prac-
tise. Here I use two approaches for scaling:

e Approach 1: Scale the data in a range from 0 to 1

e Approach 2: Scale the data to have a mean of 0 and a variance of 1

3.2.2 Whitening

Before designing the NN, it is critical to examine the scaled features and their intra-correlations.
The correlation matrix of the input features (i.e.volatilities) of rHeston using the narrower range
of parameters is displayed in the Figure 3.1 which shows the necessity of scaling:

e The volatilities are highly correlated with each other on the inferred surface.
e Relative placements of the data points on the surface influence the intre-coorelation.

e The neighbouring volatilities have larger correlations than data points far away.

ith the scaling Approach 1 (b} With the scaling Approach 2

Figure 3.1: Correlation matrix of the volatility surface before whitening

As a result, a whitening method is considered. The primary goal of whitening is to eliminate
correlation among raw data and hence make the input features less redundant [36]. Specifically,
there are two goals we are trying to accomplish with whitening:

o Make the features less correlated with one another
e Give all of the features the same variance

Technically, there are two types of whitening: PCA (principal component analysis) whitening
and ZCA (zero-phase component analysis). They both can de-correlate the features and transform
the correlation matrix to the identity matrix. The difference between them is that ZCA whitening
keep the whitened data as close as possible to the original data (in the least squares sense). I use
the ZCA whitening here as [ want to keep the whitened features as close as to the original features.

ZCA whitening has the following steps [37]:

e Step 1: Zero-center the data set

X is the initial input data. X, is data after whitening. Then, X, = X — mean(X) is the
zero-centred data.
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e Step2: Calculate the covariance matrix of the zero-centered data set

Let ¥ x be the covariance matrix of X.. Then, ¥x can be written as:

1
Yy = XX =UAUT,

n

where n is data size, U is the matrix of the normalised eigenvectors of X, and A is the
diagonal matrix consisting of all eigenvalues. The second agreement comes from singular
value decomposition.

e Step 3: Calculate the eigenvalue and the eigenvector

e Step 4: Apply the Eigenvalues and Eigenvectors to the data for whitening transform

Representation of X, using ZCA whitening is:
Xu =UATIUTX,.

Then, the covariance matrix of ¥, can be proved to be identity:

1
Y= _Xn.-XmT
i

1
A ruTx x Tua-ruT
1

1
=UA 0T (=X X.TYyUA TUT
n
= UA_%{."T(E.J'Af.«"T]l.»"A_%{»"Tusing singular value decomposition

= UA_%(E.J'Tf.a")A[f.a"Tf.f)A_%E.J'Tusing the unitary property of U/
=1

The Figure 3.2 displays the correlation matrix after the whitening transformation. As we can
see, the intra-correlation has been removed and the whitening is indeed effective. However, it should
be noted that whitening preprocessing technique does not necessarily improve the performance of
NNs, as demonstrated by the Heston model [2].

-10

(a} With the scaling Approach 1 (b} With the scaling Approach 2

Figure 3.2: Correlation matrix of the volatility surface after whitening
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3.3 FNN architecture

In the next section, we will show how to build NNs that can learn the procedure from the implied
volatilities straight to the model parameters. Only the FNN is examined here, via which informa-
tion flows in one direction, from the input to the intermediate calculations and ultimately to the

output, as shown in the Figure 3.3.

Input Layer
Hidden Layer

Output Layer

Figure 3.3: Illustration of the FNNJ[1]

Following the pre-processing procedure, the input features, say, 6x9 volatilities, are fed into a
basic FNN that is completely connected. The main idea is to begin by calibrating the model with a
simple model then gradually modifying the model until the model is reliable enough. We discovered
that the simplest model (as shown in Figure 3.4) with one hidden layer and a decreasing number
of neurons is adequate to get remarkable results. This architecture has a total of 372 trainable
parameters.

input_1 input:

[(None, 54)] | [(None, 54)]

InputLayer | output:

4

dense | input:

(None, 54) | (None, 6)

Dense | output:

dense_1 | input:

(None, 6) | (None, 6)

Dense | output:

Figure 3.4: Architecture of the fitted FNN

ELU is selected as the activation function for both the hidden and output layers. The Figure 3.5
depicts three popular activation functions. In general, the ReL U function is frequently employed, in
spite of the fact that it has the drawback of constantly ignoring negative values from the preceding
layer, which is known as the dying ReLU problem. To address the constraint, the eLU function
is implemented. The eLU and SeL U functions are put into practice in our work, however they
underperform.

The output layer is made up of the six rHeston parameters s = {p, Vi, x, H,8, 1/} that need to
be calibrated.

The mean squared logarithmic function is employed as the loss function. For one reason, after
comparing its performance to other usual loss functions, it appears to fit the overall architecture
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Figure 3.5: Popular activation functions

best. For another reason, it has an interpretation useful, say, a ratio of the actual and predicted
values:

Loss(y,5) = w5 »_(log(y: + 1) — log(y; + 1))

=~
-

i

yi +1
¥i +1

))?

Il
=z~
-

(log(

i

(

where y is the actual data, § is prediction, N is data size. This loss function can be used to
compare errors.

TensorFlow/Keras is used for NN training. As a solver, the adam optimiser is utilised, which
is a stochastic gradient descent approach based on adaptive estimate of first-order and second-
order moments [38]. Mini-baches are used for training. The separation between the validation and
training sets is (.2.

3.4 Results

3.4.1 Training history

To start, we employ the preprocessed data created with a smaller set of parameters. Using Scaling
Approach 1 or 2, the training history appears nearly identical. The Figure 3.6 depicts the training
history for FNN using the Scaling Approach 1; we can infer that no overfitting happened due to
the reason that training accuracy grows and loss deminishes for both training and validation data
during training. Overfitting problem would have resulted in the NN's performance improving for
training data but decreasing for validation data: two lines in the plot would have drifted from
each other as the epochs passed. Plus, the NN here is trained fairly quickly till it reaches its
convergence. It obtains a far higher level of accuracy of more than 99% no matter which scaling
approach is utilised.

Another factor to consider is that the training history in our test is quite smooth. We look into
the matter further in the following two aspects:

o I'NN design

On one hand, large mini-batch size, no noisy regularisation (such as drop out), and a small
number of epochs are plausible causes from the degree of FNN design. We modify our
architecture accordingly, such as experimenting with mini-batch sizes of 64, 128, and 256;
adding two dropout layers with rate of 0.6; and trying with 50, 100, 150, and 200 epochs.
However, none of the changes make the training any noisier, and the training history stays
smooth. A smooth training history is completely acceptable if the FNN works in the intended
application (in this case, predicting performance).

e data

On the other hand, low-noise data can produce a smooth training history. This is applicable
to our case since the data is created artificially with artificially generated boundaries for
individual parameter. In fact, market data could be noisy. It gives hints for further research
to utilise real market data.
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(a) Accuracy during training (b) Loss during training

Figure 3.6: FNN traing history with Scaling Approach 1

3.4.2 Prediction errors

The deviations between the predicted parameters of rHeston and the label for the test data with
the Scaling Approach 1 and 2 are shown in the Figure 3.7 and 3.8 respectively. The mean squared
logarithmic function is still used to evaluate the errors in this case.

There is strong evidence that the fitting results do not vary a lot by using different scaling
approaches. It should be noticed that, while most of the predictions are very accurate, there are a
few data points known as outliers that stand out from the rest of the data. This might be explained
by the issue in identifying model parameters in the case of carrying out the volatility model
calibration using NNs, as indicated by [20]. To be more specific, there are Heston parameterisations
that differ significantly in terms of Heston parameter values yet correspond to relatively comparable
implied volatility surfaces.

The Table 3.1 shows the average prediction errors for each parameter of rHeston with the test
data. According to the nature of the loss function, it would be possible to allow us to carry out
comparisons across the values of the errors. As can be observed, the prediction errors for parameter
v, Vg, 8, H are much lower. It is worth noting that the prediction for the parameter « is relatively
poorer than the others.

In addition, we show the prediction errors using the training data in the Table 3.1. The fact
that the NN's performance is good for not only the training data but also the test data, shows
that the training is successful in allowing the model to function effectively.

parameter K v P Vi [ H
training data | 0.0014 | 0.0003 | 1e-07 | 3e-05 | 0.0002 | 0.0007
test data 0.0014 | 0.0003 | 3e-08 | 3e-05 | 0.0002 | 0.0007

Table 3.1: Prediction error mean for each parameter

3.4.3 Robustness check

Furthermore, the out-of-sample test is crucial due to the reason that we suspect that the parameter
range is too narrow and that the predictive performance of the fitted FNN is insufficiently robust.
As a result, we produce a data set with parameters that are outside of the range and want to
evaluate if the fitted FNN is good enough to predict with this new data set.

The prediction errors with test data are shown in the Figure 3.9 and 3.10 respectively. The
findings are consistent no matter which scaling approach is used.
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The following results are with the first scaling approach. The average prediction error is shown
in the Table 3.2. The forecasts for the two parameters & and p are clearly unsatisfactory, with
average errors of 0.1279 and 0.5593, respectively. Owerall, the forecast for the other parameters
appears to be accurate. As a result of this out-of-sample test, the FNN trained with parameters
with a tighter range fails to predict all six rHeston parameters well.

parameter K v o Vo f H
out-of-sample data | 0.1279 | 0.0004 | 0.5593 | 0.0003 | 0.0009 | 0.0008

Table 3.2: Prediction error mean for each parameter with the out-of-sample data

3.4.4 Implementation with the data set produced using the parameters
with the wider range

Instead, as described in Section 2, we train the FNN using the data set produced with a broader
range of parameters.

As seen in the Figure 3.11, the training history is still relatively smooth, the learning procedure
is quick to achieve stability after around 20 epochs, and the model eventually reaches an accuracy
of more than 92% regardless of the Scaling Approach used.

The problem with model parameter identifiability persists, as can be seen in the Figure 3.12,
where some outliers appear to be significantly separated from the rest of the data points. The
average prediction error of the fitted FNN for the training set, validation set, and test data using
Scaling Approach 1 is once again presented in the Table 3.3. It illustrates that

1. As expected, the prediction error of FNN increases compared with that using the parameters
with a narrower range, which is applicable to all parameters with the similar extent.

2. The out-of-sample test indicates that the predictive performance for the parameter p improves
dramatically.

We proceed with FNN trained using the data set created with the parameters with the wider
range for the subsequent interpretability study due to the reason that it generates more robust
predictions not only within but also beyond the data.

parameter K v o Vo # H
training data 0.0113 | 0.005 0.0 | 0.0003 | 0.0008 | 0.005
test data 0.0111 | 0.005 0.0 | 0.0003 | 0.0008 | 0.0055
out-of-sample data | 0.1167 | 0.0060 | 0.165 | 0.0012 | 0.0028 | 0.0051

Table 3.3: Prediction error mean for each parameter with a broader data set
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Figure 3.9: Prediction errors of each parameter with the out-of-sample data (Scaling Approach 1)
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(a) Accuracy during training (b) Loss during training

Figure 3.11: FNN traing history with a broader data set
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Chapter 4

Interpretability of NIN calibration

The black-box feature as seen in the Figure 4.1 of machine learning, which refers to the fact that
its models are sufficiently complicated to not be easily understood by humans, poses an issue for
its reliability even while it can speed up calibration and attain satisfactory accuracy levels.

Input — Q:EIE Q10 e — Output

Figure 4.1: Black-box nature of machine learning|2]

The term “interpretability” lacks a precise definition. [4] offers a non-mathematical defini-
tion: “the degree to which a human can understand the cause of a decision”. The more inter-
pretable a machine learning model is, the simpler it is to understand why particular judgments or
predictions have been made.

Interpretability is a vital component in machine learning models. We are interested not just in
the model’s findings, but also in how the results are derived from the inputs and how trustworthy
the findings are. It is useful to investigate interpretability in order to debug the model and make
educated decisions about how to enhance it. In particular, interpretability can be advantageous in
two scenarios. On the one hand, if we have a thorough comprehension of our model, we may test
whether the mapping from inputs to outputs corresponds to our intuitive understanding of the
mode. Furthermore, if we lack model expertise, we may employ interpretability models to increase
our comprehension of the model.

I work on interpretability of the calibration of rHeston to study which feature (volatility) affects
the majority of the label (parameters of rheston).

4.1 Local interpretability

According to [12], we may classify interpretability models into two primary groups: global and
local interpretability methods. Explaining each individual forecast is typically referred to as local
interpretability.

f is the machine learning model to be interpreted and f is the prediction given by FNN. To
understand the prediction y = f(z) with regards to input x, we introduce the simplified input z’
of which each component is binary with 0 meaning that a feature value is equal to the average of
the data set and 1 otherwise. Let function h, such that x = h,(z").

Given input z, an interpretability model is a local model g on z' such that g(z') = f(h.(z"))
for z' = z'. Interpretability model is an additive g

M

,
g(2') = ¢o + Z iz

n=1

where the model attributes the effect ¢; to each feature 1.
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4.1.1 LIME

The technique originates from [13] where the authors perturb the initial data, enter them into
the black-box model, and then track the resulting outputs. The approach then according to the
distance between the initial data points and the new ones, accommodate the weights of individual
data point. In the end, it uses those sample weights to fit a surrogate model to the data set with
variations. Finally, we work with the newly trained interpretablity model to explain each original
data point.

Mathematically, the explanation for a data point x is the model g that, while keeping the model
complexity ()(g) low, minimises the loss L{ f, g, z) measuring how unfaithfully ¢ approximates the
model to be explained f in its proximity w... The objective function is as below:

ﬁrgminL(frgrﬂz') - Q[QJ
q

4.1.2 DeepLIFT

DeepLIFT(14] reverse recoveries the contributions of each neuron to each attribute of the input,
then it provides a method for breaking down how a NN generates the output from its input. It com-
putes contribution scores by evaluating the activation of each neuron to its "reference activation”
and calculating the difference. By optionally separating out positive and negative contributions,
DeepLIFT can spot dependencies that other methods miss. One backward pass can effectively
compute scores.

4.1.3 LRP

LRP is based on a backward propagation method that is applied to all layers of the model suc-
cessively. In this case, the model output score indicates the initial relevance, which is decomposed
into values for each neuron in the underlying layers. The decomposition is determined by rules
that are specific to each layer and involve its weights and activations.

The suggested propagation process fulfils a conservation property, which states that the mag-
nitude of any output remains constant while it is backpropagated via the network’s lower-level
layers. From the output to the input-layer neurons, each neuron reallocates the same quantity of
data to the lower layer that it got from the higher layer. The approach applies to a wide range of
data.

4.2 Global interpretability

A method for determining which input properties have the greatest overall impact on a model’s
output across all predictions is provided by global interpretability. The major distinction between
local and global interpretability is that the global method provides a conclusion based on an average
of all predictions. In other words, global interpretability is utilised to determine how much each
input characteristic contributes to the final outcome, utilising all data rather than just one specific
instance.

4.2.1 Shapley Values

The Shapley values are a concept from game theory in economics that aims to assign profits and
losses resulting from group activity to internal members. The Shapley values can be read as
follows intuitively. The input feature enters a group in a random sequence to play a game. Each
feature contributes differently to the game’s outcome. A feature’s Shapley value quantifies how, on
average, the outcome of the game changes on the occasion that the feature(s) joins the game. To be
more precise, we need to figure out each feature’s marginal contribution belore averaging it across
all potential coalitions in order to get the Shapley value. It should be highlighted, nonetheless,
that the Shapley value does not reflect the change in label prediction on the occasion that the
feature is excluded from the model. The game serves as the prediction task in the context of
machine learning, the group members serve as the features/inputs, and the Shapley value serves
as a measure of interpretability for the feature attribution. Similar to this, Shapley interpretations
are also given as additional feature attributions.
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Mathematically, the problem can be set up as: assuming a game with n players. For the
cooperation of players 7, f(G) is the average sum of gain/cost members of G work together to
generate. Shapley Values assigns gains/costs to collaborative players. The attribution to the
member k is

GI(|N| = |G| = 1)
o= S LGN G Dl ) - (o)

INJ!
GCn\{k}
which can be interpreted as :

marginal contribution when k joins the alliance

=

, - mumber of possible alliances excluding k
alliance without & -

Specifically, in the context of machine learning interpretability, the feature attribution is:

s NG =2 = 1) 14 :
oplf, ) = Z [ZING — ] - 1)t [f(h.l. (z"Ud) = f (he (z’]]] \

Gl
2 Cal\le

where j: is the prediction model. This fits the additive feature attribution of the interpretability
model g:

M
g(2") = ¢o+ Z Pz

n=1

where the model attributes the effect ¢ to each feature k.

SHAP (Shapley Additive exPlanations) [39] establishes a single measure of feature attribution
and various practical implementation approaches, such as Kernel SHAP, Tree SHAP, and Deep
SHAP. Additionally, SHAP incorporates a variety of Shapley value-based global interpretation
techniques.

Deep SHAP

Malking use of both Shapley values and DeepLIFT, Deep SHAP [39] puts SHAP values calcu-
lated for single part of NN together for the network as a whole. By picking a subsample as back-
ground, Deep SHAP comes close to the conditional expectation of Shapley values. By analysing
how the difference between the output and the reference output relates to how the inputs differ
from their reference level, DeepLIFT [14] derives feature attributions. Deep SHAP then integrates
the results from DeepLIFT over different background samples.

Kernel SHAP

Kernel SHAP combines LIME with Shapley values, constructing a regression linear model
similar to LIME with the coefficients calculated using Shapley values.

Tree SHAP [40)

The tree-based machine learning models are the focus of this interpretability method. By first
computing the best local interpretation and then expanding it to include feature interactions, it
creates an understanding of a model’s overall interpretability.

The Shapley values should satisfy the following properties [16]:

e Local accuracy: For specific instance, the prediction should be fairly attributed to the feature
value.

e Missingness: Attribution of 0 is assigned to the missing feature.

e Consistency: Feature attribution should follow the direction of change of simplified input’s
contribution.

4.3 Other methods

This section introduces gradient-based attribution techniques that calculate the slope of the pre-
diction with reference to the features, such as Saliency Maps, Gradient * Input, and Integrated
Gradients. The gradient-based attribution indicates that if I raise the volatility value, the predicted
parameter will grow (for positive gradient) or decrease (for negative gradient).
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4.3.1 Saliency maps

Saliency Maps [41] as a back-propagation approach first calculates the partial derivative of the
output with reference to the features, then returns the absolute value. As a result, the Saliency
attributions are at almost all times positive.

4.3.2 Gradient * Input

Similarly, Gradients * Input [42] attempts to improve the attribution maps. It obtains the at-
tribution through multiplying the attributions derived using Saliency maps by the input feature
itself.

Mathematically, the attribution ¢; is:

4.3.3 Integrated gradients

Integrated Gradients [43] is built up from the idea of computing the gradient of the prediction
output with regards to the input features.
Mathematically, the attribution ¢; is:

1 oqer 0, .0
b = (zi — .1:?) " / Of(x o x (o —a")) do,

V=0 O

where 2V is the baseline (default:zero).

4.4 Implementation

In this section, all the local surrogate interpretability models are implemented in TensorFlow 1.15.

44.1 LIME

In our scenario, we should approach the NN as a regressor and utilise an explanatory model to
achieve a local approximation around each individual prediction (here a linear model is used).
LIME in Python could be used to implement this. The Huber Regressor in particularly is selected
for its tolerance to outliers.The Figure 4.2 depicts the prediction range and provides an overview
of which features contribute the most and how. The orange components have a positive impact
on the forecasted values, whereas the blue ones have a negative influence. The right feature-value
table highlights each feature’s input value with orange for positive and blue for negative. The
Figure 4.3 looks at how each input entry impacts the model output by taking the absolute value
of the contribution of each feature and calculating the average of 1500 predictions. 1 concentrate
on the impact only in terms of unsigned values and disregard whether the influence is positive or
negative by taking the absolute value of all attributions. Note that the subsequent interpretability
models will use the same measurement technique. The light color in the heat map indicates low
attribution values and the dark color for the high.

Take the Oth # in the test set as an example. As seen in the Figure 4.2, the prediction ranges
from -0.09 to 0.74, and with 0.58 being the Oth predicted value of FNN. It is worth noting that in
Section 2 x is generated from 0.0724 to 0.7057 following the uniform distribution, which implies
that the FNN covers the whole range of the model parameter set. The feature influencing the
prediction most is the volatility (T = 0.6, K = 0.6) deep in the money with short maturity The
second is (T = 1.2, K = 0.7} still deep in the money, and almost all of them influence the predicted
value positively. It should be highlighted that the feature values are the scaled and whitened input
data with a broader range ol parameters.

As shown in the Figure 4.3, the most influential volatilities are concentrated in the left npper
corner (fist two rows and first three columns) deep in the money with relatively short maturity (T
—192, K=07T=09 K =06 T=1.2, K=0.6: T = 0.9, K= 0.7; T = 2.0, K = 0.6). This is
completely distinet from the finds with the Heston model [2].

Similarly, I use scaled and whitened data with the narrower range of parameters to implement
the LIME interpretability model. The findings are quite similar:
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Figure 4.2: LIME attribution of # at Oth observation (wide range of parameters)
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Figure 4.3: LIME attributions and heat map (wide range of parameters)




1. The range of the prediction covers the range of the parameter set;

2. The volatilities deep in the money contribute most to the prediction;

3. Most contributions of the features are positive;

But it's worth pointing out the difference in findings that the volatilities influencing the pre-

diction most are not that concentrated in the upper left corner of the heatmap but locate in the
upper right part, which implies that they are not all with short maturity as before.
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Figure 4.4: LIME attribution of # at Oth observation (narrow range of parameters)
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Figure 4.5: LIME attributions and heat map (narrow range of parameters)

It is worth mentioning that the aforementioned attribution results are simply one of several
potential LIME interpretation situations.

Specifically, the predictions will remain the same while the attributions will be likely to vary if
the LIME explainer is implmented again for the same instance, such as 0th observation of x. This
demonstrates that LIME employs a local interpretability model thus assigns importance locally,
resulting in a different explaination from the same input element each time.
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4.4.2 DeepLIFT

Using the scaled and whitened test data, I create the (rescaled) DeepLIFT interpretability model
in Python using the DeepExplain module. Here, a zero array with the size of the input is used as
the baseline by defanlt. For the FNN, these attributions take the form of (1500, 54).

The all-inclusive influence on the model output P as measured by 1500 test instances is shown
in the Figure. The Figure 4.6 demonstrates that the deepest colours only arise around short
maturities and extremely little strikes (deep in the money). The cases in interest are K=0.6,
T=0.6, K=0.6, T=0.9, and K=0.6, T=1.2.
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Figure 4.6: Overall DeepLIFT attributions and heat map

The influence on each individual parameter is shown in the Figure 4.7, and you can see how
differently the colour blocks are distributed. In particular, £ and nu have characteristics in common
with P in that the primary attributions are around short maturities and extremely tiny strikes.
The most significant attributions for p are, roughly speaking, on the other side of the volatilities,
with lengthy maturities and extremely big strikes. The most significant volatility for Vi appears
to be distributed randomly throughout the heat map and does not follow any specific pattern.
Theta's most significant volatility tends to have a very lengthy maturity. The huge attributions
for the extra parameter H are mostly for extremely short maturities that are far from the ATM
(mainly deep in the money).

44.3 LRP

Once more, [ use LRP in DeepExplain. In particular, I concentrate on e-LRP [15], where € must
have a value larger than zero and is preset to 0.0001.

Figures 4.8 and 4.9 suggest findings comparable to those of DeepLIFT: The most important
volatility for P, k, and v tends to have a very long maturity, whereas the most important volatility
for Theta tends to have a short maturity and very small strikes (deep in the money). The vast
majority of the attributions for the additional parameter H are for very short maturities that are
not in the money (mainly deep in the money). The distinction is in the attributions for p and
Vo the most substantial volatility for Vi emerges with short maturity on both sides of the wings,
whereas p's attributions for LRP are around extreme short maturity on both sides of the wings far
from the ATM.

4.4.4 Shapley values

Using Deep SHAP, we construct global interpretability analysis using Shap in Python. As a
background, we pick 1000 samples at random from the test data set.
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Figure 4.8: Overall LRP attributions and heat map

The Figure 4.10 depicts how much effect each attribute has on the overall model prediction,
six rHeston parameters, in the test data. The sum of the absolute values of the Shapley values for
each rHeston parameter determines the order of the features. Here we only focus on the magnitude
of the feature attricution.

As we can see in the Figure 4.10, We use the two data sets generated as discussed in Section 2.
For both the topmost features are (K=0.6, T=0.6), which illustrates that the volatility deep in the
money with the shortest expiry makes the most contribution to the prediction of the parameters of
rHeston. This is aligned with the results of the local interpretability analysis. However, it should
be noted that the feature influencing the prediction most is far from ATM, which contradicts
the findings from Heston [2] and our expectation. Furthermore, the other important features are
not round ATM (K=1) as well. It should also be highlighted that the most important feature is
significant, as about twice much as the second.

The Figures 4.11 and 4.12 give a concise breakdown of the elements that are most crucial for
explaining the output as well as how the top input features affect the label and output of the
model. Each instance in the data collection is represented by a single dot on each feature row. The
attribution of the feature to the prediction, which corresponds to the feature’s Shapley Value, is
shown on the x-axis. The feature value is shown by the colour of the dots, with red denoting high
values and blue denoting lesser values. It should be noticed that the density is shown by the dots
representing each instance piling up vertically.

The topmost features for each parameter of rHeston can be found in the Figure 4.11. The
most important features for &, v are volatilities deep in the money (K=0.6 or K-0.7) with medium
expiry. The features that influence p most are with the extreme expiries (T=0.6 or T=1.8) and
either deep in the money with K=0.6 or deep out of the money with K=1.4. The volatilities with
the shortest maturity (K=0.6) on the wings are most important to V. For # and H, the volatilities
with the shortest expiry deep in the money affect the prediction most. Furthermore, the Figure
4.12 shows the results with the data set created with the narrower range of rHeston parameters.

Similarly, the Figure 4.13 shows the average of the absolute values of the features attributions
for each parameter. It should be noted that there's a difference with the order of the topmost
features between the Figure 4.13 and 4.11. This is because the results are not from one single
implmentation of SHAP.

4.4.5 Other methods

I implement the following three models in DeepExplain module in Python.
Here I only focus on the average magnitude of attribution for the overall output P.There's
strong evidence as seen in the Figure 4.14, 4.15, and 4.16 that the most influential volatility
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Figure 4.9: LRP attributions for each parameter
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Figure 4.10: Overall Shapley values

is with the smallest maturity and extreme small strike (K=0.6, T=0.6). The difference is that
Integrated Gradients shows only one influential volatility, while Saliency and Gradients*Input
highlight topmost features are deep in the money.

4.4.6 Discussions

Now I want to compare the findings from interpretability study with the interpretation from
rHeston for each parameter. It is predicted that the two will be consistent.

In reality, the reason is that ATM wvolatility is the most liquid, we may expect it to be the most
significant in calibration. However, from both local and global interpretability analysis, we can
conclude that volatilities deep in the money with short maturities contribute the most to the total
model output P = {p, Vo, &, H,#,v}. More research is required to explain this contradiction.

k is the mean-reversion rate, which should mostly consider volatilities close to the wings of the
smile. But LRP, DeepLIFT and Shapley values all illustrate that the most influential ones are only
one side (in the money) and with the short maturity.

v is the volatility of volatility. The larger the v, the more randomness in the variance of the
asset price, which implies there will be more obvious volatility smile features. LRP, DeepLIF'T and
SHAP provide evidence that the topmost features are deep in the money. However, it deserves
further research why the topmost are not on both sides and why they are mainly with short
maturity.

p describes the correlation, which includes information about the shape of the volatility smile.
As expected, LRP, DeepLIFT and SHAP demonstrate that the most important features are on
both sides of the wings.

Vy is the initial value of the variance, which contains information about the initial level of
the volatility smile. It's expected that volatilities with short maturities contribute most to the
prediction of Vy, which the evidence from LRP and SHAP can support.

# is the long-term average variance of asset price, to which the volatilities with long expiry
are most relevant. Both LRI and DeepLIFT support this interpretation. But the global inter-
pretability contradicts by showing that the features deep in the money with relatively short expiry
contribute most.

The additional parameter H measures the roughness of the volatility, which relates to the shape
of the volatility smile, specifically by looking at the wings what extremes are like. LRP, DeepLII'T
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Figure 4.11: Shapley values for each parameter (wider range)
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Figure 4.12: Shapley values for each parameter (narrower range)
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Figure 4.13: Shapley values for each parameter (mean of the unsigned values)
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Figure 4.15: Overall Gradients*Input attributions and heat map
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and SHAP all support this interpretation. However, further study should be conducted to discover
why the most significant features are all with short maturities.
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Chapter 5

Conclusion

The findings are broken down into three categories: insights from deep calibration, findings from
interpretability analysis, and further developments.

5.1 Insights from deep calibration

By experimenting with various data preprocessing techniques, changing the number of neurons
and layers, adjusting activation functions and optimisers, and accommodating learning rate and
batch size, it has been discovered that the simple architecture with one hidden layer, decreasing
neurons, and ELU activation function works well, achieving over 90% accuracy.

It should be noticed that while experimenting with common approaches for dealing with smooth
training history, such as modifying the batch size and tweaking noisy regularisation like dropout,
the training history stays smooth. According to FNN's good prediction performance, it is accept-
able. The key reason for the smooth training history is that the data is intentionally manufactured
and hence not noisy enough, which sheds light on future study.

We fit 'NN to two data sets generated by rHeston, one with a small range of parameters and
the other with a broad range of parameters. We may conclude from comparing the fitting results
using two data sets plus out-of-sample data that the FNN trained with parameters with a narrower
range fails to predict all six rHeston parameters well, particularly x and p, but the broader data
set does. [t is obvious that the parameter range matters in FNN performance.

5.2 Findings from Interpretability Models

We primarily concentrate on local surrogate models (LIME, DeepLIFT, and LRP) as well as other
popular gradient-based explainable approaches (Saliency Maps, Gradients * Input, and Integrated
Gradients). Plus, we give a preliminary result with the global interpretability analysis, specifically
with SHAP. Overall, the evidence from the local and global interpretability analysis is almost
consistent.

In actuality, we may anticipate ATM volatility to be the most significant in calibration since it
is the most liquid volatility. However, contradictory to the expectation, we can generally deduce
from all of the results that for the overall feature importance, volatilities deep in the money with
short maturities contribute the most to the overall model output P = {p, Vo, x, H,8,v}.

The interpretation from rHeston for some parameters and the outcomes from the interpretability
study are consistent, as predicted. The topmost features of the correlation as described by p are
on both wings of the volatility. It is predicted and shown by LRP and SHAP that volatilities with
short maturities contribute the most to Vj; which measures the initial value of variance. Both LRP
and DeepLIEF'T provide evidence that theta, as average variance of asset price over the long term,
is mostly driven by volatility with long expiration.

However, there is a contradiction that necessitates additional investigation. & as the mean-
reversion rate, v as the volatility of volatility, and H as the roughness of the volatility are all
expected to characterize the shape of the volatility wings. As a result, all of the top features are
expected to be on both sides of the volatility. However, according to our interpretability analysis,
they are only on one side of the volatility and have a short maturity.
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5.3 Further developments

Our NNs are currently trained on data created with self-defined limits for individual parameter. In
actuality, market data may be noisy. It would give more insights to train the networks and obtain
attribution findings using real market-calibrated data. This may be used to test hypotheses based
on the smooth training history. These market data should be viewed as supplementary input data
for future work, which will need modifying our present NN structures.

Due to backpropagation, NNs are nonlinear and non-local. Local surrogate models are based on
localization and, in certain cases, linearity, therefore they provide different interpretations for each
individual prediction, whereas Shapley Values gives global interpretations for feature influence on
model output. There is also evidence that Shapley values appear to capture those characteristics
most well [2]. As a result, additional research into implementing the global interpretability ap-
proach should be extended. This also helps us investigate and comprehend the existing mismatech
between the model interpretation and the results of the interpretability study on the parameters.
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