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Abstract

This Thesis studies the Backward Stochastic Differential Equations (BSDEs). We begin by pre-
senting two proofs of the Martingale Represenation Theorem (MRT), the first one is a proof by
Zhang and Jianfeng and the second one by Karatzas and Shreve. We then proceed to compare
their approaches in proving the result and the different assumptions they make. Then, we show
how the BSDE is derived from the MRT and present the first theorems of existence and uniqueness
of solutions to the BSDE. We also present linear BSDEs and some applications in finance. Then,
we move on to address stochastic optimal control theory through BSDEs, and in particular, we
study the connection between "regular" control problems and BSDEs. Finally, we present some
extensions of this theory by studying the equivalence of the above connection for "singular" con-
trol problems. The motivation is through an example of the optimal dividend problem where we
derive the relevant BSDE.
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Chapter 1

Introduction

1.1 Background

In mathematics, a differential equation describes the relationship between unknown functions and
their derivatives. The functions usually represent physical quantities and the derivatives represent
their rates of change. Differential equations have a wide range of applications such as engineering,
economics and biology.

Their history beging back in 1671 when they first came into existence with the invention of cal-
culus by Isaac Newton. During his research on "fluxional equations", what we would now call
differential equations, he introduced three kinds of differential equations. Not long after Newton's
research, the great mathematician and philosopher Gottfried Wilhelm Leibniz came up with a
solution to linear differential equations of first order. In 1695, Jacob Bernoulli introduced an
ordinary differential equation, namely the Bernoulli differential equation for which Leibniz found
a solution a year later.

A huge part in the evolution of differential equations was played by the Swiss mathematician
Leonard Euler, who popularized the use of power series, finding an integrating factor to derive
differential equations that were integrable in finite form and the theory of linear equations of
arbitrary order.

Stochastic differential equations originated in the work of Einstein and Smoluchowski through the
theory of Brownian motion and their theory was further developed in the 1940s by the Japanese
mathematician Kiyosi Ité who popularized the concept of the stochastic integral. In particular,
SDEs and BSDEs (which we will define later) can only be understood in terms of integrals as
there is no concept of a derivative. They both characterize the behaviour of a continuous time
stochastic process as the sum of a Lebesgue integral and an [to integral.

Finally, Backward Stochastic Differential Equations (BSDEs in short) were first introduced by
Bismut [2] in 1973 for the linear case and were then generalized by Pardoux and Peng [12] to the
Lipschitz case. The theory of BSDEs attracted a lot of attention in the last couple of years in the
field of mathematical finance due to their connections with the pricing of contingent claims and
optimal stochastic control problems.

1.2 Notation and definitions

Throughout this Thesis, we will be working in a finite horizon setting with final time T where
(€2, F,F,P) is a filtered probability space supporting a n-dimensional standard brownian motion
Wi, where F = {F,0 <t < T} is the natural filtration generated by W, satisfying the usnal
conditions of right continuity and augmented with all the P-null sets, so that I is complete. The
filtration F can be thought of as a family of sub-o-fields of the o-field F that are ordered non-




decreasingly, i.e for any 0 <t < t, < T, Fy, C Fp,.

Now, let’s define some useful spaces of random variables or processes that we will be using through-
out this thesis:

e Fisaa-field an Q and F¥ is a sub-g-field of F and is called the a-field generated hy X.

e HZ is the space of all F-progressively measurable processes ¢ : Q x [0,7] — R such that
T B
[l = E[[ || dt] < oo.
0
o LY(F,BY) is the space of all F-measurable random variables X : {2 — E? where X satisfies
X HA)={XeA}={weQ: X(w) € A} € F for all A € B(R).

e For p > 1, LP(F, k") is the space of all F-measurable random variables X :  — R? where
X £ L°(F) such that | X||" := E(|X|?) < no.

o If X € LY(F) we say that X is F-progressively measurable, if the restriction of X on [0,¢]
is B([0,t]) x Fi-measurable for any ¢ € [0,7]. We have that X € L"(F) implies that X is a
random variable whereas X € LY(F) implies it is a process.

e S% is the space of all progressively measurable processes ¢ : € x [0,7] — R? such that
- L2
E[ sup |¢7] < oe.
te (0,7
e K2 is the set of processes (K;) in §? with non-decreasing components starting at 0.

o M“' the space of continuous local martingales.

1.2.1 Martingales

Definition 1.2.1. Any M € LY(F) is called a martingale if it satisfies:
¢ E[|M:|] < oo for all t € [0,T].
o E[M|F] =M., P-as. forall0 <s<t<T.

For any martingale M we have that E[M;| = E[M] for all t € [0,T].

Definition 1.2.2. For a process M € L°(F), we say that M is a local martingale if there exists a
sequence of stopping times (1,),-1 such that:

o, AT as

e 7, < Tas onT=>10.

e lim, o7, =71 a.s.

o M. . ts a martingale for alln > 1.

A martingale is always a local martingale, however, if M € L(F) is uniformly integrable, then M
is a martingale if and only if it is a local martingale.

1.2.2 Stochastic Differential Equations
Recall that a Stochastic Differential Equation (SDE in short) takes the form:

t :
X =Xo + /b.s()f.s)d-‘f— ]U.s(X.s)dL.t"'.sr 0=i=<T (1.1)
0

o

where T>0 is a known maturity date and the functions b,(x) and o,(x) for {0 < ¢ < T} are
F-progressively measurable.




Definition 1.2.3. A strong solution of (2.1) is an F-progressively measurable process X €

T
such that [(|b (X)| + |oy(Xe)|?)dt < o0, a.s, and
i

t t
X, = Xo+ [b(X,)ds + [0 (X)dW,, 0<t<T
1] 1]

A few notes to make here:

e SDEs are the non-linear extension of the stochastic integral.
e SDEs evolve forward in time.

o X is adapted, i.e Xy is Fi-measurable for each t € 7.

e X, =xp is a given initial value.

~ o2

S




Chapter 2

Martingale Representation Theorem

The Martingale Representation Theorem is considered to be a fundamental part for the theory
of BSDEs and SDEs in general. In this chapter, we proceed to present and analyse two separate
proofs of this result. Throughout this chapter, let the process W : [0, 7] x 2 — R define a standard
Brownian motion.

The first proof of this result, is presented by Zhang [13] in a one-dimensional setting, for notational

simplicity, but he urges the reader to extend all arguments to multidimensional cases straightfor-

wardly. Therefore, for this part, we assume that d=1. Zhang, uses a PDE approach which we will

discuss later. We first state two Lemmas that we will need later on.

Lemma 1. Let 5 € C™=(RY) such that: 7 > 0, p(z) = 0 for |z| > 1 and frp(.r)d.r = 1. For any
R

Barel measurable function g : R — R with [ |g(y)|dy < 0o, define its smooth modifier:

Ed

gnl(z) = [ glz—nymly)dy =n=" [ gly)n(=2)dy. for alln > 0.

Er( Rr(
Then, g, € C™(RY) with bounded derivatives, lim,,_, . gnlx) = glz), for Lebesque-a.e. x € R4
where the convergence holds for all = € R if g is continuous and if |g| < C, then |gn| < C.
. . T
Lemma 2. Letn, € L2(Fo), o™ € L2 (F, ]Hq"f)_. and denote £, 1= 1, + frrt“ dWi, n = 1. Assume
i}
lim,, e E[|E, — £|%] = 0 for some & € L*(Fr). Then there exists unique o € L*(F,R?) such that

T T
¢ =Elg|Fo] + [0 dW,, and lim,, o E[In, — BEIF? + [ |of = af*dt] = 0.
) 1]

Proof. We have that




T
1 — E[EJFo]* + / oy — l‘f:|2df]
)

- T
n. — E[g[Fo]|* + |]ff§‘ - Hadflz] (2.1)

- 0

=

lim

n—oc

[Fa

lim E |i
n—oo

n—oc

- T
= lim E||n, — E[E\E}Hzflfff? rr,|2d'i-t-"!]
L 0

- T
< lim K| n. — E[£|Foll —/0? - ff:d“-'":]
L 0
- T
< lir_r&_ E|gn — E[£|F0)] f[rr;‘ — de'}]
L 0
- T T
= lim E n,l—/ﬁil-dL'l"'g — |i1|!:[._f|f'_[)] —f{}'g {fug:|
Tl
L 0 i}
= lim E[¢, —¢]
n—od
< lim E[l& — ¢ =0
Tl

Now, we state the result, which appears as Theorem 2.5.2 in [13].

2.1 The Martingale Representation Theorem
Theorem 2.1. Let £ € L2(F} ) i.e & is an F}¥ -measurable random variable in the o-field gener-
ated by the Brownian motion W. Then there exists a unique process o € L2(F,RY) such that:

T
,g:us[g]—]a! AW (2.2)
]

Consequently, for any F"V-martingale M such that E[|Mp|?] < oo, there ezists a unique process
o € L2(F,BY) such that:

t

My =M, + f o dWs. (2.3)

0

Proof. We first prove that (2.3) follows directly from (2.2). Indeed, by (2.2), for any Fu':-lllﬁ.rfillgal(?
such that E[|Mr|?] < oo there exists a unique process ¢ € L?(F, R?) such that:

My=E

T
My]+ [ oy - dW,.
i}

If we denote

M,:=E

t
Mp]+ [o, - dW,
0

then by Lemma 2.2.3 in [13] and by the fact that E[My] is a constant we have that M, is an
FW_martingale and My = Mp. Now, using the properties of martingales we have that

My = E[M7|FY] = E[M7|FV] =M,  and  E[Mr|= My = M

Therefore, we have




- t t
My =My =E[My]+ [os dWe = My + [o.-dW,
0 0
which implies (2.3) immediately.
Uniqueness of o:

Assume there is another & € L2(FF, %) satisfying (2.2). We then have

~

T
oy - dW, = f & - dW,
1]

T
](Ut —a¢) - dWi =0
0

Squaring both sides and taking expectations we get
T -
II:IUM; . r}¢|2df] —0.
0

Since the integrand is always positive and the above expression is equal to zero then it must be
that o; — d, = 0, that is oy = 7,, dt x dP- a.s.

Existence in (2.2):

We know need to prove the existence in (2.2). In this part of the proof, Zhang considers dif-
ferent classes of F-measurable random variables and proves the result for each one of them. He
starts by considering the most "restrictive" or "smallest" class which is the one of all bounded
and twice-continuously differentiable functions that take values in & and then uses the result for
this class to prove the existence in the next "larger" class and so on until he gets to the general
case.

Step 1. Assume that £ = g(Br), g € CZ(R). Now define

1 22
u(t,x) = lE[_q(.l: - BT_tJ] = fg(y)p(f{" —t,y —x)dy, where p(t,z) = e = (2.4)
4 v 2mt

We first compute the partial derivatives of the function p(t,z):

x? 3 5
aplt,r) = e~ 7 [ -7 4 _‘-Tf_a]
V2w l e
{).Lp(fr']-‘] = 2119 _z(_-‘?]

JQ
Dpep(t,z) = éﬂtﬁ__z [;_2 — Tl]

Then, we have

p 1«

Oplt,z) — Edup(f. r)=10
We also note that all the partial derivatives above exist and are continuous in [0, 7] x R since
the exponential function is continuous and the terms in the brackets are continuous so the

product of continuous functions is continnous. Therefore, u(t, z) is also continuous by the
same argument. Additionally, since g is bounded and p(t, ) is a decreasing function both

10




Step 2.

as t goes to infinity and as x goes to infinity, thus it is also bounded, we get that w(t, z) is
bounded for [0, 7] x .

We also note that

dru(t,r) = fg(:aﬂr?:p(lr —ty —z)dy
R

dpu(t, r) = fg(ylr')m(i" —ty—z)dy

i3
and
. ,W;rﬁ . 3 {1 71;}2 . _s
Op(T -ty —x)= v%e 2(T—t) B[f —1)77 — -"T[f —1) ‘1']
(w—r)®
: T — S, 1 T A |
Oep(T —t,y —x) = 7\/mg =0 (=)
(y—z)2
; T — ) = 1L I =iy “""-“F _ 1 ]
aat(T =ty —2) = e [{T—z;"z‘ (-3
So one can easily see that
1 - -
drult, ) + Ef)uu(f,;r] =0, w(T,z)=glx) (2.5)

since u(T,z) = E[g(a.‘ + b’[})] = ]E[g(;r)] = glz).
Now define

M = u(t,Wy) and o; := dpult, W;). (2.6)
Then by Ito’s formula we get

du(t, Wy) = pu(t, W, )dt + 8,u(t, W) dWy + 20,,u(t, Wi)dt = 8,u(t, W, )dW, = o,dW,

where we have used that the quadratic variation of a brownian motion is d < W >;= df and
equation (2.5).
Integrating the above and using equations (2.4) and (2.5) we get

T T
g(Wr) = u(T,Wr) = u(0,0) + [ a:dW; = Elg(Wr)| + [ oedW,.
0 0

Since dyu(f, W;) is bounded then by (2.6) we have that o € L*(F") and thus (2.2) holds.

Now, assume £ = g(Wr) where g : B — R is any Borel measurable and bounded function.
For this part we will need Lemmas (1) and (2).

Now, using Lemma (1), we let g, be a smooth modifier of g and we have that g, €
C'E(R],lim“_-,x gnlx) = g(x) for de a.e. rand |g,| < C for all n. Since Wr has density, then
W does not belong to a Lebesque null set a.s., so that lim,, . g, (Wp(w)) = g(Wp(w)) as.
and using the Dominated Convergence Theorem (A.1) we have that lim,,, «. E[|g, (Wr(w)) —
g(Wrp(w))[!] = 0. Since g,, € CZ(R) for all n > 0, then by Step 1 we have that for each

T
n there exists 0" € L*(F) such that g,(Wr) = Elgn (Wr(w))] + fﬂi‘dw}. Finally, using
i

Lemma (2) we see that (2.2) holds true.

11




Step 3.

Step 4.

For this step, we consider a partition 0 < t;, <ty < ... <t,_; <, < T of the interval [0, T
and we let £ = g(W;,,..., W, ) where g : R" — R is Borel measurable and hounded. Then
denote g, (x4, ..., z,) := g(xy,...,z,) and apply Step 2 on [t,_,t,|. Therefore, we know that
there exists o™ € L*(F"') such that

tn
90 (W W) = E[gWoy s W, )IFY | + [ oW, =

n—1

tn
InaWeps o We, )+ [ opdW,.
t

n—1
Now, since the Brownian motion has independent increment we have that
gu—l('rlr veey ‘1-‘11—1) =E |:gu('1-‘l.~ vl 1. Tp 1 T H'f“_l._t" )]

is also Borel measurable and bounded and repeating the same argument for all other intervals
backwardly we get that

tiy1 |
Gt Wars oo Wer) = gi(Wig, o, We )+ [ o HdW,

t;
where
gilzy,onw) = Elgnle, m,m + L-',-"!‘__!‘H)]
Now that we have ¢’ for all 1 < i < n we define
7= "il[ft‘_l._t,y

Then, since all o' € ]L,2(1F“'r) we have that their sum o € L*(FF) and (2.2) follows.

Here, we go one step further and we consider partitions of the interval [0, T7] of varying size
which in turn give us an increasing sequence of o-fields generated by the Brownian motion.
We assume £ € L™ (FF-] and denote for each n, t}' = é—?:_.?‘ =0,...,2". We let Fp be the
o-field generated by {Win,0 < ¢ < 27} and define £, := E[¢|Ff]. At this point we notice
that as n increases we have larger and larger generated o-fields. Using the Doob-Dynkin
lemma (4) we get

& = gn(Wep, oo Wip, ) for some Borel measurable function g,.

Since £ is bounded then £, is bounded and so is g,. Using Step 3 we have
T L r
& = E[g,] + [opdW,  for some o € LAFW),
0

Since W is continuous we have that 7' = \/, F} is the o-field generated by |, F%. Also,
since the random variable £ belongs to the sigma field generated by the Brownian motion
up to time T we know that E[¢|FP] = £. We now have an increasing sequence of o-fields
Froc FY oand € € LYFY) which imply that E[¢|F3] — E[¢|FY] in LY(F}). Using this
together with the Dominated Convergence (A.1) Theorem we have

limu—ro&: E |:|Eu - £|2] =0

Now (2.2) follows using Lemma (2) again.

12




Step 5. In the most general case, we let £, := (—n) VEAn. This means that |£,,| < n and that £, := £
only if £ € [—n,n] which implies that as n tends to infinity £, — £ and that |€,.] < |§]. By
Step 4 we have that there exists 0" € L*(F") such that

T
‘5“ = ]E[gu] - f o’;ldw{t
0
By the Dominated Convergence Theorem (A.1) we then have

limp oo E [|g“ . g|2] —0.

and (2.2) follows using Lemma (2) again.

Remark 2.2. Note that, in Theorem (2.1), we have assumed that M is an FYV -martingale,i.e. it
is a martingale with respect to a filtration generated by the Brownian motion W. However, the
result holds true without this condition only if the measure generated by the quadratic variation
process d < M >¢ is equivalent to the Lebesgue measure dt. If this is not the case, but at least
d < M =>; is absolutely continuous with respect to the Lebesque measure, then the result still holds
true by extending the probability space. To see that without absolute continuity the resull does not
hold we could consider the following example:

Let C; be copies of the Cantor function on the unif interval [0,1), for 1 < i < oo and define the
extension to the positive halfline by

Ki=3 i+ Cdinrn(T)
Now, define M by M; = Wy, where W is a Brownian motion which has quadratic variation
< M >,= K,;. However, applying the Martingale Representation theorem we could write M as
t
M, = f a.dW, s0 that < M; >= f(rrﬁ]udx. This is a contradiction since the latter representation

0 i
of the quadratic variation of M is an absolutely continuous function but K is not.

2.2 Representation of Continuous Local Martingales as Stochas-
tic Integrals with Respect to Brownian Motion

The second proof, presented by Karatzas loannis and Shreve Steven in [8] follows a pure proba-
bilistic argument where the two authors begin with a d-dimensional vector and break it down into
d separate, one-dimensional cases. The result appears as theorem 4.2 in [8] and is as follows:

Theorem 2.3. Suppose M = {M, = (M’;lj_.....,11-I;rl)),ft;0 < t < oo} s defined on (0, F,P)
with MY 2 Mot 1 < i < d. Suppose also that for 1 < i,j < d, the cross-variation <
M@ MU >, (w) s an absolutely continuous function of t for P-almost every w. Then there
is an extension (0, F,P) of ({0, F,P) on which is defined a d-dimensional Broumian motion
W= (W, = (W, . W, Fii0 < t < ), and @ matriz X = {(XFM)E,_ | Fii0 <t < o0}
of measurable, adapted processes with '

t
/(Xi‘*"'?')ud.q < m] =1, 1<ik<d 0<t<o0, (2.7)

i}

P

13




such that we have, P-a.s., the representations

“J—Z )ﬂ‘“du‘“ 1<i<d 0<t<oo, (2.8)
&_1
a
< MW MU > = Z‘/Xi"“){lj?'“ds: 1<ij<d 0<t<oo (2.9)
k=17

Proof. We begin by defining
d . . . . . .
I — VASI IV AKR — i AL pAgl) — AE Al
2l =2 = < MWL MY 5= Illl_(r_r;{_ﬂ[< MY MY =y — < MY MY >(!_{%JJ+] (2.10)

We know that the cross variation between two variables is symmetric and therefore their deriva-
tive is symmetric. Additionally, we know that the point-wise limit of measurable functions is
measurable and since any progressively measurable function is measurable then we have that the
point-wise limit of progressively measurable functions is progressively measurable.Therefore, the
matrix-valued process Z = {Z; = (2} Nd 1, F:0 < £ < oo} is symmetric and progrmmwolv
measurable. Now, for any vector e = (a1, ..., aq) € B9, we have

Z(_sz—lrt?! -.i_rﬁ:<2— me> =0,
t

which shows that Z; is positive-semidefinite for Lebesque-almost every t, P- a.s. The last equality
comes from the fact that we work with a continuous local martingale with associated increasing
process < M >, so that its derivative is non-negative.

Now, any symumnetric, positive-semidefinite matrix Z can be diagonalised by an orthogonal matrix
Q such that Q7'ZQ = A with Q7' = @7, and A a diagonal matrix with the non-negative
eigenvalues of Z as its diagonal elements. There are many algorithms which compute @) and
A from Z, such that Q) and A are Borel-measurable functions of Z. Therefore, since Z is a
synunetric, progressiwlv measurable and p&sitiw-wmid(‘ﬁnitc matrix pmrcss then there exists
processes {Q (w) = (g, [u)]u_l Fi:0 <t < oo} and {Ay(w) = (4 )\‘(u)] 0 <t < oo}
such that for Lebesgue-almost every t, we have

Zq’” ’”—Zq =0y 0<i,j<d (2.11)

k=1 k=1

i,)=1"?

d o d
YD arta e =0X 20 0<ij<d 2.12)

k=1I=1

[P-a.s.From (2.11) with i=j, we have that since d;; is the Kronecker delta and takes the value of 1
. N _ iy 2 )
only if i=j and otherwise zero, we see that (g;"")" <1, so

t t
[lgF2d < M®) > < fd< M®) > =< M®) >, <00
1] 1]

The last inequality follows from Theorem 6.13 of [7].We can now define continuous local martin-
gales by

N = qu.f-fdi-ug*ﬂ; 1<i<d, 0<t<oc. (2.13)

Using equations (2.10) and (2.12) we have

14




d d L
< NO NG >, = ZZ/qiﬁqi‘jd < MK M0 5 (2.14)

k=11=1}

d o d

i
= ZZ] Vialgds

k=11=17}
t

= 51_',5/)\.2(13

0

where again when i=j we have d;; = 1 and

t
/Aids =< N < 0 (2.15)
0
At this point we have constructed a vector of local martingales N = {(N!(l’]_. ...._.i\"tm’])_.f;;(] <t<
no} and we will use the extended probability space (€2, F,F) on which is defined a d-dimensional

Brownian motion W = {I; = [L‘l-"flj_....._.Tr't-"tml]_.fg;(l < t < oo} which is independent of N to

represent this vector as a vector of stochastic integrals. At this point we should note that our
vector of local martingales is not necessarily continuous so we can use (2.15) to show that

t . t
JTns0yad < N >u= [Tnsopds < 1.
] 1]

and define continuous, local martingales

t t
1 o »
B & f Iiagsop N + f I —opdW(s 1<i<d (2.16)

0 0

Now using (2.14) and the fact that < N9 NU) == 0 when i #+ J we get

<BW,BY >=4;t, 1<ij<d: 0<t<oo,
so, according to P.Lévy [10], B = {(B!m_. ....,B!{dJJ,ft;O <t < oo} is a d-dimensional Brownian
motion.

Now using again (2.14) we have that < N N > —« N 5 = f)\;ds which implies that
0

) t »
d < N =;= Alds we have that the martingale fl[{,\,_z[”di\":() has quadratic variation which
0

equals zero, Le
t , t )
fl[{/\::z[}}d < J'V,E(J == fl[{/\:z[}})\;d-‘? =10
il 0

so that
t

t
/\/)\f;dBf;.‘J = [HM_,W}dN,i‘J =N 1<i<d 0<t<oo (2.17)
i o

To first prove (2.7) we note that for 1 <4,k < d, and using (2.15) we have

t t
J@:5)*Aids < [ Xds <00, 0<t<oo
0 0
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We have now constructed a stochastic integral representation (2.17) for N in terms of the d-
dimensional Brownian motion B so we need to invert the rotation of coordinates (2.13) to obtain
a representation for M. This is the point where Karatzas and Shreve reduce the prohlem from
a d-dimensional problem into d separate, one-dimensional cases. We let X(x k) a * \/_ in the
above inequality at the bottom of page 17 to show that (2.7) holds. [\Ioremer. umng (2.17), (2.13)
and (2.11) we have that

d

d t t
Z/X“" dB) = Z/ gk Nk (2.18)

k=1

ME- II

J=1k=17

o‘f dM P = MY
0

which proves (2.8) and using rules of cross variation and that < B >;=1{ we can prove (2.9) using

(2.8). |

d t
> fqi‘kqﬂ“‘dﬂ-fiﬂ

}

t

M‘-

1

Remark 2.4. We notice that in both proofs, even if P is completed it may still not satisfy the usual
hypothesis of right continuity and augmentation and since the Brownian motion W is continuous
a.s., we need to extend it to a new probability space which includes the P-null sets. However,
in Karatza'’s and Shreve's proof, if for P-a.e. w € Q, the matriz-valued process Z = {Z; =
(z J),‘j:l,}};O < t < oo} has constant rank r such that 1 < r < d, for Lebesgue-almost every
t, we can choose an r-dimensional Brownian motion W in (2.8) which allow us not to extend
the probability space (82, F,[F). This can be done by taking A},..., Al to be the r strictly positive
eigenvalues of Z; (we know from Corollary 13 of [11] that If A is an nxn real and symmetric
matriz, then rank(A) = the total number of nonzero eigenvalues of A and together with the fact
that a semi-positive and symmetric matriz has non-negative eigenvalues then if Z hﬂ s rank r then

it must have r strictly positive eigenvalues). Then we replace (2.16) by H(x f—dN“J for

1 <r <r. Now, using (2.15) we have that for all v +1 < i <d,0 <t < 0o (since A;H, ...,/\f are
all zero) N!m =0 so that (2.18) becomes

S le“”a!B‘” s lfqide‘k =MP, 1<i<d.

Since our new notation for Btm, 1 <4 < r does not involve the Brownian motion W, there is no
need to extend the original probability space.

Remark 2.5. Theorem (2.3) provides a more accurate representation of continuous martingales
with respect to a Brownian motion W than Theorem (2.1). The reason is that in Theorem (2.3),
Karatzas and Shreve begin with the class of continuous local martingales, whereas Zhang provides
a proof only for martingales. Therefore, as the class of martingales ts included in the class of local
martingales there might be some rure situations that the proof provided by Zhang does not hold
true for continuous local martingales that are not martingales.
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Chapter 3

Applications of Martingale
Representation Theorem

As mentioned in the previous chapter, in order to apply the result of the Martingale Represen-
tation Theorem we need to assume that (2, F,F,P) is a filtered probability space supporting a
n-dimensional standard brownian motion W, where F = {F;,¢ = 0} is the natural filtration gen-
erated by W, satistying the usual conditions of right continuity and angmented with all the P-null
sets, so that F is complete. Now let £ € L2(FW )ie £ is an Fp-measurable and square integrable
and consider the martingale M; = E[{|F;]. Note that My = £ since £ is Fp-measurable. Then by
the results of the previous chapter there exists a unique process Z € L*(F, R?) such that:

t t
My = M, —/ZH -dW, =E[¢] + /Z.s ~d W, (3.1)
i} 0
and
T
Mp =My + /Z,,. ~dW (3.2)
i}
Combining (3.1) and (3.2) we have:
T T
My — My =-— /Z., dW,, or equivalently, M, =& — /Z,,. - dWy (3.3)
t t

Differentiating both sides of (3.3) we get

dM; = Z.dW., Mp=¢ (3.4)
Equation (3.4) is a linear SDE with terminal condition My = £ and is what we call Backward
Stochastic Differential Equation (BSDE). While SDEs are the non-linear extension of the stochas-
tic integral and evolve forward in time, BSDEs are the non-linear extension of the Martingale
Representation Theorem and they evolve backward in time. Now, the question is whether there
is a IF- adapted process that satisfy the dynamics of (3.4).

In this chapter, we should consider the BSDE

AY: = — f(t, Vi, Zi)dt + ZedWy, Y =¢ (3.5)

or equivalently, re-writing the BSDE (3.5) in the integrated form:

T T
Y, =€+ [ F(s,Ye, Z,)ds - [ Z,dW,, t <
t t

FAY
~

(3.6)

17




where:

e The map f: (w,s,y,2) = flw,s,y, 2z) which is measurable with respect to P x B{R") x
B(R™*) where P, B(R"), B(R"*?) are respectively the predictable o-algebra over (0 x [0, T],
the Borel o-algebra on B™ and the Borel o-algebra on R™*4,

e f is uniformly Lipschitz continuous in (y, z), i.e there exists L such that

[flw ton21) = flw tye )] < Ly — wel + [z — 22]) Y(nam), (g2, 22) de x dP- as.
e {is an Fp-measurable random variable with values in B" and is called the terminal value
and fY:= f(0,0) € L12(F, ™).

Definition 3.0.1. A solution to the BSDE (2.6) is a pair (Y,Z) € SL(R") x HZ(R™*?) of F-
adapted processes such that (3.6) holds a.s..

Remark 3.1. From (3.4) and as we will see more clearly later on, the process Z; is essentially
the derivative of M with respect to the Brownian motion W so it is uniquely determined by M
and W. At this point, it is also tmportant to note that Z is needed to ensure the F-measurability
of M. Indeed, consider the following ordinary differential equation (ODE)

dYi=0, 0<t<T (3.7)

where the terminal time T is known. Suppose, for instance, that for every £ € ! we have Y(0) = &
or Y(T') = &, such that (3.7) has a unique solution Y (t) = £. This is true because we have
considered equation (3.7) to be an ODE. However, if we consider (3.7) as a SDE it makes a
huge difference in the solution on whether we specify Y (0) or Y (T'). The reason is that, since we
are now in a filtered complete probability space (2, F,F,P) supporting a n-dimensional standard
brownian motion Wy, where F = {F;,t > 0} is the natural filtration generated by W, we should
note that the solution to (3.7) must be adapted to the filtration F. To see this, consider the SDE

dY: = oy (Y1)d By,  with terminal condition Yr=¢ (3.8)

The problem here is that (3.8) in general has no F-measurable solution Y. For example, if we
take o = 0, then equation (3.8) becomes an ODE with unique solution Y (t) = £ which 1s not
F-measurable, i.e it is not adapted to the filtration F unless £ is constant. In order to tackle this
problem and to ensure the adaptability of the solution to ¥ is by reformulating (3.8) as in {3.4),
and now we are seeking two processes (Y, 7).

3.1 Linear BSDEs

In this section we study the case where f is linear and more specifically the one dimensional case
where n = 1. Therelore, we should consider the general linear BSDE:

T T
Vi =€+ /[nm + Zefe + flds — /Z,.,.st (3.9)
t i

Proposition 1. Assume & € L?(Fpr,R), and f* € LV2(F,R). Let (o, 3) be a bounded (R, R)-
valued progressively measurable process. If (Y, Z) satisfy the linear BSDE (3.9), then the pair
(Y, Z) is the unique solution and Y is given by

T

5[}‘?+‘/1}‘sﬁ’ds

t

=K

f!], (3.10)

where (Ut o)e=s is defined as

18




5

o= [I'!_,.(n,.dr +3.dB); ey =1 (3.11)
t
where I'y L'y =1y, forallt < s <.

Remark 3.2. From (3.10) we can see that if both € and [ are non-negative then Y; is non-
negative as well. Additionally, if Y: = 0 on any set G € Fy then it follows that s =0,£ = 0 and
Zo=0,f"=0Pas foralls >t on G.

3.2 Well-Posedness of BSDEs

Further to their study on BSDEs, Pardoux and Peng gave the first existence and uniqueness results
for n-dimensional BSDEs [9]. Although there are a lot of proofs for the existence and uniqueness
of the solution of BSDEs, the conditions under which a solution exists depends entirely on the
form of the generator f. In this section, we will use the most general theorem which assumes
that the generator f is a function that depends on (Y, Z) and satisfies the Lipschitz condition for
(Y, Z). We first provide the following lemma which will prove useful when proving the uniqueness
of the solution.

Lemma 3 (Gronwall's Lemma). Let g(s) be an integrable and non-negative function and f(s)
be a measurable non-negative function both taking values in [0,T]. Assume also that T > 0 and
L=0. If

f) <L+ [g(s)f(s)ds

o

then
t
ft) < Lexp (fg(sts) vt € [0,7].
0

Theorem 3.3. Assume that F = F" where W is a Brownian motion. Then, the BSDE (3.6) has
a unique solution (Y, Z) € L2(F, R™) x L2(F, R"*1).

Proof. Uniqueness of (Y, Z):

Assume that (Y1, Z1) and (Y2, Z?) are two solutions of (3.6). By Itd's formula we have

dY:|? = 2YidY + |Zi2dt = —2Yifolt, Yo, Z2)dt + 2Y: Zed W, + | Z|2dt (3.12)
which leads to

T T T
|Y:)? = |¢)? —2/1;;;(3. YH.ZH]d.e—Q/Ifgz,,du’s —f|z~|2ds (3.13)
i i i

Now, using (3.13) and lté's formula again we have

T T T

¥, =Y+ f |Z—2Z:"ds = —2 ] (1’.3—173..;,(3.. Y. Z)~fu(s, 113_.zj))d.q -2 [ (1;1-113,z,l._zf)dm

t t t

(3.14)
Now, using the formula (x +y)? = 2% + 22y + y? we get that —2zy = 2% +9? — (z+y)? so letting
r=Y}—Y2and y = f(s, Y}, Z}) — fu(s, Y2, Z2) we get
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2L
—2(z,y) = —2(z,y) %

B oy
2(v2Lz, \/51.]
—2(ev, 3)

=a?+ 8% (atp)?

2
—op22 e Y (VZLr + Y )2

(3.15)

andlettingy2Lz = a y_ = I5}

oL

2L? V2L
<o’ + L
=5 Tgpe
: Ivl
< 2L%z)? +

o Ifs(s Y 20 = fuls, Y2, Z2))P
N 212
YR |ZE - AP
2 N 2
2 |dsl B dﬂz
e

where in the last step we used that f is uniformly Lipschitz in (Y, Z).

<Y VI

<27y - v?

Now, combining (3.14) and (3.15) we get

T

T
—[|zj—zf|2dsg [zﬁ
t

t

V- 2P

YI-vi*+

T
Jl Jz 2 .
t

(3.16)
Taking expectation we have

E

T T T
Vi —YEE+ 111/ |z} — Z%2ds < 21521|£/|1;L —YZds + EEf |2} — Z2ds (3.17)
[ t t

which becomes

T
E|Y' - YV < 2L21|£f Y- v2P*d /|4l Z2|*ds (3.18)
t
Applying Gronwall’s Lemma (3) to {3.18) we get
. T
0<E|Y! -V7* < —51\*:] |z} — Z2|*ds e.;:p(zﬁ('f — r)) <0 (3.19)
t

T
Therefore we must have that both E[Y! =Y?|? = 0 and E [ |Z} — Z2|*ds = 0 since the exponential
t
function is always positive which implies that Y;! = ¥}? and 2! = Z7.

Existence of (Y, Z):

To prove the existence of the solution to the BSDE we will use Picard iteration [3].Denote V" =
0,7 == 0and let {(Y;", Z}) : t € [0, T]},>1 be a sequence in HZ, (R") x H2(R"*) which is defined
rcrursl\ol by

20




T T
Y :5—/f(s_.Ys“’l_.Z:’l)ds—fz:dt-t-’,, (3.20)
t i

We will use induction to prove that the above sequence is well defined. Assume that Y"1, Z"71
L%(F) x L*(F) and using the linear growth condition in [13] we have

|f (Y2t 20 < L[|If2) + Y2 + 1207 (3.21)

so that f. (Y1, 27 1) € LY*(F). By the previous part of the proof we have that (Y™, Z") €
L2(F) x L?(F) is uniquely determined by (3.20) so we have that (Y™, Z2") € §2(F) x L?(F) and hy
induction we get (Y, 2") € 8(F) x L*(F) ¥n > 1.

Now, using Ito's formula to [V — y»

as before and using again that f is uniformly Lipschitz

we get
T T T
2 1 . ; .
E|1”!“+1 _ Y!u|z L §E/|Z:‘+1 _ Z:lzdﬁ < LE‘/|YSH+L _ Y;a|zdﬁ_ LE/“’Z“ _ Y;‘_l|2d.? (322)
t t t
which implies that
d T T T
I Elhf |yt —yeRds — L]Ef [yt — v Rds < Llh:/u;" — Y 1 ds (3.23)
t t t

T
Now define v, (¢) := E [ |Y — ¥ 1|?ds and note that 1,1 (T) = 0. Integrating (3.23) we get,
:

T
1 )
Vnga(t) < L ] Ee“*‘”v“(s)ds (3.24)
3

Iterating (3.24) we get
(LRLT)H

———11(0) (3.25)

vn1(0) = L ;
nl

Therefore, by letting n — oo we can see that v, 1(0) converges. A similar argument can be done
T

for E [ |z — Z|*ds so that we can conclude that {(Y,", Z") : t € [0,T]}n>1 is a Canchy
t

sequence, and taking limits as n — oo we have that by construction Y := lim, .Y, and Z :=
lim, ee Zyn s0 that the pair (Y, Z) is a solution of (3.6).

O

3.3 Comparison Theorem

In Mathematics, comparison theorems provide a statement which allows us to compare different
mathematical objects of the same type. For example, in the theory of Stochastic Differential
Equations when we talk about comparison theorems we mean when one process is greater than or
equal to another, with probability one. These kind of theorems are very helpful, and in particular,
they are used to prove many results in mathematical theory. These can range from asymptotic
behavior to the uniqueness and existence of solution of SDEs.

Theorem 3.4. Suppose we have two BSDEs with associated parameters (f*, 1) and (f2,£%) and
let (Y1, ZY) and (Y2, Z?) be the associated solutions. Assume that (€', f') satisfy the points on the
top of page 20 and (Y, Z%) € 82(F) x L2(F). If &' < &2 P-a.s. and fl(¢, Y72 Z2) < f2(t, Y2, Z}),
dt x dP-a.s. , then
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v'<V? 0<t<T, Pas. (3.26)

Proof. Using the fact that f! is uniformly Lipschitz continuous we have that
Freyh zh) = ;e Y2 27 < |fU (LY Z0) - fHYE . Z29)] < L(ll’gl —Y?|+1Z) - Z:Q|> (3.27)

2
+
Since we want to prove that ¥;! < Y;? it is convenient that we nse e7* |i(}’l,} - Yf) ] such

that 4 > 0. Now, using [t6’s formula for semi-martingales (5) and Tanaka’s formula (A.3) on
2

+

et |i(};1 — Yf) ] such that v > 0 we get
+12 +72
et K}f} — :r’j) ] = e"T{(g ) ] f K Yf) ] ds
T +
2]e"(1’1 ’”) d(ir ' 1’2) (3.28)
t
T
f? |:‘y1 Y21+] <}l >
t
Using the assumption that &' — &% <0 P-a.s. (3.28) becomes
o2 T i
e"‘[(:r;l - :r’f) } = —zfe"‘ (Yl - Yf) (z,}. - z,f)dws

2
w{ 1’1 1;?)*} —Iyyroyesol 20 — Zf|2}ds

M|»—

e'~{2 N M A ff(i’.f-lf]]}dﬁ

"
< -2 / e (1;1 - 1;?) (zj. - z.f)dwﬁ

t
T

2
+ fﬁ“{ — [(Ysl - Yf)ﬂ —Ijyioyzsopl 28 — Zf|2}d3

t
T

+ /e‘-*{u(}j} -yYhHt [ml Y2+ |z} - zf\] }d.q

t

H&_‘__ﬁ_i -

(3.29)

where we have used (3.27) for the last inequality. Now, for simplicity, let m = Y! — ¥? and
n=Z! — Z? so that (3.29) becomes
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T

+q2
ent [(1;1 — 1’}) } < —2]9"‘ mtndW,

t
T 2
=+ ‘[f’"ﬁ{ — [m"':l — 1[{m>[}}|?’1|2}{f.? (330)
t
T
+ ]H"{ZL(m)*’ [|m| + |ﬂ|:| }ds
t
- - 2 - 2 P
Using the identity —ym? + 2Lmn = —~(m — %n]z + f‘Tnz < ‘:"Tnz we get the following:
—y(m*)* - l[[m>[}}”2 +2Lm™(|m| + |n]) = =m0y [ —y|m|* = |n|* + 2Ljm|(|m| + [n|)

= Lim=0y [[LQ +2L— ‘_F]|m|2 — (|| — L\m|]u] <0

(3.31)
for all L7 + 2L < 5. Therefore, (3.30) becomes

492 T +
et KYJ - :rf) } < —2/9‘-“(1’; - '_rj) (Z: - Z.f)du-; P—a.s (3.32)
t

Taking the expected value on both sides of (3.32) and using the fact that W, is a Brownian motion

we get
+q2
E[e“‘[(}? - 1;2) ] ] <0 P—as. (3.33)

which is equivalent to saying that ¥;' < ¥;? which concludes the proof.

O

Remark 3.5. In the above theorem, if additionally we had Y} =Y} then the inequality becomes
an equality, i.e ;' = Y2 for 0 <t < TP-a.s. with & = £2. If on the other hand we had a strict
inequality between either & or f, i.e if €1 < €% or fYH(t, Y2, Z2) < f2(t, Y32, Z2), dt x dP-a.s. then
Vit < YA

3.4 Applications in Finance

As discussed before, the theory of BSDEs has a variety ol applications in the financial markets
and Mathematical Finance in general. In this section, we will show two of these applications. In
particular, the first example considers asset pricing and hedging theory where as the second exam-
ple considers the concept of recursive utility. We consider again working in a filtered probability
space (0, F,F,P) with a one-dimensional (P, F)-Brownian motion W.

3.4.1 European call option pricing and hedging theory

A European call option is a financial contract which gives its owner the right but not the obligation
to buy the underlying asset at a specific agreed price K, called the strike, at a certain date T in
the future, called the maturity. The underlying asset can be any financial asset, i.e it can be a
stock, index or a bond. The holders of a European call option can only exercise their right to buy
the underlying at the maturity time T. For this reason, we shall assume that the holder of such an
option will decide whether or not to exercise his option depending on the price of the underlying
at maturity S(T) which means that the profit of the investor will equal to (S7 — K)* which is an
Fr-measurable random variable. For simplicity, we let our underlying asset to be a stock.
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Assume that the financial market is complete and consists of two assets: a bank account (or a
riskless bond) with constant interest rate r and an asset (a stock) with price S; such that their
respective differential equations are as summarised below:

dS! = ,uSg dt + (}'Sg{f”"’g
{f.Bg = ?"Bgdf

where r, ¢ and o are constant, and represent the bond’s risk-free rate, the stock’s drift and diffu-
sion rate respectively and W; is a Brownian motion.Now let’s define some state variables:

e X; be the investor's wealth at time t
e m(t) the proportion of wealth invested in the risky stock at time ¢
e ¢(f) the rate of consumption of wealth at time ¢

Note that e(t) is a non-decreasing Fi-adapted process.Now, assume that the investor has sold the
European option at price x at time £ — (.
The controlled portfolio satisfies:

dX, = ((r+(u—r)m) X" —¢,) dft +om X" dW, , Xj" ==z

The problem of the investor is to find an optimal hedging strategy (7, ¢) against any European
option ¢ € L3 which satisfies X7° > (7. The fair price of such a contract is equivalent to the
smallest value of x such that an optimal hedging strategy (m,¢) exists. Let us denote this by z*
which satisfies

' =inf{X)" = z; there exists (m,c) and X" > G}. (3.34)

A case where this problem could be written as a BSDE would be if the investor is very risk-averse
and decides not to spend any of his wealth,i.e e(t) = 0. He would then be able to choose the
proportion of wealth 7(t) invested in the risky stock such that X7° = G where G is any European
option that can be written as a function of the price of the stock at maturity time T, 1.e G = f(S7).
Therefore, the above dynamics change to the BSDE

dS, = uSdt + oS, dW, |, Xj =z
dX, = ((r+(p—r)m) X[) dt + om, X[ dW; (3.35)
X7 = f(871)

Remark 3.6. If a solution (Y,Z) to (3.35) exists, then w(t) is the optimal hedging strategy.
Additionally, if a solution evists, then the correct price for the contract that the investor sells at
t =0 is equal to z.

3.4.2 Stochastic Differential utility in continuous time

Stochastic Differential utility was introduced by Duffie and Epstein [5] in a continuous-time set-
ting. When we talk about utility in this section we should mean recursive utility. This approach
to model utility allows to separate the risk aversion and intertemporal substitution. Intertemporal
substitution refers to the fact that someone substitutes his future consumption for current con-
sumption due to some economic factors such as new policies. Modelling utility instead of human
behavior directly allows us to use the same model when we deal with changing environments or
circumstances.

Let us now consider again an investor whose consumption rate at time t is denoted as (¢(t)),0 < ¢t <
T. Let us define the utility at time £ by Y (¢) := u({c(s) : 0 < £ < s < T'}) for some utility function
w. This stochastic model assumes also that Y'(¢) and ¢(t) are Fi-adapted stochastic processes. If
we also have the utility of terminal consumption at the final time T, i.e u(c(T)) = Y (T") then the
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utility at time ¢ is equal to the expectation of the function of future consumption and utility f
called the aggregator satisfying the Lipschitz condition, and is defined recursively by

T
Yi(t) = IE[/L(F(S],Y(S],Z(S]Jd-ﬂ‘ + Y(T]Iﬁ}, O0=t=<T (3.36)
t

In Finance, future information is very uncertain and random, so we work in a filtered probabil-
ity space generated by a brownian motion W. This allows us to use results of the martingale
representation theorem from chapter 2 to have a stochastic process o € IL(IF) such that

T

T
Y{t)=Y(T)+ /.f.s(f-‘(-ﬁ‘).- Y{(s), Z(s))ds — /0(-‘3‘)0’11’;. 0<t<T (3.37)
t t
which is a BSDE.

Remark 3.7. In a discrete-time sefting we would have the backward recursive relation between
the consumption rate c(t) and utility Y (t) as:

t= flelt), Yeq) (3.38)

where the function f is the aggregator.
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Chapter 4

Optimal Stochastic Control through
BSDEs and extensions

In this section we will first try to establish a connection between "standard" stochastic control
problems and BSDEs and then we will study the equivalence of that connection for "singular"
control problems throngh an example. For the first part, we will mainly refer to the theory dis-
cussed in [13].

Consider a controlled SDE of the form

dX, = by( Xy, u)dt + 0, (X, u )dW,, t€[0,T], Pa.s.

4.1
X[} == ( )
Equation (4.1) can also be written as
t t
X = ._'—fb(s_.)(;‘,u,,)ds—/o,.,[.s‘, X )dW,, t€[0,1], Pas. (4.2)
0 i}

In the above, W is an R%-valued Brownian motion defined on a complete probability space (2, F, )
with respect to the filtration F = {F;,t € [0, 7]} satisfying the usnal conditions. The unknown
process X; is the state of the system at time t and is Fi-adapted and square-integrable process
taking values in R™; u € { are admissible control which is also F-adapted and square-integrable
process taking values in a given non-empty closed set . The functions b: [0,7] x R" — R% and
o :[0,T) x R — B9 are deterministic, Borel-measurable and uniformly Lipschitz continnous
with respect to x and u. Now, we would like to solve the following stochastic optimization problem

neld

T
Vo = sup J(u), with J{u):=E" [‘1’(XT] + / f(f.){!".ug]df] (4.3)
0

We should note here that the functions ¥ and [ are one-dimensional which means that Vi and
J{u) are scalar values. The problem that arises here, is that if we try and solve the above equation
using the stochastic maximum principle and the Hamiltonian system we would come up with a
forward-backward SDE which generally does not have a solution. Therefore, our approach is to
make certain assumptions that will make our problem simpler.

Assumption 1. The function o(i,x) does not depend on the control w and is uniformly Lipschitz
inx;

Assumption 2. There exists a function 6(t,z,u) such as b(t,z,u) = o(t,z)8(t,z,u) which s
bounded and takes values in RY.
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Our next step is to show that under the above assumptions the probability measures P* and P
are equivalent. To do this, assume that the following SDE does not involve any control u and has
unique solution X:

¢
Xe=z+ [ o(s, X,)dW,, te[0,T], P-as. (4.4)
0
Now let’s define some variables.Let
t
OF = 0(t, Xeowr), WHi=W, — fﬁf;d.«:, P .= p* (4.5)
0

Assumption (2) comes in handy here because it allows us to use Girsanov's theorem and have that
W* ig a P“- Brownian motion as the function #* is bounded. This implies that the two probability
measures P* and IP are equivalent. Thus, using (4.4) we have
¢ t
X = ‘r—/b(s,){s,us)ds—\/crs(.e, X )dwr, tel0,T], Phas (4.6)
0 0

Assumption (2) and equation (4.6) allow us to write (4.3) as

T
Vo := sup J(u), with J(u):=E" [\I!(XT)—/f(r,Xg,ug)dr] (4.7)
weld
0

Equation (4.7) represents the stochastic optimization problem under weak formulation that we
seek to solve since it contains a drift control only.

Remark 4.1. If we had not used assumptions (1) and (2), the probability measure P would not be
equivalent with any other measure and thus we would have to control the state process X" instead.
This is known as the strong formulation of the stochastic optimization problem. In our case, we
fized the state process X and tried to control its distribution by controlling the probability P*.

From (4.7) we use the Martingale Representation theorem that guarantees us a process Z such as

T T
Y = W(X7p) —/f(s_. X, ug)ds — fz:du{;f, P -a.s. (4.8)
t t

From chapter 2 we know that equation (4.8) is a linear BSDE which has a unique solution (¥, Z*)
under the probability measure P*. We should also note here that (4.8) at £ = 0 becomes Y;' =

T
‘I!(XT)—f fis, Xo, us)ds which is equal to J{u). By (4.5) and the fact that P and P* are equivalent,
0

(4.8) becomes

T T
Y =w(Xr) —/ [f(s, Xous) + Z:ﬁ(.v_.){s.us]] ds — ‘/Z:d'ﬂ-‘;, P-a.s. (4.9)
t
We re-write (4.10) as
T T
Y = U(X7) —fﬂ(.q,x,,,z:,u,,)ds— /Z:du{,, P-a.s. (4.10)
t t
where the Hamiltonian function H is defined as H (¢, x,z,u) := f(t,z,2) + 20(f,z,u). Since our
optimization problem involves the supremum of the cost functional J we should also deline the
maximal Hamiltonian H"(f,z,z) := sup, H(t,z,z,u). Note that H* does not depend on the
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control u since it is just the supremum value of H under all v € U. Using assumption (2) and
the fact that the functions f, ', o, b are all deterministic, Borel-measurable and bounded, we have
that H* is uniformly Llpsrhlta continuous in z and bounded when z = 0. Therefore, we know
again using the thoory in Chapter 2 that the BSDE

T T
Y, = W(Xr) —]H‘(.@,Xs,zlf)ds - /z:du-;, P-a. s. (4.11)
t t

has a unique solution (Y*, Z*). Now, all the above lead us to the following theorem:

Theorem 4.2, Let the functions f, W, o.b be deterministic, Borel-measurable and bounded and
suppose that assumptions (1) and (2) hold. Then,

Yy = sup J(u) (4.12)
weld

Additionally, if there exists a function g: [0,T] x R" x R — U that is Borel-measurable and
H*(t,x,z) = H(t,x,z,gt, x,z)) (4.13)
we have that
uf = g(t. X, Z}) (4.14)
is an optimal control.

Proof. We first prove that there exists a unique solution in the BSDE (4.11) and then show
that Y = sup,;, J(u) and that u is an optimal control. Assumption (2) says that 8(t,z,u) =

aYt,r)b(t, z,u) and ¥(X7) are uniformly bounded and since H (t,z, z,u) = f(t,z, z)+20(t, 7, u) =
flt,z,z) —Z(J'_l(f..l. Jb(t, z,u) then H(t,x,z,u) is a linear generator of a BSDE which 5’1t15ﬁ(‘5 the
hypothesis of Proposition (1) in Chapter 3. This means that the BSDE
T T
Y = W(Xr) ]H (t,z, Z0 ug)dt — fz;‘dwg (4.15)
t t
has a unigue solution (Y, Z") P-a.s.. Thus, we have
T T
Yy =w(Xr)+ ]H (s, Xo, ZY 1;,)de—fZL‘d1rt’H. (4.16)
t t

Moreover, using equation (4.5) and assumption (2) we get

T
W= (X)) + (f 5, Xe, Z) Z.:‘rr_l(s,Xs)b(s, X.,_.u,,)) ds — /Z;‘ dW —9(.?_.X,;.u,;]dt]
(4.17)
T T
=W(X7)+ ](f 8, Xe, Z1) Z:O'_l(.ﬁ‘_.Xs)b(S, X.,_.u,,)) ds—/Z;‘ dWwy' —rf_l(.e_.X.;)b(.e_.X.;_.u,;)dt]
t t
T T
—W(Xp)+ ff(.e,){s,i f Zudw

t t

Now taking expectations on both sides of (4.15) we get
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Fu_ Pt
Yo =E

T
lII(XT)—ff(s_.X,,_.u,,)dq] = J(u) (4.18)
t

To show that (Y, Z%) is a solution to (4.11) we just need to take H" (¢, x,z) the generator of
(4.11) as a supremum of uniformly Lipschitz coeflicient which we can do using the Comparison
theorem, i.e

|[H*(t,z,z) — H*(t,2,2)| = |sup H(t,z, z,u) — sup H(t,z, Z,u)| (4.19)
wEld weld
< sup |H(t,z,z,u) — H(t, z,z,u)|
weld
< Oz — Z|.

Now that we have shown that there exists a solution (Y*, Z%) to (4.11) we need to show that
Yy = sup,oq J(u). We will do that by showing that Yj < sup, ., J(u) and Y > sup, ., J(u)
which is equivalent to saying Yy = sup,cy = J{u).

Take any € > 0. Then you can find a Borel measurable function Q¢ : [0,7] x B x B? — U such
that H*(t,z,2) = sup,, o, H(t,x,2z,u) < H(t,, 2, Q°(f, 7, 2)) + €. Define qf := Q(t, Xy, Z}). We
have H*(t, X;, Z}) < H(t,X;, Z} . 5 ) + € and

T T
Vi = p(Xp) + f H(s. Xy, 28 q5) - f z¢aw.. (4.20)
t 2

Consider

ok gt
Y-V =

te—

T
[H*(s. Xo, Z5) = H(s, Xo. 20 q5) + (z: - Z.’i‘) o(s. X.s.q.‘;)] ds — f (z: - Z.E‘)dw.,
t

(4.21)

T
H*(s, X, 2" — H(s, Xs, 27, q;)] ds — [ (Z; — zg‘)du{g’
t

T
:f
T
(T —t) — f (z: - zg‘)d;-l,;‘gt

t

1A

For t = 0 we have Y — Y’ < ¢T and as ¢ > 0 was chosen arbitrarily we get that Y <sup, ., J(u).
For the other inequality we have , hy the Comparison theorem, that Y,f < Y Yu € U which
implies that sup, 5, < Y. O

4.1 Singular Stochastic Control Problems and BSDEs

In the previous section we studied the existence of "regular" optimal controls for the stochastic

control problem through BSDEs where the state variable X, satisfies the controlled SDE (4.2) .
In this section we are set to study "singular" stochastic control problems and find a connection
with BSDEs. This type of stochastic control problems differ from the typical control problems in
finance as the possess some additional features not always present in the classical control prob-
lems. For example, as we will show later, the dividend optimization control problem can be seen
as a consumption model with linear utility which involves risky assets which are governed by an
arithmetic Brownian Motion whose growth is linear rather than exponential. This particular ex-
ample involves a singular control which results in a cumulative impact of finite variation, i.e the
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cumulative amount of dividends paid out up to time ¢.

It is known in the literature, see 4], that for typical Markovian singular stochastic control prob-
lems, it can be shown using dynamic programming arguments that the optimal value is given by
a viscosity solution of a Partial Differential Equation (PDE) with gradient constraint, which in
turn can be shown that this type of PDE are related to BSDEs with Z-constraints. As the divi-
dend optimization control problem involves only a singular control, we shall consider optimization
problems of the form

T T
I= :-mp]b‘.[/f(f,){”)df—/g(f,){”)dﬁ!—h(){”]] (4.22)
g 0 0
where X, satisfies
dX7 = p(t, XP)dt + v(t, XP)dB: + o (t, XP)dWi, Xo=z € R? (4.23)

where W is an n-dimensional Brownian Motion and (3;) is an [-dimensional process with non-
decreasing components known as the singular control.

We will need the following definition for the remaining of the section.

Definition 4.1.1. A supersolution of the BSDE

T T
/p s, X, Z,)ds — /Z,,.d'H-", with constraint q(t, X, Z,) € B! (4.24)
i i
consists of a triplet (Y, Z, K) € §% x H? x K* such that
T
pls, X, Z)ds — /st'[v'l-’,,. + (Kp — Ky). Wt e [O,T] (4.25)
t

Z,K) is a minimal supersolution of (4.25) if Vi < Yo, 0<t < T for
Z,.K).

Yi=h(X)+

“\-w]

Additionally, the triplet (Y,
any other supersolution (Y,
It can be shown that the optimal value of (4.22) is given by the initial value of the minimal
supersolution of a BSDE

T T

fp (s, X,Z:)ds — fz,;dm (4.26)

t t

subject to a constraint q(f, X, Z.) € ', and (X{) is the unique strong solution of an SDE

dX; =n(t, X)dt +o(t, X )dW;, Xy =r. (4.27)

To further understand the connection between PDEs with gradient constaints and BSDEs with
Z-constaints we will consider a problem particularly important in actuarial science, namely the
dividend optimal problem. This problem involves finding the optimal rate of a dividend pay-outs
for an insurance company. As mentioned before, this type of problem possesses some additional
features compared to "regular" control problems such as the singularity of the dividend distribu-
tion process. More specifically, the dividend pay-outs are subtracted from the current surplus of
a portfolio which makes a control action to change the value of the underlying. As in the classi-
cal stochastic control problems, the dynamic programming principle is also satisfied for singular
stochactic control problems and the Hamiltonian-Jacobi-Bellman (H.JB) equation is a second-order
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variational inequality.

Let us now consider the reserve of an insurance company, denoted as R, which satisfies

N,
R =x+pt— Z Yi (4.28)
i=1

where x is the deterministic initial capital and p represents the constant intensity at which premi-
s are collected by the insurance company. We further assume that claims arrive at a Poison rate
A, where the size of the i-th claim is denoted as Y] and we have that E(Y;) := m, Var(Y;) := s°
If we normalize the state space as: r; — ’—‘\/*,—j then R; satisfies

ARy = pdt + odWy (4.29)
where W, is a standard Brownian Motion and g = p — Am, 0% = A(m? + s%).
In most cases, (4.29) represents the dynamics of the reserve process when no control actions are
taken. However, depending on the type of risk controls and constraints on the dividend pay-out

rates, we get different types of diffusion control models, including the one we will study, the sin-
gular control model.

Considering now the dividend control model, the dynamics of [y involve an extra term —dL;
where L; represents the cumulative amount of dividenda paid out up to time t, thus is subtracted
from (4.29). we assume that L; is non-negative, adapted to the filtration F and is right-continuous
with left limits (cadlag) with Ly = 0. We only look at cadlag processes because we assume that
decisions have to be fixed in a predictable way.

Definition 4.1.2. The bankruptcy time 7= denotes the time of ruin of B, and is defined as
b= inf{t =0: R, <0}

The classical performance measure for a certain dividend strategy L is denoted as

TL
J (L) = IE:fe“s‘dL, +e SUIV(RE )] (4.30)
"]

i.e the expected value of discounted future dividend payments, where § is the discount factor. The
associated optimization problem consists of computing

Viz) = sup Jx(L) (4.31)
Lell
and an optimal admissible strategy L* such that V(z) = J,(L*), where V' is the value function,
II is the set of all admissible controls and the functional L* is the optimal control or optimal
strategy.for simplicity reasons, we will consider a subclass of admissible control strategies that
admit an adapted non-negative density process L = [(s),~q such that

i
I = [luds
i

and therefore we will write J,.(I(-)) instead of J,.(L). Now, the set of admissible controls II will
vary depending on the assumption one makes. In our case, we shall assume working with un-
bounded dividend rates and therefore we drop the assumption of absolute continnity of L so that
the density process | = [(8) 4 of a dividend policy L is not necessarily bounded.

Before tackling the problem, we should mention that the corresponding HJB equation for the
singular control problem (for details see ([1])) with constant drift 4 > 0 and constant volatility
o> 0is




2
max {p.]/;. + %L —GV,1—V, } V(0) =0 (4.32)

To derive (4.32) we used the the fact that we have to deal with the following equation from [1]

sup '{ (1= Vel +cViel(z) = (A+ 80V (x) + )\[ Ve — y]rﬂj*'y(y]} =10 (4.33)
1=0 )
so that if we have 1 = V.. (&) for some x > 0 then the local maximizer [* (z) and (4.33) is unbounded
which does not make sense. If on the other hand we have Vi(z) > 1 we get {*(z) = 0 and
ceVu(x) = (A+0)V(x) + )\f Ve —y)dFy(y) =0
i}

so that restricting to 1 — V. (x) < 0 for all x greater or equal than zero we get the HJB (4.32).
Now coming back to equations (4.22) and (4.23) we note that the functions g and v are related
to the constraint 1 — V,.(z) < 0 since they involve the control L.

4.1.1 BSDE approach with a non-constant interest rate

Our goal in this final part of the project is to find an optimal strategy L for an insurance company
whose reserve X is given by

Xe=x+pt + oW} (4.34)
as in (4.29) where we have added the initial capital z. We also assume that the insurance companys

pays out dividends, which represent a accumulated and noun-negative process which is given by

t
Ly = frfsd.e. The dynamics of X then change to
0
Xl=z+pt +oW; - L, (4.35)
Let {B:} be a standard Brownian Motion which is independent of {W;}. with corresponding
filtration {F7} which is complete and satisfies the usual conditions of right continuity and aug-
mented with all the P-null sets. Let also {F;} be the filtration generated by the two Brownian

Motions {B, Wi} also satisfying the usual conditions. At this point, we should also assume that
the dividends are discounted with rate § which satisfies the SDE

dd; = m(n — & )dt +rdB;, m,r>0nek (4.36)
Let’s define also
Af = fﬁudu. s>t (4.37)
i

where t € [0, 7] for some fixed horizon T" € (0, 00). It is important to mention that we should take
into account only admissible strategies I, € Il such that [; € [0, ¢] where ¢ € R. The corresponding
forms of equations (4.30) and (4.31) for this situation becomes

TEAT
r (rEaT)
Vit 6,2) =Ep| / e Mids + e AT X{renry) (4.38)
t
and
Vit,8,2) =supV'(t,5,2), (t,02)e[0,TArY)xRxR, V(T,§z)=r (4.39)
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where E, .|| = E[-| X, = z].

Our goal now is to find an optimal strategy ! for (4.38) using a generalized HJB. Note that the
dynamics of X' is now

dX! = (u—1)ds +odW,+0dB,, s>t, X ==z (4.40)

Thus, the generalized Hamiltonian, (see |G| for details) H : Q x [0,T] x R x R x R1*? = R is of
the form

H(s,z,l,y,2) = (u— ny—rr((o n)T) LA (4.41)

We notice that (4.41) does not depend on z. The maximum is attained at

A
. g, e —y=0
" =argmax H(s,z,l,y,z) = 4.42
gmax H(s,z,1,y.2) {n_~ R (4.42)
Then, with all the above we are in a position to write the corresponding BSDE
T T
Y, = hy (XE) —]Hr(u,){f',{:,}’“,Zu){f‘.u - /Z“(F.I-l.’“ (4.43)
t t

AT
where h(z) ;= e 2 .
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Chapter 5

Conclusion

In this Thesis we started by giving two different proofs of the Martingale Representation Theo-
rem where the first one uses a PDE approach in a one-dimensional setting and the second one
follows a pure probabilistic argument which starts with a d-dimensional vector and then breaks
the problem down into d separate, one-dimensional cases. The reason we started this Thesis in
this way is because the Martingale Representation Theorem (MRT) is the cornerstone for the
theory of BSDEs. The main result of MRT is that under the assumptions described in Chapter
2, it guarantees the existence and uniqueness of a process o € L%(IF) and basically states that a
random variable that is measurable with respect to a filtration generated by a Brownian Motion
W can be represented as an It6 integral with respect to this Brownian Motion.

Then, in Chapter 3, we went along and showed some financial applications of the Martingale Rep-
resentation Theorem and of BSDEs in particular. More specifically, we derived the corresponding
BSDEs for two problems in finance, namely finding an optimal hedging strategy against a Euro-
pean call option which satisfies a final condition at maturity time 7" and also modelling stochastic
differential utility for an investor whose consumption rate ¢ is considered to be an F-t adapted
stochastic process. Before tackling these two problems however, we proved the uniquness and exis-
tence of solutions to BSDEs, which consists of a pair (Y, Z) that satisty equation (3.6). Moreover,
we gave a proof of the Comparison theorem for BSDEs which states that if we have two BSDEs with
associated solutions (Y1, Z') and (Y2, 2%) with €' < € P-as and f1(t,y, 2) < f2(t,y, 2), dt x dP-
a.s. for any pair (y,z) then we have that ¥;' < Y;? P-a.s.

In our final part of this Thesis, we tried to establish a connection between "classical" stochastic
control problems and BSDEs where the MRT allowed us to use a process Z to represent the
stochastic problem as a linear BSDE with the generator function being the maximal Hamiltonian
and move on to compute the optimal control. For the last part of this chapter, we studied a very
well-known problem in actuarial science, the dividend optimization problem. Through the divi-
dend problem we were set to study singular stochastic control problems and find the connection
with BSDEs. We found that these types of problems have optimal values which are given by the
viscosity solutions of PDEs with gradient contraints and we showed that these type of PDEs are
linked with BSDEs with Z-constraints.

All in all, we conclude that the theory of BSDEs can be very useful in solving problems in finance
that involve stochastic processes and random variables that are measurable with respect to a
filtration generated by a Brownian Motion. The theory of BSDEs is relatively new compared to
other theories in Mathematics and is still under a lot of research.
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Appendix A

Stochastic Calculus

Theorem A.1 (Dominated Convergence Theorem). Assume X, X" € LY%F), n > 1 and that
X" = X inP. Let 1 < p < oc. If the random variables {|X"|P}, =1 are uniformly integrable, i.e
if there exists H € LP(F) such as |X"| < H, n =1 then X" — X in LP(F).

Remark A.2. The Dominated Convergence Theorem is also true if you replace the filtration

with the o-field F in LP(IF).

Lemma 4 (Doob-Dynkin Lemma). Let N, M € LO(FN) if and only if ther ewxists a Borel-
measurable function g : B — R such that M = g(N).

Lemma 5 (Itd's formula for semimartingales). Let X; be a d-dimensional semimartingale and
assume [ € Cy. Then

t
F(Xe) = £(Xo) /Zf ) dXi+ fz fig (X d(X', X7y (A1)
o i=t 0

ij=1

Lemma 6 (1to's formula for BSDEs). Let X; be a d-dimensional semimartingale and assume
f €Cy. Define € := Xp. Then, for allt € (0,77,

F(Xe) = fo( ) dXE— —f Z fig(Xe) d(X', X7y (A.2)

i, j=1

Proof. Since we assume that Xy is a d-dimensional semimartingale and f € C then we can apply
Lemma (5) on f(£) to get

€ =1 fZﬂ dr——f S o) d(X0, X0, (A3)

i,j=1
Now, subtracting (A.3) from (A.1) we get
. T a
FOX) = £(6) - fo( ) dX!— jfo__j(xs)d<X‘,X?>,, (A4)
Y dj=1

36




Theorem A.3 (Tanaka’s formula). Given a Brownian Motion W = {W,,t > 0}, Tanaka’s

formula can be written as

i
Wy = / sgn(W.)dW, + LYY (£)
o

where LY (1) is the local time of W at zero and is given by

t

. 1 .
LYt =p h.m.‘_,[}ifl[{_t___‘_}('['l'(.s‘))d..s‘
1]

and sqn denotes the sign function

L dfa>0;
sgn(x) = 1 ifz<0

(A.6)

(A7)

Remark A.4. The limit Lff(r) exists in the L* sense and it is clearly adapted to the Brownian
filtration. Also, we have that L[‘f’ (5) < Lff" (t) a.s. fors < t. In general, Tanaka’s formula provides

a decomposition of the submartingale |W(t)].
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