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Abstract

Pricing and hedging derivatives is a classical problem within Mathematical Finance. A useful tool
for tackling these problems are Monte Carlo methods, which generally require some underlying
model. Often it is not possible to calibrate these models to the market accurately — the Uncertain
Volatility Model alms to circumvent this issue.

Within this thesis we begin by introducing the Uncertain Volatility Model, and discuss its appli-
ation to the super-replicating problem. We then explore various numerical methods, in particular

we develop a robust pricing method for a variety of cliquets.
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Introduction

Derivative contracts are financial products that usually gnarantee some stream of cash flows con-
tingent on one or more underlying assets. They are extremely popular amongst investors as they
allow one to take a more specialised view on the market and hedge (or leverage) specific risks.
For example, an in-the-money butterfly option allows an investor to speculate on the magnitude
of the return of a single underlying, irrespective of its direction. A more complex product called
a cliguet, provides an investor with protection against extreme moves in the return of an asset,
usually paired with some global feature expressing a more specific view. This is an example of an
exotic product and is not usually liquid (or existent) on an exchange.

Financial institutions that wish to sell complex products to investors often need to develop models
for pricing these derivatives. The price they choose mmst be large enough such that their hedges
cover any losses they incur from their obligations of the contract, but the price must also be small
enough such that they remain competitive amongst other institutions. One of the most important
components of these models is the dynamics that the volatility is assumed to follow. There are
many variations; in Black-Scholes the volatility is assumed to be fixed over the time horizon, local
volatility models assume the volatility is a deterministic function of time and the spot, stochastic
volatility models assume that volatility follows some random process such as in the Heston model.
All of these models, before being used for pricing must be calibrated to the underlying asset; this
involves calibrating the volatility surface produced by the model to the volatility surface implied by
the market. The market implied volatility surface is nsually obtained by finding the Black-Scholes
implied volatilities for a variety of liquid call/put options on the underlying. For more information
on this matter we refer the reader to “The Volatility Surface : A Practitioner’s Guide” by Jim
Gatheral[7].

So it is clear that if we are to take this common approach to derivative pricing, we need data
to calibrate our volatility surface. However, for many assets there may be a lack of liquidity
in exchange traded derivatives. In some cases, where the underlying process we consider is a
proprietary strategy, there may be no data to calibrate our volatility surface. A solution, proposed
by Avellaneda et al [1] and Lyons [11], is to instead consider a family of models where the volatility
is assumed to lie in some range of values. In this setting, we naturally obtain a family of prices
of which we desire the maximum, so as to hedge the ‘worst’ possible outcome. The selection of
the bounds are normally considered to be deterministic (possibly time varying), however there has
been some interesting research into stochastic bounds by Fouque and Ning [6]. There have also
been studies of the extreme cases; Martini [12] studied the case where the lower bound is assumed
to be zero, Leblanc and Martini [10] studied the case where volatility is unbounded.

This paper is structured as follows; in Chapter 1 we introduce the core ideas and results when
pricing derivatives with uncertain volatility ([1], [L1]). In Chapter 2 we explore the link between the
maximal arbitrage-free price produced by the family of models and the cheapest super-replicating
strategy which is of practical importance ([3]). In Chapter 3 we introduce some new theoretical
results on so called ‘zero gamma boundaries” which become useful in our numerical methods. In
Chapters 4 and 5 we discuss some numerical methods presented in literature ([1], [8]) and develop
them to build a new robust pricing method for a variety of cliquets under model uncertainty.




Chapter 1

Introduction to Uncertain
Volatility

1.1 Preliminaries

Before proceeding with the main content of the thesis, we cover a briel overview of some basic
derivative pricing, outlining the key concepts and problems that are of particular interest. We
then discuss super-replicating strategies, and why they are of practical importance. Finally, we
define the Greeks and build some intuition around them. The following preliminaries are based on
“PDE and Martingale Methods in Option Pricing” by Andrea Pascucci [13].

Suppose in our market we have a single asset, whose price process is denoted by (St )¢>n and a bank
account that offers a constant risk-free rate r. If you were to invest 1 unit in the bank account at
time 0, the value of that unit at time f is given by N; = ¢*. We also assume that under the real
world measure, (S Jp<;<7 satisfies the Ito process adapted to the filtration (Fy)p<i<r

dS; = pSedt + 04 8¢dBy Sy > 0

where B is a Brownian motion, p is a constant and o, is a non-anticipative processes. We will
focus on non path-dependent European contingent claims here, however the main ideas generalise
to more complex products. Suppose we have a contingent claim whose payoff V' (Sy) is a function
of the terminal value of the asset.

A risk neutral pricing measure, is an equivalent measure such that the discounted asset e ~"S; is
a martingale. Here, equivalent means that the null sets agree i.e. two measures P'Y) and P'?) on a
measurable space ({2, B) are equivalent if

PUAY =0 < PHA)=0 for all A e B.

This is the first key point, in classical derivative pricing one usually focuses on equivalent measures
to the ‘real world” measure. In fact we do not know precisely what this ‘real world” measure is,
we usually assume some model like a geometric Brownian motion, or some stochastic volatility
model. However this is quite restrictive, since, making an assumption like this can cause your final
results to differ from what is observed in the market. For instance, the assumption of a geometric
Brownian motion as in the Black-Scholes model yields a flat volatility surface, which is not the
case in reality. Nevertheless, for now we focus only on equivalent measures; the first fundamental
theorem of asset pricing is as follows

Theorem 1.1.1 (First Fundamental Theorem of Asset Pricing). The market is arbitrage-free if
and only if there exists a risk neutral pricing measure.

Thus if we introduce another asset V; whose terminal value is V(Sp), to maintain an arbitrage-free
market there must still exist a risk nentral pricing measure such that e "'V} is also a martingale
process. Suppose this holds true, then under this risk neutral pricing measure, the martingale
property suggests




eVi=E[eTTV(SIR] = Vi=E[eTOV(sy)|F].

This is known as the risk neutral pricing formule which provides an arbitrage-free price for the
derivative V. Notice that there may be multiple risk neutral pricing measures, thus we may have
multiple arbitrage-free prices.

Often, an institution may want to hedge the derivative so as to cover their losses from the obliga-
tions of the contract. In other words, we must find a self-financing replicating strategy (adapted)
(hi)pe <7 for the derivative V' such that

T
Vi — hgSy — / hsdS; =0 P—a.s,
0
this is known as a perfect hedge. Note that the cost of this replicating strategy is Vo = hoSy
i.e. the initial capital required for the self-financing strategy. So we also have Vp = hpSp. A
complete market is one such that every contingent claim is replicable. This leads us to the second
fundamental theorem of asset pricing,

Theorem 1.1.2 (Second Fundamental Theorem of Asset Pricing). An arbitrage-free market is
complete if and only if there exists a unique risk neutral pricing measure.

We may find ourselves in the case where there are multiple risk neutral pricing measures, in which
case we cannot guarantee the existence of a replicating strategy. Instead we consider the notion
of super-replicating strategies, which are pairs (h;)g<cr € L?() (trading strategy) and a € R
(initial capital) such that

T
a—/ hedS; = Vo P—a.s.
0

In other words, when we hedge with a super-replicating strategy we make almost sure profit. Note
that since we are only considering equivalent measures, the notion of a super-replicating strategy
holds for all of our measures. In other words, if two measures P1V and P(?) are equivalent, and a
property P holds P®") —a.s, then the property P holds P(?) —a.s. When we discuss super-replicating
strategies in a more general setting where the pricing measures are no longer equivalent, we have
to be more careful about how we define a super-replicating strategy.

From a practical perspective, it is not feasible to perform dynamic trading strategies as defined
in the above. In reality we can only re-balance our portfolio at discrete times, furthermore, re-
balancing our portfolio may incur transaction costs. Due to these reasons and more, our final value
of the replicating strategy is likely to be less than its theoretical value. Thus considering super-
replicating strategies, such that the almost sure profits cover the losses from market imperfections
is of practical importance.

Suppose that the value of the derivative V} can be written as a deterministic function f of time
to maturity T — t = 7, the asset price S; = s, the instantaneous volatility oy = ¢ and the risk-
free rate r; = r. So we have the function f(7,s,0,7) = Vi. We summarise these parameters by
6 = (r,s,0,7), then for a small perturbation A@ = (Ar, As, Ae, Ar), informally we perform a
Taylor expansion up to the second order to obtain

10+20)-10)~ > Lo+ Y 12 6)n0.00,

an; 2 02
1<i<id N L<iag j<od t

In other words, the PnL (LHS) from a change in the underlying asset S; can be decomposed into
a PnL attributed to each of the sensitivities (RHS) known as the Greeks. They describe how the
value of the derivative V; changes as the underlying variables change. By considering the payoft
structure of a derivative (St vs V(S7)), and noticing that the price structure (Sy vs Vi) is almost
(informally) a ‘smoothing’ of the payoff, it can become quite intuitive to estimate how the Greeks
behave. Sticking to the above notation, some of the common Greeks are




e Delta = % describes how the value of the derivative changes with respect to a change in
the spot 5;. Geometrically, with respect to the price structure of the derivative, the Delta is
the gradient of the curve. Notice for a European call option, the Delta is always between (

and 1.

2
¢ Gamma = 3—5— describes how the Delta changes with respect to a change in the spot S;.
Geometrically, this is the convexity of the price structure. Notice that European call and
put options have a convex payoff, so the Gamma is always non-negative.

e Theta = —% describes how the value of the derivative changes with respect to time to
maturity. Geometrically, the price structure (S; vs V) converges to the payoff structure (Sp
vs V(S7)). The sign of Theta is given by the direction in which the price structure converges
to the payoff structure as + — 7T". For European calls and puts, the price converges downward

onto the payoff, so Theta is negative.

e Vega — % describes how the value of the derivative changes with respect to a change in
the volatility o,. The sign of Vega is often similar to the sign of Gamma, however there are
instances where this is not the case.

Understanding how the Greeks evolve (especially Gamma) is important for understanding the
Uncertain Volatility Model.

For the rest of this chapter, we introduce the uncertain volatility setting and discuss how this
defines a family of non-equivalent pricing measures on the contrary to our discussions in these
preliminaries. We then study how to find the maximal arbitrage-free price theoretically which
is intrinsically linked to the notion of super-replicating strategies, which is discussed further in
Chapter 2.

1.2 Uncertain Volatility Model

For the rest of this chapter we follow the derivations provided by Avellaneda et al [1]. Let T > 0
and (B, )g<;<7 be a Browian motion with (7 )., it natural filtration. Suppose we have a single
asset given by the It process,

{fS; = ,u.;S;dt - G’;Sg {fb’g_. S[} > O_.

where py and o, are non-anticipative functions. Furthermore, let 0 < g < 7 < oo, and impose
that,

g<o, <7 forallte|0T] (1.2.1)

Here we have assumed nothing about our volatility process g, other than it being bounded and
non-anticipative. We will often refer to the process (o:)p<i<1 being admissible if it satisfies these
conditions.

If we consider a space of paths Q where each path is defined on [0, T, takes value in R, and starts
at Sy. Then an Ito process, as above may be used to define a probability measure on this space
of paths. It is important to realise that the above setup actually provides a family of mutually
singular probability measures. Take the two functions,

o =o and ¢ =7 forallte|0,7).

The admissible processes given by o' and o(?) define non-equivalent probability measures P(1)
and ¥, In other words, the set of paths that almost surely occur in one measure is a null set
with respect to the other measure.

Now suppose in the simplest case we have a derivative whose payoff at maturity 7" is given by
the function V' (S7). Assuming there is no arbitrage, under the respective risk-neutral measure for
each ol the admissible processes (o¢)o<i<r the asset satisfies

dSy = rSedt + 01Sid By, Sy = 0,




where 7 is the risk-free rate. In particular this forms a family of non-equivalent pricing measures
defined by the family of admissible processes (o} Jy<t<1. Note that although the exact risk neutral
measure here depends on the choice of oy, the risk-free rate should be the same amongst all of
these measures as given by the risk-free bank account. The question we wish to solve now, is given
this family of [to processes, what is the maximal arbitrage-free price.

1.3 Black-Scholes-Barenblatt PDE

With a slight abuse of notation, for a given admissible process (o¢)o<t<t an arbitrage-free price
for the derivative in question is given by the risk-neutral pricing formula

V(t,S,) =E [e-"{T-‘J L"(ST]I}]] .

where the expectation is taken under the corresponding risk-neutral measure. Thus to find the
maximal arbitrage-free price we consider

W(t,5)= sup E[e—"’T—‘JV(ST]|5!], (1.3.1)
(o[t T))

where the supremum is taken over all admissible processes (o )p<;<7. If we treat this as a stochastic
control problem, then the process oy is our control, and (1.3.1) is the dynamic value function. Then
it follows that the function (t,s) — W(t, s) solves the PDE

aw aw 1, LW
s s — W) + —0%s? =0
o [ o " (? s ) 27 7 Bs? }

W(T,s) = V(s).

oo 7|

By solving the maximisation, the optimal control is given by

7 it 2 (ts) >0

olt,s) = (1.3.2)

o it ZW(t,s) <0

Thus the maximal arbitrage-free price under uncertain volatility is given by W (¢, S;) where (t, s)
Wi(t,s) is the solution to the second order non-linear partial differential equation, dubbed the
Black-Scholes-Barenblatt (BSB) PDE

ow ow 1, LOTW
- r (SW — H) + EU (t,s)s 92 = 0 (1.3.3)
W(T,s) = V(s), (1.3.4)

where o(t, 8) is given by (1.3.2).

Remark 1.3.1. The optimal control here is intuitive, suppose we are holding a European option
at time ¢ < T and our gamma is currently positive. In other words the value of the option at time
t with the current spot S; is locally convex. Thus it is clear that to increase the value of our option
volatility should be higher.

Remark 1.3.2. The optimal control ¢ in this simple case is a bang-bang function i.e. it only
takes values o or @. This is not the case as multiple underlying assets are introduced, however
within the contents of this thesis we only consider derivatives based on a single underlying (but
with discretely updating path-dependencies).




Chapter 2

Super-Replicating with Uncertain
Volatility

In this chapter we aim capture the main ideas presented by Denis and Martini [3]. By allowing
the underlying volatility process to remain unspecified, we define a family of possible processes
(S¢)o<t<r. A natural question is, given any realisation of these processes, how can we hedge a
derivative in such a way that our profits always cover our losses. This is an important goal for
financial institutions that sell derivatives and is known as a super-replicating problem. It turns out
that the cheapest super-replicating price in certain settings will equal the maximal arbitrage-free
price, which our numerical methods are centred around.

One approach to this super-replicating problem is to specify some model, for instance, suppose
there is a single asset (S;),.,. and a risk-free bank account that offers a risk-free rate of r.
Furthermore, we assume (S;)g<¢<7 is a geometric Brownian motion for some fixed p € R and
o >0,

dSt = ,U.Sg dt + O’Sg d.Bg. S[} = 0.

It is well known that under this setting there exists a unique measure such that the discounted
process e 'S, is a martingale. The first fundamental theorem of asset pricing ensures that if there
exists a risk neutral pricing measure, then there exists an arbitrage-free price for a contingent claim
Vi. Since the measure is unique, we have a unique arbitrage-free price. Furthermore, from the
second fundamental theorem of asset pricing, there exists a replicating strategy for the contingent
claim.

We conld have specified a model for our market such that there are multiple risk neutral pricing
measures, so let’s instead consider this more general setting. We denote this set of equivalent risk
neutral pricing measures on the measurable space ({1, 8) by P;,. The second fundamental theorem
of asset pricing tells us that in this setting the market is incomplete. Since there are multiple
pricing measures, we have multiple arbitrage-free prices for a contingent claim V;. Thus it is now
ambiguous which of these prices we should sell at. Our original goal is to hedge the contingent
claim, which requires a replicating strategy, however when the market is incomplete there may not
exist a replicating strategy and a perfect hedge.

A super-replicating strategy is a pair o € R and an adapted process (hy),-,.p € L*(©2) such that

T
a.—/ hdS; = Vp P —a.s.
0
Notice that by hedging with a super-replicating strategy we PP — a.s make a profit. The value
a € R is the price of the super-replicating strategy. For bounded payofls Vrp, there always exists a
super-replicating strategy. We define the cheapest super-replicating price by the function

| T
A(Vp) =inf ¢ @ € R|3h € L?(Q) such that a —/ hdS, = Vp P—a.s
| 0




There is an important result which provides a link between the set of arbitrage-free prices and
cheapest super-replicating price in the case where we consider a family of equivalent measures, the
duality formula is given by

A(Vp) = sup EF (V). (2.0.1)

So in certain settings the cheapest super-replicating price is equal to the largest arbitrage-free price
(2, 4, 5, 9]

In our setting where the volatility process (o4),.,., is unspecified we naturally have multiple
pricing measures. The difference here is that these measures are in general not equivalent. Consider
two such pricing measures Py and Py that are not equivalent, then suppose we have a super-
replicating strategy (a, h) such that

T
a—/ hdS; = Vp Py —a.s.
0

Since the two measures are not equivalent, there exists a set A € B such that Py(A) = 0 but
PF,(A) > 0. Then on this set, the strategy (a, h) may not be super-replicating, i.e. for some B C 4
with Po(B) = 0 we have for all we B

T
a—] hdSi(w) < Vir(w).
0

Thus we nust now be careful with how we define the notion of P — a.s profit. The idea, by Denis
and Martini, is to build a framework which allows us to determine when events oceur almost
surely uniformly on sets of probability measures that may not be equivalent. The end goal of
this framework, is to develop an equivalent characterisation for the (2.0.1) which will provide the
theoretical grounding for our methods for pricing with uncertain volatility. More specifically, in
trying to find the cheapest super-replicating price, we will instead consider the simpler problem of
finding the maximal arbitrage-free price.

For the following we adopt the notation of a super-replicating strategy being a pair (a, h) such that

T
a—/ hidZy = Vp P —a.s,
0

where in the above example where S; followed a Geometric Brownian Motion,

dSy = SidZy
Zy = aBy + pt.

This is equivalent to our above definition where we instead define the strategy h, = h,S;,. The
advantage with this alternative view is that Zy = 0 which is simply more convenient.

2.1 An Alternative Framework for Model Uncertainty

Let @ = C([0,T],]), the space of scalar continuous functions Z = (Z;) and Zy = 0, be endowed
by the uniform norm and let B be its Borel o-field. We denote by (F),-,, the canonical filtration.
A probability measure P on the measurable space (£2, B) is a martingale measure if the process
Z is a martingale with respect to (F;),., under P. We denote by P, the set of all such martingale
measures.

This setting so far is fairly general, in the bigger picture we look at all possible continuous paths that
start at 0. We then look at measures that assign positive probability to sets of paths where under
this same measure the path obeys the martingale property. We may have two measures P, P, € P,
and two digjoint sets Ay, Ay € Q such that Py (A4,) = Py(A4,) = 1 but Py (Ay) = Py(A;) = 0, thus
these two measures are not equivalent. In this case there is no change of measure that can take
us from Py to IP; which makes it difficult to work with the typical set-up of stochastic integration.
We denote the quadratic variation of Z under P by (Z}P which is defined up to P-null sets. Now
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we fix two nonzero measures i, i on [0,7]. We denote the continuous distribution function by
pe = p([0,#]). Then we consider the subset P C P,, of martingale measures that satisfy the
following assumption.

Assumption 2.1.1 (H(p,fi)). For each P € P, the processes (Z)P—ﬂ and Ji— {Z)Eb are increasing

up to P-null sets. This relationship is denoted by

dy, < d(2){ < df,

It is in this context that we are applying bounds to the volatility of our underlying asset. In our
particular case we consider dy, = g?dt and dm, = #2dt. So this framework is a generalisation of
the original setting introduced by Avellaneda et al [1] and Lyons [11].

Notice the payoff of a contingent claim Vp can be written as a function f € €, (©2) — the set of
continnous bounded function on €. The framework, as presented by Denis and Martini, is built on
the notion of a capacity, beyond the definition and some basic vocabulary we do not want to delve
too far into the technicalities as the overall goal here is to illustrate the fundamental difficulties in
expressing a duality formula (2.0.1) when there is model uncertainty.

For each f € Cy(£}), we define the capacity, a convex positive homogeneous function ¢ : Cy(£}) — R

by

1
2
c(f) = sup {Hf”.[.z‘sz__m |Pe P} = ;11g ( i (Z)QdP(Z])

Furthermore, for some A € € we set ¢{A) = ¢(1,4). Then a set A is polar if ¢(4) = 0 and say a
property holds “quasi-surely” (q.s.) if it holds outside a polar set. Notice that if A is measurable
and polar, then P(A) = 0 for all P € P. Thus to say a property holds q.s. is to say the property
holds a.s. for all measures P € P. To make it clear why this is a useful notion for us, one of
the previously highlighted problems when considering a super-replicating strategy (a, i) for non-
equivalent measures is that for one measure the strategy may be super-replicating however this
may not hold for other measures. Instead if we can find a super-replicating strategy (a,h) such
that

T
a—/ hidZ: = V. (2.1.1)
0
Then there is no question of whether hedging with this strategy will lead to certain profits as it
does under all valid measures P € P.

There is a technicality here that still needs to be taken into consideration, when defining a super-
replicating strategy (a, k), the process hiy must be admissible integrand to ensure the stochastic
integral is defined up to P-null sets. The problem is that for two measures P, P, € P, the process
hy may be an admissible integrand to integrate under the measure Py, however, it may not be
admissible when integrating under the measure Ps. Thus, the space of admissible integrands needs
to be chosen with care, much of the work in developing this framework goes into re-developing a
theory of stochastic integration under a set of non-equivalent measures P.

2.2 Stochastic Integration for Model Uncertainty

The following is analogous to developing a theory of stochastic integration for a given probability
measure P, the goal of this section is to highlight the differences required when we want to allow
integration across a set of non-equivalent measures P. Classically you might define the integral over
a suitable set of integrands for a given measure PP, then one can extend this integral over equivalent
probability measures () via the Radon-Nikodym derivative. As for reasons previously mentioned,
it is no longer trivial how we can extend this integral when measures are not equivalent.

Notice that the capacity ¢ defines a semi-norm on the space of bounded functions Cy(£2), we denote

by L the topological completion of C,(£2) under this semi-norm, furthermore we denote by L the
quotient of £ with respect to the quasi-sure equivalence relation. There is a similarity here to the
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construction of Lebesgue measurable functions, instead of choosing a single measure A and defining
the space of integrable functions under this measure, we instead take all of the measures P € P
and define the space of functions that are integrable under all of the measures P € P.

Theorem 2.2.1 (3, Theorem 2.1]). Each element in £ can be identified with a quasi-continuous
function on Q (and so is defined quasi-surely). Moreover, (L, c) is a Banach space.

Notice that from the definition of the capacity, we have for all P € P

[[fllL2m <clf)  for f e Cy(2).

If f € £, then by definition there is a sequence f,, € (1) that converges to f in L. So, f, is also
a Cauchy sequence in L?(Q2,P) for each P € P and thus converges to some function in L*(2, F)
equal to f P-a.s. Consequently, we can extend the domain of the capacity e to £

Proposition 2.2.2 ([3, Proposition 2.2]). Let f € L. Then ¢(f) = sup {||f||L2{§1_PJ | P e P}.

Looking at the bigger picture, the set of functions £ defines a large class of payoffs as functions
of paths €. It should be clear that building a good understanding of this space in the case where
we have a large set of non-equivalent measures I’ is necessary. The next step is to understand how
trading strategies h fit into the picture, in particular we want to formulate a notion of integrating
these strategies against paths in Q to super-replicate payoffs in L.

Let H, be the set of “elementary” processes h, = E(\;ﬂl Fee, Ui, 4,00y (8), where 0 = ¢, <) <. <
ty = T is a partition of (0,7 and k, are F;,-measurable, bounded and continous. Then by H
we denote the completion of H. with respect to the semi-norm

T 3 T H
il = | ([ #2am,) | =sups” ( [ nam, ) .
0 FeP 1]

and denote by I the quotient of # with respect to the linear space of processes such that ||h|[,, = 0.
Notice that the space H, is just the set of trading strategies with a finite number of portfolio re-
balances. By taking the completion H, we are considering more general dynamic trading strategies.

The idea here is that if we can define the integral against fi, over this class of functions H, then
since the assumption H(p, ) holds we can integrate against the process Z;. Moreover, the function
h— Jr[}T h;dZ; is contained in £. In otherwords, the strategy h provides a quasi-sure replicating
strategy for some payoff f. Full details are given in Section 2.2.1, [3], here we state the theorem
that defines the stochastic integral

Theorem 2.2.3 (Theorem 2.8, [3]). The linear mapping

N-1 T N-1
h= kel Ir(h) = ] hedZe =" ke, (Zi,,, — Z1,) s
i=0 o i=0
considered as o function from H,. to L, admits the bound
¢ (Iz(h) < [[hll;, %)

It can be extended uniquely to a continuous linear mapping from H to L, still denoted by Ir(h) =
f[}T hedZ ., that satisfies (*).

These spaces of functions form a coherent framework to tackle the problem of super-replicating
strategies among sets of non-equivalent pricing measures. In short, the idea is similar to devel-
oping a theory of stochastic integration for a single measure, however, instead we limit the set of
admissible functions to sets of functions that are admissible when integrating against all of the
measures that satisfy the assumption H(p, 7).
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2.3 The Duality Formula

Recall that a function f € £ can be interpreted as a contingent claim. Following Denis and Martini
(Section 2.3, [3]), we define K = {Ir(h)|h € H}, the terminal values of portfolio processes /. Then
in our context of model uncertainty, we can define the cheapest super-replicating price as

Af)=inf{a € B|dg € K suchthat a+¢g > f q.s}.

Then the duality formula can be shown to hold for a large class of payoffs I' C Cy(€2).

Theorem 2.3.1 ([3, Theorem 6.1]). Let g and { be two deterministic measures on [0, T such that
dp < dpi and T is Holder continuous. Let P be the set of all martingale measures which satisfy the
assumption H(p, 7). Let f be a bounded continuous function in I'. Then

A(f) =sup {EFf|P € P} .

To understand some of the functions that are contained in the class of finctions I', we have the
following lemmas,

Lemma 2.3.2 ([3, Lemma 5.4]). If f is a continuous and bounded cylindrical function, then f € I

Lemma 2.3.3 ([3, Lemma 5.5]). Let F': R — R be a continuous function and let G: R — R be a
bounded continuous function. Then f =G (fuT F(Zs]d.e) s in I,

Lemma 2.3.4 ([3, Lemma 5.6]). Let § = sup,cryq £ and G : R — R be a bounded continuous
function. Then [ = G(S) s in . o

In short, the duality formula in Theorem 2.3.1 covers a large class of general path-dependent
European payoffs. This is an important result — although a large focus on uncertainty in volatility
has been to find the maximum arbitrage-free price, it is important to remember that the original
goal is to hedge the derivative; for this we require a super-replicating strategy. Practically, obtaining
the price of the cheapest super-replicating strategy is challenging, however obtaining the maximal
arbitrage-free price is a more manageable task. To this end, we continue by investigating different
methods for obtaining this maximal arbitrage-free price and thus the cheapest super-replicating
price.
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Chapter 3

Zero Gamma Boundaries

The work presented in this chapter is my own. In the single asset case it is clear that the regions
in [0,T] x Rt where gamma is positive or negative is important for determining where in our
simulation we should choose volatility of & or g. For our studies we consider z : [0,7] — R* such
that the gamma is zero along these boundaries, as these will help us characterise these regions.
Some care is required when we talk about the UVM ‘gamma’, since uncertain volatility does not
specify an exact model, but rather a family of models.

We are making an assumption here that there are continuous paths z that separate the regions
into positive and negative gamma, however for the cases we care about this will be fairly evident.
For the following we will focus on non path-dependent options, the results that we arrive at will
still hold in cases where the path dependencies update at deterministic discrete times (since close
to expiry this is the same case by case as a non path-dependent option). For the following we make
a simplifying assumption that the risk-free rate is 0.

Definition 3.0.1. For an asset (Si)o<t=<7 and a derivative with payoff V(Sr). Assuming no
arbitrage, there exists a price for the derivative at time ¢ € [0,T] as a function of §; denoted by
V(t,S;). A Zero Gamma Boundary is a continuous path z : [0,7] — RT that satisfies

a2V
is?

(t,z(£)) =0 forallte|0,7]

Moreover, in the Uncertain Volatility setting, a Zero Gamma Boundary is a continuous path
2:[0,T] — R* that satisfies
;W
ds?

(t.z(f)) =0 forall e [0,7).

Where (t,s) — W(t,s) is the solution to the Black-Scholes-Barenblatt equation (1.3.3) with ter-
minal condition W(T,s) = V(s).

Our goal is to show that the terminal values of these zero gamma boundaries, z (1), agree regardless
of which model we choose.

Remark 3.0.2. For a given derivative there may be multiple zero gamma boundaries, or they may
simply not exist as with a vanilla call option. Furthermore, these paths depend on the underlying
choice of model. For a call spread with strikes Ky and K, where the underlying model is Black-
Scholes with volatility o and risk-free rate r = 0, there is a unique zero gamma boundary given

by
2(t) = VI K, T T forte [0,77].

This is a straight forward derivation from the Black-Scholes formula for a European call option.
Notice that the endpoint z(T) is equal to the geometric mean of the two strikes which is independent
of the free parameters to choose from in the Black-Scholes model.

Conjecture 3.0.3. For a given payoff V' (S7), the terminal values of the zero gamma boundaries,
z(T), are independent of the model choice for (S)p<i<r.
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We show that in a Black-Scholes setting for all derivatives with payoft V (St), the terminal value of
a zero gamma boundary z(7T') is independent of ¢ and thus agrees across all Black-Scholes models.
This is a good initial check for the validity of Conjecture 3.0.3. The core idea of the proof is to
show that by adjusting the volatility o, the zero gamma boundary is simply adjusted by scaling
the time variable.

Lemma 3.0.4. Let z : [0,7] — Rt be a zero gamma boundary for some derivative with payoff
V(St) where the underlying model for pricing is Black-Scholes with volatility o > 0. Then z(T') is
independent of o.

( EA% e
Proof. Let 0'% > o'V = 0 and define £ = (g,—j) = 1. Suppose we have two processes satisfying

dstt = oW SsMaBY e (0,6T)
dsi? = ' 282dB%, te0.7T)
S =88 = 5, € (0,00),

where B and B™® are independent Brownian motions. Suppose we have a payoff V(-). Then

conditional on S!{i’] =, let V(¢ 1) be the fair price for the derivative whose payoff is L"[Sé%])

and let V' (¢, u) be the fair price for the derivative whose payoff is V(S}QJ)‘ Notice that the two

derivatives has different maturities £1° > 7.
Fix At € [0,£T7, set At' = At/€ then we have the equalities in distribution

) ) N2
S‘;;’] = Sé}ﬁ]_mexp (J”J\IArZ‘ n_ % (J‘”) Ar),
S;EJ = Sélﬂm,cxp (U{QJVAFZ{QJ — % (U‘QJ)Q Af’).

where Z(1) and Z3) are independent standard normal random variables. Then conditional on
S;%l_‘m = S}Qiat, = u, we have 9;:}1”} and S}QJ are equal in distribution. Thus we have the equality
in prices

, N 1

VA (€T — At u) = Vi) (T — ?Af,u) for all u € BT,
o
In particular, by setting ¢t =T — %Af € (0,7
VW (gt ) = VP (f ) for alluw e RY

Since the equality holds for all u, we also have the equality of gammas

Fvi PV
Gz Etw) = —5 5= (tu). (%)

Let z: [0,£7] — R* be a zero gamma boundary for S ie,

82V

Ou?

(t.z(t)) =0 for all £ € [0,£T]).

The goal is to now construct an analogous zero gamma boundary for S2), and show that the
terminal values are equal. Define the path Z : [0,7] — Rt hy

iHt)==z(&) forte0,7T). (%)
Then it follows
ave ave
ou? )= du? (£8)) by ()
82V
= Touz §t.z(&)) by (%)
=0
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Where the final equality holds since z is gamma neutral for $*), Since the above holds for all
t € [0, 7], we have shown that Z is a zero gamma boundary for S'?). In particular we have 3(T) =
z(£T), thus the two paths agree at their terminal values. Since the choice of zero gamma boundary
and volatilities o2 > o'} > 0 were general, the statement must hold for all volatilities and zero
gamma boundaries. Thus we conclude that the terminal value of any zero gamma boundary is
independent to the choice of . O

We now discuss the main ideas that support Conjecture 3.0.3.

e One can imagine that as we approach expiry in the Uncertain Volatility Model, the probability
of the volatility changing from @ to g or vice versa goes to zero, thus we could argue that
the price at this point is ‘e-close’ to the price in Black-Scholes. Since we showed the terminal
ralues of the gamma agree in Black-Scholes we could argue that this means they agree with
the UVM case — we are only concerned with this case.

e Another idea is, instead of considering the payoff V' (S7), let € > 0 be small, and denote by
Ves(T — e.5) := Vig(s) the Black-Scholes price at T — €; close to expiry. Then we instead
consider the payoff to be this Black-Scholes price, V§g(St). For a large class of European
options, for example a call spread, there will be finite number of points where the second
order derivative with respect to the asset is 0, as a consequence of continuity the zero gamma
boundaries must terminate at these points. The payoff V§¢(Sr) can be made arbitrarily
‘close’ to the payoff V(St).
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Chapter 4

Numerical Methods

There are various approaches to computing the Uncertain Volatility price for derivatives presented
in literature. Avellaneda at al [1] presented a trinomial tree approach equivalent to an explicit
scheme for numerically solving the BSB equation for simple payoffs with no path-dependencies.
Such a scheme will be useful to benchmark alternative approaches, however will not be feasible
to price more complex products such as cliquets. Guyon and Labordére (8] outline more general
approaches that are capable of pricing complex products, even when there are multiple under-
lying. They present a parametric approach, which in short is a scheme to directly perform the
maximisation making use of the dynamic programming principle. The method which we apply to
the call spread example and later generalise for cliguets is heavily inspired by this method. They
also provide an approach taking advantage of a link between second order Backward Stochastic
Differential Equations and second order non-linear parabolic partial differential equations such as
the BSB equation.

4.1 Comparative Quantities

We will present and compare multiple methods for varying products, so it is important to construct
informative dimensionless quantities in which we can compare methods and the prices they produce.
Since the Black-Scholes model with a flat volatility of o = ljﬁ is included in the family of models
that the uncertain volatility model considers, the maximal arbitrage-free price will always provide
a premium on-top of this Black-Scholes price. Thus in future comparisons, we will often compare

prices of products based on the percentage premium from pricing with uncertain volatility

UVM nethoa) — BSs % gy L7
BSs ' T2

This dimensionless variable provides a better insight for comparisons of the price with uncertain
volatility across different products. Furthermore, to compare the prices produced by various
methods, we will use the Trinomial Tree (Section 4.2) as a benchmark, thus we will consider the
dimensionless quantity

(Method) Premium = (lﬂﬂ X

‘Method) Premi
Model Comparison = {Aethod) Premium ,o, 0d) 1(“1'[11111‘[1
Tree Premium

So given that the tree method is accurate and should provide an upper bound on the premium,
we expect this quantity to normally lie in [0, 1] 1 being the best result. Note however, due to
randommness and inaccuracies from the tree, it is possible that the Method Comparison lies outside
of this range for a given model.

4.2 Trinomial Tree
4.2.1 Method

We first present the method given in [1] and outline how the scheme can be adapted to path
dependent derivatives. Suppose we have a derivative that has a payoff V' (Sy) at some maturity
T = 0. Furthermore, assume S satisfies an SDE given by
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ds
T!:rdf—crtdb’!, Sy =0, (4.2.1)
[

where o, is a non-anticipative process satisfying o, € [g,7).

The following is a discretization of the BSB equation which can be viewed as a trinomial tree that
approximates (4.2.1). We begin by discretising the time interval [0, 7] into N trading periods that
have length At =T /N. Then set

U = exp (?V At + r&t),
m = exp (rAt],

d = exp (—5\/& + rﬂt)

We define the possible set of trajectories for the discritised asset price (Sg, )Y, where after each
trading period n the asset price S; can transition to one of the three possible values: uS, , mS;
or dS;, . Note that the values for w, m and d are chosen such that the possible set of trajectories
forms a recombining trinomial tree. As a consequence, there are 2n + 1 possible values that S,
can take for each n = 0,1,..., N. We can label each node in the tree according to the multi-index
(n,j) where n € {0,...,N} and j € {1,...,2n + 1}. So the first index denotes the trading period
and the second denotes indicates the asset price level. Then from node (n, j) we can transition to
one of the three nodes (up-middle-down) (n+1,7+2), (n +1,j+ 1) or (n+1,7). Then the price
at node (n, j) is given by

S = Syexp (j?\/&— nrﬁf).

Now define the family of transition probabilities

2
for p € [f? %] Then at each step the variance of the log return of the asset log%': is given by

giAt < 2pF AL < TUAL

Therefore, by controlling the parameter p we can approximate stochastic processes that lie in the
family of processes given by (4.2.1). Note that the free parameter p for each transition of node n
to n+ 1 may only be chosen at any step i < n since the process o; is non-anticipative.

Now, in the uncertain volatility setting, we denote the maximal arbitrage-free price at node (n, j)
by W, Then we have

Wi =V(§%,) forje{l,...2N+1}.
Notice that since W is the solution to the maximisation problem (1.3.1) we have in the discrete

setting

Wiy = supE [e "0y (818, = 8]

=suwplE [G_I{N_{“_mm V(Sn) (15":5.’;” +lg gt + ]ls‘.=5ﬂ) |51 = Sﬂ”]
= 7Bl sup (P, (p)W3+2 + P (n) Wit + Pa(p) W)
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where the supremum is taken over the parameters p for each of the trading periods. Notice that
the p dependence of each of the transition probabilities is linear, thus we can easily solve the
maximisation above. To this end define

Li = (1 7 ;‘r) Wit? + (1 _ Q‘M) Wy — 2wyt

Witt+ 1104 it L), =0

Then we have

H’,}]‘—l —e” AL
- 2 . .
Wit + L) if L) <0

We then apply this relation iteratively until we obtain the desired quantity W

4.2.2 Results

We are particularly interested in the call spread example as this will be important for understanding
how to price the cliquet. For two strikes 0 < Ky < K,, < oo the payoff of a call spread is given by

(St —Ka)" — (57— Ku)"

Furthermore the payoff of the butterfly is given by

K+ Ky

+
5 ) + (S — K.,)"

(St — K )t —2 (ST -
We know that as N — oo in the trinomial scheme we have convergence of the model to the SDE and
thus convergence of the price. Clearly we must settle on some large NV, however since this model
will be our benchmark it is worth understanding for what range of contingent claims this method
of pricing is accurate. For the following define AKX = K, — K4. Now by takingd =g = o > 0
the trinomial scheme is a method for obtaining the Black-Scholes price of a contingent claim. Of
which for a call-spread and butterfly we have an analytical formula to compare the scheme against.

In Figure 4.1 we observe the percentage difference between the scheme and the analytical formula
for both the call spread and butterfly. As we can see for the call spread the results are extremely
accurate, even with N = 100, which is fairly small, the percentage difference never deviates more
that 0.25% from the Black-Scholes formula. For the butterfly the results are quite extreme, as
AK — 0 we observe that the trinomial tree fails to accurately obtain the correct prices. In fact,
when N = 100 the error is always greater than 1%. The dashed lines on the plot for the butterfly
indicate the points where the percentage difference is =~ 1%.

Fortunately, we are more interested in the call spread, of which the prices the trinomial tree produce
are accurate. Note that our comparison above is between Black-Scholes prices, however when we
introduce uncertainty i.e. ¢ < @ the above errors may change. Nevertheless, the above analysis
is certainly an indicator of what errors to expect when pricing in uncertain volatility with the
trinomial tree.

In Figure 4.2 we have prices for a particular family of options, outlining the premium offered by
pricing with uncertain volatility as oppose to pricing under the Black-Scholes flat volatility of 1'.:” .

Unfortunately, this method is only feasible up to options with very few, if any path-dependencies.
In particular this drawback motivates the development of Monte Carlo methods as follows.
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Figure 4.1: Numerical error of the trinomial tree (Black-Scholes) for multiple call spread (top)

and butterfly (bottom) options. The y-axis is the percentage difference between the trinomial tree
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prices with volatility in the same range. Other parameters used are K; = 90, K, = 100, T =1,
r=0, N =10,000




4.3 Parametric Approach

We first present the method by Guyon and Labordére [8] and explore an approach for how it can
be improved depending on the derivative. In our approach we consider a simple call spread and
later generalise this for pricing cliquets. For simplicity, we assume that the risk-free rate r = 0.

4.3.1 The Algorithm

The overall idea is instead of dealing with the BSB equation directly, consider the value function
(1.3.1) and apply dynamic programming principle in order to optimise directly. More formally we
discretize the time interval [0,T] = UL, [t; _1.%;] and from the dynamic programming principle we
have,

W (t:i, St,) = sup E[W(t:11,5,,)|8:] .

(o te[ti tiva])

Then proceeding backwards we can find the optimal control oy over each of the intervals [ti, tiq1]
separately. In order to make each of the n optimisation problems tractable we substitute o; on the
interval [t;,¢i+1] for some parametric function A;.
In detail, we proceed as follows ([8], Section 3.2):

1. Simulate N, paths (S”’J)ﬂ;’l with some diffusion, say, for instance, the log-normal diffusion
with volatility 6 =7

2. Fori=n—1n-2,..1,0, find a numerical solution #} of the maximisation problem:

Ny
1 - (p
;1‘1_1?_; h(6;), hi#;) = I E L’((S:UJ)[}<:<T).- dS; = 0,5,dB,

p=1

where
& it te0,5)

o= S Xi(Sufi)  ift e [titi)
Ni(Se87) ift € [ty tal],j =z i+ 1

3. Independently, simulate Ny replicas of S using oy = X\;(S¢: 07) for £ € [t;,t;11] and compute
Nz vrral
3 2,2 VIS osi<r)

In practice it can be difficult to find an appropriate parameterisation which allows for speedy
and accurate optimisation. However there are a few heuristics that can be applied to make this
procedure more robust. To this end we consider first a simple call spread, and then see how this
procedure generalises to a more complex cliguet.

Remark 4.3.1. Since we know the optimal control takes values either ¢ or @ we may want to
consider parameterisations only of the form,

Ai(Spi#i) =+ (7 — 2) 1 (5,020
Here ~; is a parametric function that separates the regions where the gamma at time ¢ is positive
or negative.

Remark 4.3.2. The final optimisation is necessary, when we perform the maximisation we are
inherently over-fitting the parameters to the initially generated paths, thus to counteract this we
re-simulate the paths with the ‘optimal’ parameters to obtain a less biased estimate of the optimal
price.
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4.3.2 Call Spread

The remainder of this chapter is my own work. First recall that the payoff of a call spread with
strikes Ky < Ky, is given by,

V(St) = (57 — Ka)t — (S7 — Ku)*

Furthermore, notice that in the Black-Scholes setting and analogously in the uncertain volatility
setting, there exists a single zero gamma boundary for the call spread payoff. We also know that
from the Black-Scholes formula and Chapter 3 that the unique zero gamma boundaries converge
to the geometric average of the strikes /K K.

Given that there is a unique zero gamma boundary, instead of solving n optimisations as in the
general method in Section 4.3.1, we can just find a parameterisation for the zero gamma boundary.
More precisely, we proceed as follows

1. Simulate NV, paths (S{J’J)ﬂ;’l with some diffusion, say, for instance, the log-normal diffusion
with volatility ¢ =&

2. Find a numerical solution #* of the maximisation problem:

N
1 p
suph(f), h(0) = =Y V(S Joci<r), dS; = 0,8,dB,
#eo Ny =
where
g =0+ (@ — )Ly <s,
3. Independently, simulate N2 replicas of S using o¢ = g + (7 — @)L (1,4 )< 5, and compute

N2 ¢, {
X V(S )o<i<r)

For experiments we trial three different parameterisations:
e A constant boundary at the value #
‘r(f‘. 9] =
e A linear boundary where # is the value of the boundary at time 0

VEGK, — ¢
A(t:0) =0+ Loy
T
e A quadratic boundary where # and f, are the values of the boundary at time (0 and %
respectively

Ay — VKo K, — 36Lf 2y Kl + 26, — 46, 2

Yt 01, 0) = 0, T T2

Remark 4.3.3. Iu the case ol the linear and quadratic boundaries where we would naturally
parameterise with 2 and 3 parameters respectively may lead to a more optimal fit, however for the
optimisation it is much quicker and simpler to optimise over a lower dimensional space. Further-
more, the additional information for an end point of these boundaries can improve robustness of
the optimisation with respect to initial parameters. Finally the choice to parameterise by points
that the curve passes gives the additional benefit of interpretability.

4.3.3 Results

We now draw our attention to Figure 4.3 where we compare the results produced for various call
spreads, using the three suggested parametric functions; constant boundary, linear boundary and
quadratic boundary. For more information on the Model Comparison quantity, refer to Section
4.1. Generally, all three parametric functions perform well and produce reasonable estimates for
the maximal arbitrage-free price for the contract variations. The similarity in results suggests
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Parametric Method for Call Spread
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Figure 4.3: Comparison of the parametric method for pricing a variety of call spreads when using
different parametric functions for the zero gamma boundary; constant, linear and quadratic. Here
we consider a model uncertainty of ¢ = 0.18,7 = 0.22, then we take ¢ = 0.2 the mid point

that there is no immediate advantage when using a quadratic parameterisation which requires an
additional parameter, and so takes longer to maximise.

We refer to Figure 4.4 for an example of some calibrated boundaries for a call spread with strikes
Ka = 90,K, = 100 and Sy = 95. In black we observe the zero gamma boundaries derived
from the Black-Scholes formula for a call spread, in blue the constant parameterisation, red the
linear parameterisation and green the quadratic parameterisation. Notice, that the calibrated
constant boundary in general will not converge to the end point /K ;K ,. This raises an important
consideration mentioned in Remark 4.3.3, although we know that the end point of the perfectly
calibrated boundary should be +/K4K,, since the parameterisation does not adequately capture
the shape of the perfectly calibrated boundary, we cannot expect the optimal parameters to yield
a curve with the endpoint as «/ KaK,.

This raises the question of whether it is wise to fix the endpoint when we consider the linear and
quadratic parameterisations. For this we refer to Figure 4.5, where we observe a particular instance
of the objective function that we wish to maximise. Recall that h(#) corresponds to the estimated
price of the derivative when the parametric function defining the boundary has parameter . In this
example we consider a linear parameterisation, and a range of parameters # € [90, 100]. Recall that
this parameter specifies the position of the boundary at time ¢ = 0, for Figure 4.4 this parameter
has value = 93.8. We notice that for this particular example, the objective [unction for values
# € [90,97] produce a reasonably accurate estimate of the maximal arbitrage-free price (estimated
to be = 5.01 from the Trinomial Tree). This has the implication that the curves presented in Figure
4.4 will in general vary upon each run. Thus although it is advantageous to look at methods that
model the zero gamma boundary, it is still unclear as to what these boundaries look like in the case
of uncertain volatility. From a practical standpoint, this is not a problem, since we still achieve
accurate prices.

The method here is specific to a call spread, alone this is not very useful since it would be simpler

to use the trinomial tree method. However, developments here motivate a method for pricing
cliquets as follows.
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Figure 4.4: Example of calibrated zero gamma boundaries for a call spread with a variety ol
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Chapter 5

Cliquets

The work presented in this chapter is my own. We begin by introducing cliquets, how their payoft
is structured, we use log returns as it makes the mathematics simpler however has minimal effects
on the final method. Suppose we have reset periods 13,17, ..., T},, a cap and floor C' > F and some
strike K, consider the following payoff

. +
n s c
V((Sila<t=r) = (Z (log S L ) - K)
i=1 STy /F

where for shorthand we write for C' > F

(.1:)? = max(min(z, ('), ¥)

Here we chose our global feature to be a call with strike K, however the method is also generalisable
to a global cap, global floor or even both. Instead of dealing with S; directly, we consider the log
return X, := log Sy, by Itd’s formula we have in the uncertain volatility case

1,
dX; = —iﬁf{ff—mdb’g, X[jzl()gS[}E R

where oy € [g,7] is non-anticipative. We can define the path dependent variable A; which is
updated discretely at deterministic times,

(Xe — Xo)& ift <T

A= (5.0.1)

A, + (X=X )f fTia <t <T

Then, alternatively the payoff can be written as,
V(Ar) = (Ar - K)*

on Aq, | and
Furthermore,

Now notice that the fair value of the derivative at time ¢ € [1;_1,7;) depends onl
Xt — X1, _, (which for ease of notation we will write the dependence as simply X;
from the dynamic programming principle, for t € [T;_,,T})

E [W(T:, X1, Ar,_, )| (Xe. Ar,_,)]

y
).

Wit X, Ay ) =

8
o Ela,Firet, T

Thus as in the derivation of the BSB equation, we can can construct an analogous series of non-
linear second order partial differential equations which are solved backwards i.e. on the intervals
[:ru—].r:rn]r [:ru—QrTu—I]r ... So for t S [:r(—].r:r(]

ow 1 o [(OPW ow
—(t,z,a)+ = s | == (tz,a) — =—(t,z, =0 5.0.2
m(.i.ﬂl 2”;1.11[?? [t‘f (arz(.l.r’l) (.}Ir(.l.r'l))] (5.0.2)
Where the terminal conditions are given by
W(T,,z,a) = Via+ (z)§) for the case t € [T,,_1, T,
(5.0.3)
W™, o,a) = Tr't-"(f[:-"'_..r,a) for the case t € [T;_1, T}

i
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Notice that the optimal control o; is again of bang-bang type as expected since there is only one
underlying, it is given by

— e @TW _ AW
7 Gy -5 20
o = (5.0.4)
e TW AW
o if G =5 <0

5.1 Extended Trinomial Tree

We now present how ideas in Section 4.2 can be adapted to price the cliquet. We begin with a
definition to make the explanation simpler.

Definition 5.1.1 (Trinomial Tree). A tree T is a collection of nodes and transition probabilities
approximating a discrete time version of S (the underlying asset) as outlined in Section 4.2. By
providing a simple payoff V(St), the tree T can be solved by following the algorithm in Section
4.2.1.

We then extend this notion of a tree T to include additional information necessary for contingent
claims on the log return of the underlying asset.

Definition 5.1.2 (Trinomial Tree with Returns). Let 7 be a Trinomial Tree, then for each node
(1,j) of T we define the state X := log(S5//Sy). We denote this tree with additional information
by TR. The tree T® can be solved for payoffs of the form V(St, X1) exactly as in Section 4.2.1.

Now the algorithm proceeds as follows, recall we have n reset periods [1;_1,7}]

1. We create 14+ N+ N2+ ...+ N* ! Trinomial Trees with Returns. We group them in n levels,
so for level i € {0,1,...,n — 1} trees are indexed via the multi-index (j,,.... ji) € {1,..., N}".
The tree is denoted by TR(jy,...,5). The case where i = 0, the tree is denoted hy T72(0).
The idea here is that from each tree at level i, N more trees stem from each of the final nodes

2. For each of the trees TR(jy, ..., 5;:), denote the terminal log returns by X (j1,.... i) := )i'i‘,
for € {1,..., N'}. Similarly X+(0) corresponds to the terminal log returns of the tree TR0).
Notice these values are independent of what we choose as our initial Sy for each of the trees.
We introduce 14+ N + N? + .. + N"7! auxiliary variables A(j1, ..., j;) for each of the trees

defined as follows

A0y =0
A(jr) = (X;,(0)F  for ji € {1,..., N}
Ajrs s i) = At oo i 1) + X5, (s oo Gi1)

These auxiliary variables are simply the discrete case of the variables defined in (5.0.1),
however only at the times Ty, 73, ..., T, o

3. Now the idea is to solve each tree starting from level n — 1, then n — 2 and so on until we
have solved T;® by using the terminal conditions analogous to (5.0.3). More precisely, for
the trees T=(j1, ..., jn—1) we solve with the payoff defined by

ey e . . ot
V(X1) = ((X1)F + A(j1, s in1) — K)
We denote the solution of tree TR(jL. s di) by Wi, ...y 7:). Then lor trees T-R(jl_. s Ji) We
solve with the payoff defined by

N

VIXT) = > Wit i) DX — X, ()
k=1

We keep going until we find W (0) which is the solution.
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Remark 5.1.3. The scheme presented here is simply an explicit scheme for solving the series of
PDEs defined in (5.0.2)

Remark 5.1.4. The number of trees we have to solve with the number of periods defining the
cliquet increases exponentially, thus the scheme is only feasible for up to 3 reset periods, regardless
it is useful when benchmarking the parametric methods for simple cases

Remark 5.1.5. There are many optimisations that can be made to the algorithm, for example,
for a given level 4 there are multiple unnecessary repeats of the auxiliary variable leading to the
same sequence of trees being solved. By grouping these repeats and only solving unique variations
of the trees one can imagine much of the computational complexity would be reduced. However
the exact groupings depend on the underlying parameters for @, C, F and K

5.1.1 Evaluation

Since this method will be our benchmark, it is important to understand how large N must be to
achieve convergence. In practice it is only feasible to apply the trinomial tree for up to 3 periods,
additionally, the computational speed begins to fall off as N = 100. We refer to Figure 5.1 for
a similar analysis as was performed in Section 4.2.2. By setting ¢ = @ = o, the Trinomial Tree
method should return to us the Black-Scholes price of a cliquet. Furthermore, it is straight forward
to price the cliquet in Monte Carlo, simply note that we have the following equality in distribution

1,
XT, - XT,_, = —51'-’2 (T =T 1) —l'-’\fri T, 1 Z

where Z follows a standard normal distribution. With this quantity we can simulate the returns
over each period and compute the price in a Monte Carlo fashion. Then Figure 5.1 illustrates the
percentage difference between the price produced from the trinomial tree and the Monte Carlo.
Here we produce prices where F' = —0.01,C' = 0.04,0 = 0.2 and T = 1 with 3 reset periods.
The dashed lines indicate the boundary for an error of £1%, of which we observe that we require
N = 100 to remain somewhat consistently within this boundary. Nevertheless, as the strike K
becomes too large the trinomial tree starts to form inaccuracies.

Cliquet

[——
z N=50
— N=-100

. x\_ﬁf*————x.j—f‘\/\ //

BSrme — BSmontecario
BSuantecario

100 x

“strike K

Figure 5.1: Numerical error of the trinomial tree (Black-Scholes) for cliquets. The y-axis is the
percentage diflerence between the trinomial tree method and Monte Carlo method. The parameters
used for the 3-period cliguet are F' = —1%,C =4%.T = 1,0 = 20%

28




5.2 Parametric Method for Cliquets

5.2.1 Methodology
Pricing when t € [T, 1, T,

We begin by studying the price on the final period [T7,—1,7T,,|. Conditioning on A7, _, and defining
the return given by the asset over period (11,7, by K. = X1, — X1, _,, the payoff is given by

[R“); — (K _ATH—l) if = K _AT“_I
((B)F = (K=A1,_)) = (Ru— (K = A5, )" = (R, =) #C2K—Ap  >F
0 K —Ap,_, >C

In the first case, we simply have a call-spread payoff on R,, with a translation upwards,/downwards,
the second is also a call-spread with strikes K; = K —a and K, = C'. The final payoff is 0 since it
is impossible to obtain a final payoff when the value of A, is too small, note that in this case
it does not matter what our optimal control for o, is, since either way the payoff is 0.

A visunal example of this analysis is provided in Figure 5.2. We can see from the figure that in the
case where the strike is 0%, we are always in case 1 and 2. Note that the thickness of each group
is a consequence of conditioning on Ay, | over a small range of values, rather than a single value.
We could have chosen smaller buckets, however this would require more paths in the simulation to
observe the structure of the payoffs clearly. So we confirmed over the final period, conditioned on
Ar, . we observe a call-spread ‘like’ payoff. Thus we can find the maximal arbitrage-free price
on this period in a similar fashion to Section 4.3.2.

The x-axis position of the vertices can be computed as a function of Aq, |, and is given by

5.2.1
(K- Ap,_)and C #C>K - Ap_ >F (5-2.1)

n—1

{1»' and C i P> K- Ag,

in the case K — Aq, | = (' the payoff is 0, so there are no vertices. The idea here is to find,
similarly to the call-spread, a 'zero gamma boundary’ over this final period. In fact this is no
longer a path, since this boundary will now be a function of ¢ and Az, _,. More specifically, it will
be a function v : [T,-1,7] x [(n — 1)F,(n — 1)C] — R. Then over the period [T}, _1,T,,], we will
simulate the variable X; according to the stochastic differential equation

1 2
dX: = -3 (i — (@ —Q)Jlxzm{:.;\-,-"_l;) dt + (Q - (@ —Qllx;o.(:__;n,.“_l;) dB;, Xr,_, =0

ie. o if we are above the boundary and 7 it we are below. Then by setting R, = X, , we compute
the payoff and thus the price by averaging over multiple paths. The next problem is the choice of
the parametric function ~(f, Ap, ).

For a given Ay, ., we know the payofl is identical to a call spread, our analysis in Section 4.3.2
suggests that a simple affine function, or even a constant function ¢ — (¢, Ay, ) will suffice to
produce accurate results. In fact, we might be tempted to also conclude that the boundary should
converge to the geometric average between the two ‘strikes’ — the two vertices, which in general
vary with A, .. However, recall that the boundary defining the optimal control (5.0.4), is not
just dependent on the second order derivative, but also on the first order derivative i.e.

FW AW

or2  or 0
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Figure 5.2: Simulated payoffs for the cliquet as a function of returns R,, over period [T}, 1, T,],
conditioned on A, , (grouped in buckets represented by the colours, a; < A7, , < ait) for some
small a; {1y — a;). Values used: €' = 4%, FF = —1%, T =1, n = 4 (3 periods), strikes 5% and 0%

Notice that the payoff, conditioned on Ag, | is always increasing in R,, so the price over this

period, at time ¢, will also be increasing in X;, thus we have %(i,}ﬁ) = (. The consequence

here, is that the boundary must always lie in some strictly convex region of the price as a function
of X;. We must also justify that there is still a single boundary where the above equality holds,
however this is fairly intuitive taking into account the shape of the call-spread payoft

e Notice that r — %2;:’ (t,r) is a strictly decreasing function, furthermore z — %(t,r) is

2 2
increasing when %‘-};(t, z) = 0, and decreasing when aa—:;i(t,z) < 0.

¢ So we have that %(t, ) obtains a maximum at the unique point where W (t,z) = 0.

a2
2
Thus for = in the region such that %—;—}i(t,z) = (), since %(t,z) is increasing, the function
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32 W AW’
{, - ) — {—(f, x) is decreasing
dx?

dx

aw

e Next, notice that for all z, we have Z-(¢,x) > 0. Finally, for all # where %—f—(f,:l‘] <0

FW aw aw
.2 L) — W(f,:l.] < ———(t,x) =0

e Thus we can conclude that for a given t, there is a single point = such that

a*w aw
dx? )~ ?(f z)=0

Note that this analysis also shows that this unique point lies in a region where ‘i;f.}, (t,z) =0
as previously mentioned

Recall that the process X; defining R, for the returns over [T,l_l,Tu] satisfy,

1 .
dX; = —Eofdf + oyd By
We see that there is a strictly negative drift, implying that the final distribution R,, satisfies

1t
E(R.|Xr,_,) = E (X, — Xr,_,|Xr,_,) =E (—gf def) <0
Tn-1
In words we expect R, to be negative, of course this is an artefact of our choice that the risk-free
rate is 0, nevertheless this analysis provides intuition for what the optimal boundary should be. It
follows that the optimal strategy is less ‘risky’ than in Section 4.3.2 where the underlying asset in
the call spread was a martingale.

Although we might have a fair understanding of how the parametric function (-) depends on f,
we still need to understand how it depends on Ag, | if we are to make a suitable choice. Recall
from Section 4.3.2 that the optimal boundary was close to the geometric average of the two strike
throughout the whole time horizon. If we assume the same for each of the curves conditioned on
Ap, . in Figure 5.2, it may be useful to understand how the middle point of the vertices in (5.2.1)
change as we vary A, . Since the vertices can be negative numbers, and the geometric average
is not necessarily relevant as we are no longer looking at the gamma of the option, we simply focus

on the arithmetic average instead.

In Figure 5.3 we see the general dependence of the arithmetic average of the vertices (5.2.1), colour
coded based on which case we are in. In the case A7, _, = K — F, we will always be in-the-money
of the global call feature, thus we only have a trauslation (up and down) of the call-spread ‘like’
payoff, thus the middle point of the vertices should not change. Intuitively, neither should our
strategy; one could argue that the ‘game’ has not changed, just the scale of the rewards. The
second case, C' > K — Ay, | = F, we note that the right-most vertex stays fixed at €', whilst the
left-most converges to (' as A, | decreases. The point at which we should switch the volatility
should scale as one might imagine with this; consider the simple case with the standard call spread,
as the strike Ky converges to K, the geometric average also converges to K. Finally, we do not
consider the case where Ay | < K — (', since here we are always out-of-the-money no matter
what happens.
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Figure 5.3: Example of the dependence of the parametric boundary on the variable A7, | over the
final period [T;, 1, T,]

Now that we have a more complete understanding of what the payoff looks like, and more impor-
tantly what the boundary defining the optimal strategy (5.0.4) should look like, we suggest a few
different parameterisations for this boundary over the period [T;,_, T,].

1. A time-homogeneous, piece-wise affine boundary

0 if K — F < Ar,
v (tAr, i61.0) = ( SR B s K- C <A K- F
0 ofw

The parameterisations are chosen so that #, is the value over the period K — F < A7, | and
fly is the value of the function at Ar, , = K — . Here we are directly modelling the curve
given in Figure 5.3, however note that the purpose of the figure was to provide an idea of the
dependence, the actual dependence on Ay, |, may not look like this. We also assume here
that the boundary does not change over time, for smaller reset periods this is a reasonable
approximation.

2. A time-homogeneous, one-parameter fractional boundary

Fi6,(C—F) tK - F<Ar_,
V(6 A 36) =§ (K~ Ar, ) +6:(C— (K~ Ar, ) K C<An <K F
0 ofw

The idea here is that #; represents where the boundary lies within the two vertices of the
pavoff i.e. if #; = (1.5, then the boundary lies half way between the payoffs

The parameterisations we consider here are of course not exhaustive, and in no means will they
perfectly describe the boundaries. However the idea here is to model the boundary as best as we
can with as few parameters as possible, and it turns out these parameterisations do a good job of
this. There are many variations we could consider of the above parameterisations by introducing
more parameters, especially in the fractional boundary case.
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The discussion so far has been centred around pricing in the final period [T}, _1,T},], which is not
quite so impressive since we could actually just use the tree approach to price here effectively. The
idea is to now generalise this approach to finding this maximal arbitrage-free price at time t = 0.
In short this will involve parameterising a separate boundary for each of the reset periods, however
it will turn out that the boundary in these previous period are still fairly intuitive.

Pricing when t = (

The problem here is that the payoff at time t € [T;—1, T3] not only depends on the return within this
period, but also on returns accumulated over the following periods. The idea is that nevertheless,
the price at time t € [T;_1,T;| conditioned on Ay,_, as a function of X; — Xp_, will still give
a similar shape with strictly one convex region and one concave region, thus a single boundary
defining where we should choose o or @. The rationale here is that the returns over the future
periods, do not depend on the return over the current period. More generally, setting R; =
Xr, — Xg,_, the payoff is given by
+

n

[((ROE] + | D2 ®)E| = [K - A ]

=i+l

Focusing on pricing for £ € [T;_1, T3], the payoff can be grouped into the above three terms. Notice
the similarity here with the payoff in the final period, in-fact it is still a call-spread ‘like’ payoff,
however there is still a random term, the sum of the future returns

n

Br:=| Y (B)¢

G=it1

Notice that each R; are i.i.d, importantly this sum, Bz, is independent of R;. So we can approach
this in an identical fashion as the final period; the payoff can be expressed as

. (Ru)g — (K — Ar,_, — Br,) if F>K—Ar,_, — Br,
((R(-J; — (K — Ag,_, — BT‘)) = (Ru— (K- Ag,_, — BT‘))+ —(R,-O)" fC>K-An  —Bp >F
0 f K —Ap | —Bp,>C

So for a given realisation of By,, we are again in the case of looking at call-spreads, in fact we can
write for the price at time t € [Ti_l,Ti]

c +
Wi(t, Xe, A, ) =supE [((R_i]}i —(K—Agq_, — Bn)) '(X!,AT‘_J}
. c . + i
= supE [lh. [((R,]F — (K - Ar,_, - Br)) '(Bﬂ.AT,_l):H()it.AT,_l):I

where the inner expectation is precisely a call-spread ‘like’ payoff, thus we end up averaging over
these payofls with respect to the distribution of Br,. The question is then if the distribution of
By, is ‘nice’ enough that this average ends up maintaining the shape of the price of a call-spread,
more precisely, if we end up maintaining a single boundary separating the regions of volatility o
and 7.

For a given time t and value A7, , we denote the unique boundary as a function Br, — z (Br,),
then the boundary as a function of (t, Ay, ) is given by averaging over the distribution of By,.
However, since the values that By, takes, lie in the compact set [(n —i)F, (n —i)C/, this averaging
gives us a unique point that lies in the compact set

{z(Br,) | Bz € [(n—i)F.(n—i)C]}

Additionally, since (¢, Ay, ) is independent of By, we obtain a unique continuous boundary as in
the case of the final period. We now need only model this boundary as we did in the in the case
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of the final period. In fact, since the boundary is an averaging independent of (¢, A1,_, ), and the
payoff structure in the period [T:_;,T}] is similar to the final period, we expect a similar boundary,
so we may trial the same parameterisations.

5.2.2 The Algorithm

We now bring all of the ideas above together to provide an algorithm for finding the maximal
arbitrage-free price of a Cliquet where the volatility is uncertain. So, for some parametric functions

(‘l’i):l:l

N o . e —
1. Simulate N7 paths (X‘*”J)pzll with the diffusion with volatility ¢ =&

1.,
d){,_—iaidf—&rw!. Xo=0

Set R\P = X;{’J —X;{’J_] for the returns over each period, farthermore set A" = bV (R;‘”J)F
for the rolling capped/floored returns. The payoff is then given as a function of AP,

2. Fori=mn,n—1,..,1, find a numerical solution #} of the maximisation problem:

N
sup hi#;), h(#;) = ]: Z Lo’(Ahu;l],
1

B,c0 N
1.
{fXg = —Ef}'fﬂff— O'gd.Bg. X[} =10

where

ifte[0,Tim1)
s (? - 2) ]]'Xz—x'rl_] <y (!-/lw'l_liﬁ.) if t € [Ti—l: TI]

la @

Ti =

g+ (0 —g) ]lxg—)hjﬂ oy (8 Ar;_y3807) itte [T, 15),5>i+1
3. Independently, simulate Ny replicas of X using oy =g+ (7 —0g) 1

t € [Ti-1,7;] and compute \,Lz EN2 L"[AH’J)

p=1

X=Xy, <yt A :07) for

Remark 5.2.1. The algorithm requires n optimisations for each reset period defining the cliquet,
this can increase the time complexity and effectiveness of the algorithm drastically if the parametric
functions are not chosen with care. This is precisely why it is preferable to choose parametric
functions with few parameters. Using the analysis in our methodology helps us obtain these
parametric functions.

Notice in Figure 5.3, the vertex splitting the two alline functions is simply given by K — F.
More generally for the period [T;-1,73|, one can imagine the vertex is given by approximately
K — F —E(Bg,). So if we are in a situation where E (Brp,) = 0 we can consider the modified
algorithm where we use just a single parametric function ~(-). So replacing Step 2 in the algorithm
with

e Iind a numerical solution #* of the maximisation problem:

sup hi#;), h(#;) =
#,€0

1
VAP,
v 2 V),

p=1

1.
d){!:—irffdf—ffgd.b’:, Xo=10

where

oi=0+ @ -2y _x, < (tar_,0) forte[lio1,T]
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Here we are reducing the number of optimisations required to just one, clearly in practice this
is preferred. However we should evaluate when this modified algorithm is effective since we are
making some large assumptions about the similarity of the boundary over different reset periods.
On the other hand, at any given period [T}_1,T}], to get the largest payoff it is always preferable
to obtain the largest return over each period. Thus one would expect that the optimal strategy
for o; to achieve the best payoff should not differ largely.

5.2.3 Results

We now draw our attention to Figure 5.4 where we observe our results for a variety of cliquets
with differing strikes K. In our results we only consider 3 periods, since in this case we can use the
trinomial tree method to compare against. In blue and red we use the Fractional and Piece-wise
affine parameterisations for period defining the cliquet, thus 3 separate optimisations. In green we
have our results for the modified algorithm as discussed at the end of Section 5.2.2. For this single
parameterisation we use the same Piece-wise affine boundary. In our results we see that the red
and blue plots produce similar results, thus in this case the [ractional boundary is preferred as it
requires just one parameter, thus the maximisation is quicker. We see that the modified algorithm
(green) produces slightly better results; this supports our hypothesis that the optimal strategy for
o¢ shonld remain the same no matter which period you are in.

Parametric Method for Cliquet
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Figure 5.4: Comparison of the parametric method for pricing a variety of cliquets. Parametric
functions used are the Fraction parameterisation (blue ), the piece-wise affine parameterisation
(red), we also look at the modified approach using one piece-wise affine parameterisation for all
periods (green). Here we consider a 3-period cliquet with F' = —1%,C =4%, T = 1,0 = 15%,7 =
20% and the strike K € [—3%, 9%)|

The single optimisation for the entire duration of the options life can also help the maximisation
procedure. We previously observed in Section 4.3.3 that the final price of the option can become
insensitive to the parameters of the parametric function, especially around the true maximum.
When performing n optimisations for each period, this effect can only be amplified since tweaking
the parameters only has an eflect on the returns produced over this period. This problem could
grow as the number of reset periods grows, thus yielding another reason in favour of the single
parametric function for all periods.

Notice in our results, we only consider strikes K up to 9%, this is primarily because of the inaccu-

racies we saw from the trinomial tree in Section 5.1.1 as the strike grew too large. From a practical
perspective, notice that the true maximal arbitrage-free price will always be an upper bound on
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any of the prices produced by these methods (as long as your strategy makes use of an admissible
ot € [2,7]). So in practice when you do not have a reference price to compare against, you can
simply trial multiple different parametric functions and choose the one which gives you the largest
price (subject to the variance of this price being relatively small). This is the same approach to
model selection used by Guyon and Labordere [8].

In conclusion, the modified algorithm produces successful results, with a time complexity similar to
that of the simple call spread presented in Section 4.3.2. Some care should be taken when applying
the modified algorithm; if one expects the optimal strategy to change across reset periods, this
algorithm is unlikely to produce accurate results. In this setting, it is more suitable to model
oy on each of the periods individually, as with our original algorithm. However, performing an
optimisation on each period can become computationally expensive.

Although we only experimented with a global call feature, the method is extensible to at least global
caps/floors, or both. However, when considering alternative global features, one must be careful
how to choose the parametric function. We did not experiment with time varying parameterisations
for the cliquet; it would be interesting to see the effect of these additional parameters, however it
seems this is only feasible at the moment when considering the modified algorithm, else there may
be too many parameters to optimise over for each period.




Conclusion

We began our discussions with an introduction to the setting of uncertain volatility. We saw that,
here, we can obtain multiple arbitrage-free prices. From this, the maximal arbitrage-free price
can be obtained theoretically via the Black-Scholes-Barenblatt PDE. We then moved on to discuss
results by Denis and Martini [3] which linked this maximal arbitrage-free price and the cheapest
super-replicating price, the property we are actually interested in.

In practice, it is not trivial to deduce the maximal arbitrage-free price. We discussed existing meth-
ods presented by Avellaneda et al [1] and Guyon and Labordére [8] which have their limitations.
We developed these existing methods by introducing the notion of ‘zero gamma boundaries’, which
led to a robust pricing method for a variety of cliquets. In particular, in our modified algorithm we
produced accurate prices with just a single optimisation as oppose to arbitrarily many as suggested
n literature.

Despite its success, the developed methods are not as generalisable as those presented in literature.
In particular, the method assumes that there is a single boundary defining where we should choose
the maximum or minimum volatility. This is not the case for most derivatives, possibly not for
more complex global features with cliquets. For further work, it would be interesting to see how
one can generalise the method of modelling the boundaries; in particular where there are a fixed
number of boundaries, you could parameterise each of these separately and simulate with all of
these boundaries together.

The uncertain volatility model considers a family of models where the volatility lies in a certain
range. However, one might question how realistic some of the models in the family are. In fact,
the optimal strategy for the volatility itself is an unlikely event; namely the volatility switching
between two values that may be arbitrarily far apart is an unlikely model. It may be more useful to
consider a more specific, yet still unspecified setting where the family of models are more reasonable

perhaps defined under an additional assumption on the continuity (or regularity) of the volatility.
With additional restrictions on the volatility, we would surely find that the maximal arbitrage-free
price is lower than what we would obtain with the original uncertain volatility model. It would be
useful to quantify how much lower this price is with respect to the additional restrictions on the
volatility.
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