yuan_junwei_01045395.pdf

by Junwei Yuan

Submission date: 05-Sep-2022 10:07PM (UTC+0100)
Submission ID: 185689989

File name: yuan_junwei_01045395.pdf (4.6M)

Word count: 21460

Character count: 88899

Imperial College
London

IMPERIAL COLLEGE LONDON

DEPARTMENT OF MATHEMATICS

Deep learning for unconstrained Markov
regime-switching quadratic utility

maximisation

Author: Junwei Yuan (CID: 01045395)

A thesis submitted for the degree of

MSe in Mathematics and Finance, 2021-2022

Declaration

I certify that the work contained in this thesis is my own work. Any ideas or quotations from
the work of other people, published or otherwise, are fully acknowledged in accordance with the
standard referencing practices of the discipline.

Acknowledge
I would like to express my sincere gratitude towards my supervisor Professor Zheng for his time
and effort spent in tutoring me, and for his valuable guidance throughout this project.

I would also like to thank my parents and my girlfriend Feilun for their support during my
study.

Abstract

Empirically, economists believe the economy has different regimes such as growth, recession, re-
covery and depression. Each regime has its own market dynamics and the change from one regime
to another is typically abrupt. Continuous Markov chain is found to be suited for modelling such
change. As a result, Markov regime-switching stochastic control problems have gained increasing
interest in both academia and the industry. However, it is often intractable to find analytical
solutions for stochastic control problems even without regime switching. This motivates the devel-
opment of numerical methods.

In this study, we will focus on unconstrained regime-switching quadratic utility maximisation
problem. We will develop numerical methods for this particular regime-switching problem based
on two deep learning algorithins originally designed for standard utility maximisation problems.
Moreover, as this problem does has an anlytical solution, we will then present a numerical example
and compare the numerical solutions against the analytical solutions.

Contents

1 Introduction
1.1 Background e
1.2 Current research L L L e e e
1.3 Aim and outline e

2 Stochastic control and utility maximisation
2.1 Stochastic control problem Lo
2.1.1 Hamilton—Jacobi-Bellman equation
2.1.2 Stochastic maximisation principle. Lo
2.2 Utility maximisation problemo
221 Primal problemo
222 Dualproblem

3 Markov regime-switching quadratic utility maximisation

3.1 Continuous Markov chain
3.1.1 Transition probabilities matrix L.
3.1.2 Simulation
3.1.3 Associated martingaleso Lo oL

3.2 Unconstrained Markov regime-switching quadratic utility maximisation
3.21 Primalproblem00
3.22 Dualproblem

3.3 Analytical solutions to unconstrained regime-switching quadratic utility maximisation
3.3.1 Primal problem with HIBo
3.32 Dualproblem with HIB
3.3.3 Primal problem with SMP o L
3.34 Dual problem with SMP Lo

4 Deep learning algorithms
4.1 Neural network e
4.1.1 Gradient descent Lo
4.1.2 Stochastic gradient descent and batching 0oL
4.1.3 Python implementation Lo o
4.2 Deep learning for utility maximisation problem
4.2.1 Deep controlled 2BSDE method for Markovian problem
4.2.2 Deep SMP method for non-Markovian problem

5 Main results
5.1 Deep 2BSDE for Markov regime-switching utility maximisation
5.1.1 Front-to-back training L o
5.1.2 Back-to-front training Lo
5.2 Deep SMP method for Markov regime-switching

6 Numerical example
6.1 Crafting a numerical example Lo Lo
6.2 Verify theoretical results L
6.2.1 Primal problem with HIB 0oL
6.2.2 Dual problem with HJB

[QTSN

(== =] o

O 00 0=~

10
10
10
11
11
11
12
12
13
13
14
14
15

6.3

6.4

6.5

6.2.3
6.2.4 Dual problem with SMP

6.3.1 Baseline
6.3.2 Impact of stepsize
6.3.3 Impact of deeper and wider network
Deep 2BSDE method back-to-front
6.41 Baseline
6.4.2 Impact of stepsize
6.4.3 Impact of choice of ranges Ry
Deep SMP method
6.5.1 Baseline
6.5.2 Approximation versus analytical . .
6.5.3 Impact of stepsize
6.5.4 Impact of deeper and wider network
6.5.5 Limitation of deep SMP method . .

A Technical Proofs

A1 Extension of 2BSDE

Bibliography

Primal problem with SMP

...................... 31
...................... 31
...................... 32
...................... 32
...................... 34
...................... 35
...................... 36
...................... 36
...................... 39
...................... 40
...................... 41
...................... 41
...................... 42
...................... 44
...................... 45
...................... 45

47
...................... 47

Chapter 1

Introduction

1.1 Background

Stochastic control theory provides a mathematical framework for finding the optimal control within
dynamical systems driven by observable uncertainty. In particular, in a market where asset prices
are partly driven by random noises, utility maximisation studies how an investor can maximise
her utility (happiness) by investing her capital optimally. Besides the return for capital, various
factors can also impact the utility such as risks involved in producing the return. Solving this
problem is of great importance and has many applications in the finance industry.

Markov regime-switching utility maximisation extends the standard utility maximisation by con-
sidering the market regime. Empirically, economists and investors believe the market has separate
states such as growth, recession, recovery and depression. Each state behaves markedly different
and this difference is manifested in market volatility, interest rate, growth rate, etc. The move
between the states are typically abrupt, hence it can be modelled using continmous-time Markov
chain over finite discrete state space. This combination of continuous stochastic diffusion process
and continuous finite-state Markov process has gained great deal of traction since its first usage
in modelling macro economic event in 1970. In recent years, regime-switching stochastic control
problems have gained ever-increasing attention for its additional capacity.

There are hy far two mainstream approaches tackling stochastic control problems, i.e. Hamilton
Jacobi-Bellman (HJIB) equation and Stochastic Maximisation Principle (SMP). The former is
derived from Bellman's dynamic principle [2] which states that the optimal control over entire
horizon must contain the optimal control for any sub-interval within the horizon. By zooming
into infinitesimally small interval, we then reduces the problem into solving a second order par-
tial differential equation, which is the called Hamilton—Jacobi-Bellman (HJB) equation. On the
other hand, SMP extends Pontryagin’'s maximisation principle which was originally introduced
for classical dynamic system in 1956. SMP requires that any optimal control must maximise the
Hamiltonian control function.

However, HIB equation is highly non-linear which is intractable in most cases. For the solvable
cases, the problem setting is too constrained to be applicable for real-world applications. Achieving
the optimality condition for SMP is also a daunting task. The difficulty in obtaining analytical
solutions then motivates the development of numerical methods. While there are various algorithms
for standard control problems, there is a clear lack of numerical methods for regime-switching
control problems despite its prospect and importance.

Deep learning is the most fast-growing discipline in computer science within the recent 10 years.
Although a lot of the fundamental results were proven back in the 20th century, it was not com-
putationally feasible at the time. It was the development of modern computing hardware in the
21st century that finally put the theories into real applications. In particular, the development in
hardware such as graphics processing unit (GPU) has greatly enhanced our computation capabil-
ity.

Probably the most famous application of deep neural network nowadays is in computer vision

where convolutional neural network, a kind of deep neural network, is used to micmic human eyes
such as to identify objects in the pictures. Under the hood, we can treat the human eyes as some
function of pixels in the picture, and neural networks are merely approximating that function. This
power of approximation was rigorously shown in the Universal Approximation Theorem [7] which
states that a feedforward neural network can approximate arbitrary continuous function to any
desired degree of accuracy provided that there are sufficient amount of hidden nodes. Therefore,
we would like to leverage neural networks’ approximation capacity in finding a numerical solution
to stochastic control problems.

1.2 Current research

There are previous research work in solving the quadratic utility maximisation problem without
regime-switching. Bian [3] studied the problem using HJB, while Li [12] approached the problem
with SMP. As for the extended problem with regime-switching, Krishnakumar [10] performed an
extensive study and solved the problem with both HJB and SMP. Krishnakumar also derived the
dual problem and demonstrated the equivalence between primal and dual solutions. There are
also research in more general Markov regime-switching control problems. Li [11] extended SMP to
regime-switching problems and introduced the weak necessary and sufficient conditions. Azevedo
[1] employed the HIB equation to solve regime-switching control problems.

In terms of numerical methods, Ashley [4] introduced two deep learning based numerical methods
for standard utility maximisation problems. To the best of our knowledge, there is no deep learning
based numerical methods in the literature for Markov regime-switching control problems.

1.3 Aim and outline

In this thesis, we will study the unconstrained Markov regime-swtiching quadratic utility maximi-
sation. Krishnakumar [10] has solved this problem analytically by both HJB and SMP. He has also
proved the equivalence between primal and dual solutions. However, his report did not provide any
numerical examples. One of the contribution of this study is to verity Krishnakumar’s theoretical
results with numerical examples.

The paper [4] introduces two novel deep learning based numerical methods for standard utility masx-
imisation problems. The major contribution of this study is to extend both algorithms and design
numerical methods for Markov regime-switching quadratic utility maximisation. We will then
assess the numerical methods by comparing the numerical solutions against analytical solutions
from Krishnakumar’s report [10]. It is worth noting that althongh our particular regime-switching
problem has analytical solutions, our numerical algorithims can be extended with relative ease to
solve problems without such analytical solutions.

The remainder of this thesis is outlined as follows. Chapter 2, 3, 4 will cover preliminary knowl-
edge that are already known. In chapter 2, we will introduce general stochastic control problem
and the standard utility maximisation problem. We will also briefly mention HJB and SMP. In
chapter 3, we will present the unconstrained Markov regime-switching quadratic utility maximisa-
tion problem along with any theoretical result from [10]. In chapter 4, we will introduce the two
deep learning based numerical methods from [4]. In chapter 5, we will present the main results of
this thesis, that is, the numerical methods for unconstrained Markov regime-switching quadratic
utility maximisation problem. In chapter 6, we will present a numerical example and compute the
analytical solutions. We will then verify any theoretical results and compare numerical solutions
with the analytical solutions. Finally, chapter 7 concludes the thesis.

Chapter 2

Stochastic control and utility
maximisation

2.1 Stochastic control problem

In this section, we introduce the general settings for stochastic control problems. A stochastic
control problem is a control problem where the underlying state X is a stochastic process. Without
loss of generality, we may assume X is valued on E. We also assume the problem has finite time
horizon [0, T] where T is the terminal time. The process X follows the dynamics:

dX, = b(t, X, m)dt + o(t, Xpom)dW,, Xo =20 (2.1.1)

where W is a n-dimensional Wiener process. The function b and ¢ are valued in B and R"
respectively and they satisfy some linear growth conditions.

The process 7 is called the control process whose value is in some set A. Let us denote the natural
filtration of W by (Ft)seqo, 7 and control process 7 is progressively measurable with respect to JF.
Normally, there are some criteria for a control process to be admissible. We denote the set of all
admissible controls as A.

Our goal is to maximise the gain function J over A4 where .J is defined as:
T

fE X, me)dt + U (Xr) | .
0

J(m):=E

The function f:[0,7] x R x A — R is called the running cost and U/ : R — R the terminal gain.
In the following, we will look at two mainstream methods for solving stochastic control problems,
ie. HIB and SMP.

2.1.1 Hamilton—Jacobi—-Bellman equation

The Hamilton-Jacobi-Bellman (HJB) equation is developed based on Bellman’s dynamic program-
ming principle (DPP) [2]. Intuitively, DPP states that a control between time [t,77] is optimal if
and only if it is optimal within interval [¢,t + k) and [t+ h,T] for any h > 0. In rigid terms, define
the value function u : [0,7] x B — R:

T
u(t,z) :=supE / S, Xe,ma)ds + U(Xr) | Xe =2
n t

The value function represents the expected utility achieved by the optimal control when starting
at time ¢ with initial state z. Note that J{w) = w(0,2n) by construction. Then DPP states that,

for any h = 0, the following holds:

t+h
wu(t,z) = sup E
mEA

flt, Xgomo)ds +u(t+h, X)) | Xo = :1:] (2.1.2)
t

where 7 here is the control between time [f,+ h).

Next, we derive the HJB equation. Applying lto’s formula to w(f + h, X;4 ;) and expanding d X,
and d[X]., we have

t+h t+h t+h
w(t + hy, Xegn) —ult, Xe) = / Dzu(x,){s)ds—/ dpuls, Xo)d X + 5 / pate(8, Xo)d[X]s
t t t

t+h 1 t+h
= / (Dyu) + (D,u)bs + 5(?3,:,:11)['}: o.ds + / (Opu)odW,
t t

where b, := b(s, X, 7,) and o, := o(s, X, 7). Then substituting into (2.1.2). As W is a brownian
motion, dW, term vanishes within the expectation, so equation (2.1.2) beomes:

t+h

0=supk flt, Xe me) + (Oru) + (Opu)b, + ;(f')“il]ffjﬂsd-{l .

t

Taking h — 0, s0 X, = X, = 2, m7e = m = a, we arrive at:

acA

0=supk [f(t,;l:,a) + dyult,) + dyult, z2)b(t, r, a) + %f‘),:,:u[t,;1:)rf(r_.;1:,(1)Trf(r,;1:,a)}

Finally, we assume that f, b and o are deterministic functions of (f,z,a), so we can drop the
expectation. We arrive at

0 = dyu(t,z) + sup {f(r r,a)+ dyult,z)b(t,r,a) + %r’]“u(r, x)o(t, r, a]TrJ(r, T, a]} .
acA

The final equation is called the HIB equation. Typically, in order to solve this equation, we need
to guess an ansatz for « and substitute into HJB equation. However, there is no systematic way
to guess the ansatz except when terminal gain U/ is of form z¥ for some p.

We can also define the Hamiltonian control F : [0,T] xR x A x R x R — R:
1
F(t,r,a,z,v) = f(t,z,a) + b(t,r,a)z + Eﬂ(f, T, a]Tr}(f, T, a)y.

The HIB equation can then be rewritten as

0=aduu(t,z)+sup {F(t,z,a dyult,z) dult z))}.
ac A

2.1.2 Stochastic maximisation principle

Pontryagin's maximisation principle was originally introduced for classical dynamic system in 1956.
It states that any optimal control to a dynamic system must satisfy two conditions: the associated
state must solve the Hamiltonian system; and the optimal control must maximises the Hamiltonian
control function. This idea was later extended for stochastic control problems. [13, Section 6.4.2,
page 159] provides a detailed explanation of this topic. Here, we recall the main theorem.

Consider the settings in section 2.1. We can define the generalised Hamiltonian % : [0,7] x R x
Ax R xR

Hit, z,a,y, z) = blt,z,a)y +o(t, z, a]Tz + flt,z,a). (2.1.3)

We further assume that M is differentiable with respect to = and denote the differential as D, H.
Moreover, for each m € A, we have the so-called adjoint processes (Y, Z) which satisfy the adjoint
BSDE equation:

—dY; = DoH(t, X, me, Ye, Zi)dt — ZedWs, Yo = DU (X7). (2.1.4)

Theorem 2.1.1. Let @ € A and X be the associated controlled diffusion as (2.1.1). Suppose that
there exists a solution (Y, Z) to the associated BSDE (2.1.4) such that

'H(f Xt:ﬁ-t: i}t: 2!,) = ax H(f Xt,: @, i}t,: 2!,]

agA
Jor allt €[0,7] a.s. and
(z,a) = H(t.x, a, Y, Z,) is a concave function for all t € [0,T].
Then i is an optimal control, i.e.

J(7) = sup J(m).
me A

It is worth pointing out that theorem (2.1.1) does not require function b and o to be deterministic
functions of X; and w;, while HIB does. This means SMP can be applied to a broader set of
control problems than HJB from this perspective. On the other hand, it does impose additional
constraint such as the optimality of the generalised Hamiltonian (2.1.3).

2.2 Utility maximisation problem

2.2.1 Primal problem

Let (€2, A,) be the probability space. We consider a market with n + 1 financial instruments. In
particular, S denotes the bank account with interest rate r, and Sy, ..., S, denote prices of n
stocks. For clarity, we will write the value of process §; at time t as S;(t). We assume stock prices
are driven by some Brownian motions W; and follow the dynamiecs:

dS;(t) = (1) S;(dt + Y o (£)S;(1)dW(2) (2.2.1)

k=1

where p : [0,T] = B", gy : [0,T] — B"*" denote growth rate and volatility respectively. Note
that Wi, W; are independent and o;; captures the correlations between stock i and j. Moreover,
we might not assume the functions r, ¢ and p to be deterministic.

The question is how one can invest in this market with initial capital zy and achieve maximum
utility of the wealth. Denote the portfolio, i.e. the quantity of different stocks held in the portfolio
at time t € [0,T], by m, € A C R™. = is called the control process of the problem. Note that
we consider only self-financing portfolio, i.e., the portfolio starts with some initial capital and no
injection or extraction of capital before terminal time 7". Then the wealth process, denoted by X;
and valued in R, follows the dynamics:

n

dxtzz)“”fmdsj(r)—xt 1= 3" m(t) | mact.
=1

5 (t)

i=1
Substitute equation (2.2.1) into above and re-write in vector form to remove the subseript j:
dX, = X (p(0)dt + o (DdW,) + X, (1 — 7 1)r()dt
= X, (r(t) +] (u(t) —Lr(t))) dt + Xomw] o(t)dW,
= X: (r(t) + 7 a(0)0()) dt + Xemr[o(£)dW; (2.2.2)
where 8(t) = [o(t)] 71 (u(t) — 17(¢)) is the market reward for risk.

Let U(z): B — R be the terminal utility function at time 7". Then primal maximisation problem
can be formulated as finding the optimal portfolio m that maximises:

f(?r) = [f.-"'(XT‘) | XU = Jf“] .

We can then define the value function u : [0,7] x B — R:

u(t,z) :=supE[U(X7) | X; = 1. (2.2.3)
TeA

The HJB equation is derived [4, Chapter 3, page 5] as

0= dyult,z)+sup Ft, z, a,d.ult, z), d,ult,z))

acA

where the Hamiltonian control £ : [0,7] x R x A x R x R is defined as:

F(t,z,a,z,7) = (r(t) +a o(t)0(t))zz + %|G(f)Ta|2;1:2'}- (2.2.4)

2.2.2 Dual problem

Like many other mathematic problems, we can deploy conjugate duality to derive the dual problem.
The advantage is that dual problem is often much nicer to solve. Moreover, the dual value function
provides an upper bound to the primal value solution. If strong duality can be achieved, the dual
value function is exactly the same as the primal value function. Here, we will state the dual
problem. For details, readers can refer to [12, Chapter 2].

The dual utility function is defined as the conjugate dual of U:
U(y) == sup {U(z) — =y}

We then try to find the dual process Y such that {X:Y; }i>0 is a super-martingale, i.e.:
E[X.Y;] < XoYy = 20w

where we denote Xy = zy and Yy = yy. It can be shown that ¥ has the following representa-
tion:

dY; = =Y, (r(£) + dalve)) dt — Y, (0(t) + [o(r)]-lyt}T dW,. (2.2.5)

The process v and yy are the dual control. Jx is the support function of the set —A, defined

by:

da(v) = sup «{—?rTu}

TEA
over v € ",

Now, we show the duality relationship between primal and dual value function. By definition of
U, we know

U(Xr) < U(Yr) + XoVr,
then as XY is a super-martingale, we have
E[U(Xr)] < E[U(Yr)] + E[XrYr] < E[U(Yr)] + zoy.
We now take supremum over primal control = and infimum over dual control v, yy:

u(0,zq) := 51‘1’p E[U(X7) | Xy =xg] < ilhr‘l]? {E[f:’(i’ﬂ] + ;1:[,3;“})

As we can see, the solution to the primal maximisation problem is always bounded by the solution
to the dual minimisation problem which is on the right hand side of above inequality.

Chapter 3

Markov regime-switching
quadratic utility maximisation

3.1 Continuous Markov chain

We shall introduce the concept of continuous Markov chain first as it will be used to model the
state of the market in our problem settings.

Let (©, A, P) be the probability space. Following the convention in [5, Appendix B, a continuous
Markov chain X is a stochastic process with value in finite set S = {e1.e0,....e4} C ’? where ¢;
is a unit basis vector of B, For convenience, we sometimes write X; = 7 to mean X; = ;. The
continnons Markov chain satisfies Markov property

P Xton =5 | Fi] =PXeqn =3 | X: =i
where F; is the filtration at time £. A contimmous Markov chain is characterised by its generator
matrix Q(t) € R¥* which satisfies

d
Qul(t) == Qu(t), Qi) 20, Qult) <0
J#i
for all t and ¢ € §. The Markov chain process is homogeneous if its generator matrix is time
invariant, i.e. Q(t) = Q(0).

3.1.1 Transition probabilities matrix

Assume that generator matrix () is homogeneous, we can write the transition probability as matrix
P(t) € Rax;
P(t) .= P[X,r_ =j|Xo= i‘f].
As stated in [5, Appendix B|, P should satisfy the forward and backward equation:
dP(t) = P(t)Q, dP(t)=QP(t).
This can be solved by
P(t) :=exp(t- Q)

where the exponential in above formula is the matrix exponential:

y 1
et = — A",
n!
n

Therefore,

PX; = j | Xo =] = {exp(t - Q)} (3.1.1)

ij

for all interval ¢ = (.

10

3.1.2 Simulation

Consider the problem of simulating a continuous Markov chain o between time [0,T]. Denote
the generator matrix as (). We can start by splitting the time horizon into discrete steps, each
step has width A¢. Suppose the current step is &k and ap = i. Using the equation (3.1.1), the
expression

p = [exp(At- Q)]T o

is a d-dimension vector with p; representing the probability jumping from 7 to state j at time f344.
The next step is to sample from this distribution. As a1 is discrete, we firstly compute

J
5 1= Zpg_. s0:=10

=1
for j=1,--+ ,d. It is not hard to see s = 1. Then, we instantiate a uniform variable u := U(0, 1)

and find j such that

85 = U= 85

Finally, set a1 := e;. We can repeat this procedure for every step until reaching the end.

3.1.3 Associated martingales

Given a continuous Markov chain o with homogeneous generator A, we can define a martingale
My by:

L
M, ::n't—] ATq ds. (3.1.2)
"]

Interested reader can refer to [5, Appendix B| for proof. Moreover, we can define a process @) on
Rrixri as

Qi () == Qi) () — (Qij) (), Quilt) == 0. (3.1.3)

The process |@Qi;] is a counting process that counts how many times a jumps from state i to state
j. In other words:

[Qi;](2) = Z]l{n__:_:i}]]-[n_.-:i}'

s<t

On the other hand, the process (()i;) is the compensator process that shows the expected number
of jumps from state i to state j, i.e.

Q)= Ay > o=y

st

where A;; is the corresponding element in the generator matrix A. It can be shown that the process
{Q:}i>0 s a martingale [5].

3.2 Unconstrained Markov regime-switching quadratic util-
ity maximisation

In this section, we introduce unconstrained quadratic utility maximisation with Markov regime-
switching extension. This is the main problem studied in this report. Later, we will introduce two
neural network based approximation algorithms for this problem. Before that, we want to briefly
recall the theoretical results in [10] which shows that we can solve this problem analytically. This
is useful as we can use the analytical results as a benchmark when designing and verifying our
neural-network based algorithms.

11

3.2.1 Primal problem

We consider the same market model as in section 2.2. There are n stocks Sy,--- , S, driven by n-
dimensional Wiener process W. The stocks have growth rate and volatility represented by function
i and o respectively. There is also a bank account Sy with interest rate 7.

We then assume the economy has different states and model it as a continuons Markov chain «
whose value is in [:= {e1,--- ,eq} C R?. For each state of the Markov chain, we have different
market dynamics 7, (t), 0,,(t), 8., (1) at any time ¢. Adapting the convention from [10], we denote
functions of Markov process a by placing it in the subscript, i.e., r,, (f) := r(t. 0y). We assume the
Markov process is homogeneous and has generator matrix @ € R4?. Moreover, we assume (is
known. Finally, we assume Wiener process W and Markov chain a are independent.

The settings in [10] is slightly different from section 2.2. The portfolio 7, valued in R", is the
amount of cash invested in different stocks instead of the number of shares. Hence the wealth
process X; follows a different dynamics

AdX; = 1o, () Xedt + 7, 0, ()0, (t)dt + 7] 0, (AW, Xy = x0. (3.2.1)

This leads to different SMP conditions and also that wealth X might go negative under this setting.
Moreover, the problem is unconstrained, i.e. 4 := R".

We have a quadratic terminal utility U : I x R — &
) 1 ;
Ui(z) = 75(;;;1:2 — giT
where ; and g; are measurable random variables at terminal time 7. Note that U is concave in
x. The optimisation problem is to find the optimal control 7 that maximises:
Jo(m):=E [”m (X7) | Xo=mp,00 = iu] s (3.2.2)
that is

Jo () = sup J, (7).
e A

We can now define the value function u: [0,7] x I x R — R:

w;(t.r) =u(t,i,z) = supE [L"”.I.(XT) | Xy = 2,00 =1]. (3.2.3)
TeA

As derived in [10, Appendix A.1], for any 4, t and =, the HJB equation is:

d

0 = Gy (t,) + sup F(t, i, x,a, 0,0 (t,), Opu;(t,) + Z Gijui(t,)
ac A .
j#L

where ¢;; is element of generator matrix @ and F : [0, T]x I xEx AxR xR — R is the Hamiltonian
control:
1 ;
Pl e, z,7y) = (ri(e+a o (0)6:(1)) 2+ 5 |m(t)Ta|2 7. (3.2.4)
Evaluate the supremum by d,F = 0 and equating the terms, then the optimal control @ should
satisfy:

Oyult,r) -9;'(!‘]Tffi(f]_l] (3.2.5)

T = — ot
¢ Oppu(t,z) -

3.2.2 Dual problem

Solving the dual problem typically is simpler compared to solving the primal problem directly. We
now re-state results from [10, Section 2.2, page 7| for the dual problem. Consider the martingale
M :[0,T] x Q — R? as defined in (3.1.2):

T
My = ay —/ Q" ds.
0

12

The dual process Y is derived to be:
AY; = —ro, (1) Yidt — 01 (1)YidW, + 7, dM,, Yo =0 (3.2.6)

The process v and initial value yy are the dual control. The dual problem is then:

inf Elmq, (Yr) | Yo = yo. a0 = in] + 2oy (3.2.7)

Tlo
where m: [x R — R is the dual function of utility U:
mi(y) = sup {Ui(z) — zy}.
Finally, duality relationship can be shown [10, Section 2.3.2, page 10]:

sup E[U(X7) | Xo = 0,000 = d0] < imiz {E[mar(Yr) | Yo = yo, 00 = i0] + zy}. (3.2.8)
rEA Yo

3.3 Analytical solutions to unconstrained regime-switching

quadratic utility maximisation

In [10, Chapter 2], it applies both HJB and SMP approaches to solve unconstrained quadratic
utility maximisation with Markov-switching. In both cases, it guesses an ansatz and reduces the
problem into solving a system of ODEs. We will recall the main results here. In later chapter, we
will verify these theoretical results with our numerical examples.

3.3.1 Primal problem with HJB

As proven in [10, Appendix A.1], the HIB is

1 .
0 = (&) +sup {(r’), u;) (riz + ?rToiEi} +3 (Dpptt;) -rr;‘"?r-z}

d
+3 i (u(t, x) — wilt, 7)) (3.3.1)
JFi
We use ansatz:
u;(t,r) = a.i(r)—bi(t)—%ci[t);lru (3.3.2)

and substituting into equation (3.3.1), then equating the parameters for 22, = and constant, we
obtain a system of ODEs:

2 d
C’ = AcC (A]m n = |9m| - 21’"";. N Z-"i#m m;j m=n
' —Gmn m#n

. d
b’ = Ayb (Ap),. . = [l =T+ Ty m=m
7 =g m#n

1 /b? 2 b? . . T
o =—au+ 3 () D = @ er,. /)

where e(t) = (ey(t), e2(t)) 7, b(t) = (b (t), ba(t))T. The terminal boundary conditions are
o(T)= -G, b(T)=-g a(l)=0

where G = (G1,G2) and g = (g1, 92)".

13

3.3.2 Dual problem with HIB
We define the dual value function v as:
vi(t,y) = inf Efm,,. (Yr) | Y =y = 1.
The HJB equation is proven in [10, Appendix A.2| to be:
d 1 d
0=inf q Bevi + Qyve) | —ray = D oag |+ 5 Gy vi) Bayl* + ZQz_; vty +v; =) p (3.3.3)
i=1 i
Similar to the primal case, we use a quadratic ansatz:
- 1)

‘!J;‘(f_.yj = ﬁ‘.i(f) -+ bg[f):]‘ T+ EF;(H:T .

Substitute into HJB and equate the terms, we ends up again with a system of ODEs for @ (t), b;(t)
and ¢(t):

52
7 rc (=2 1182 =S 0 |& — & 5 (T) = =
C; TG (2ry |6:‘) = th; [F‘j (-'::I ci(T) = a

FES i
o G (11 P gi
b'_ba(_rx]— i = bi_b bi[-f):_,
i i K& (j) Gi
2
- (b*' b*) - g
il =Y gy < (@ —ay) + = ai(T) = 5

Equivalence between primal HJB and dual HJB solutions

By strong duality between the primal and dual problem, we should be able to recover the primal
HJB solution from the dual HJIB solution. The relationship is:

— —bh b2
Ci = Tl: b; = »bi: a; = (5‘-;‘ bz) (3.3.4)

)

The proof is covered in [10, Section 2.3.2].

3.3.3 Primal problem with SMP

Recall that wealth process X has dynamics:
dXy = [ra, ()X, + 7] 00, ()0, ()] dt + 1] 00, (E)AW;, Xg = z0.
The generalised Hamiltonian # : [0, 7] x B x R™ x I x R x R" is defined as:
H(t.w.w,1,p,q) = (ri(t)r + ?TTO'I(f)EI(f)} p+ 7 o(t)g.
The adjoint processes (p, g, s) are hence defined, adapted from [11], with the following BSDE:

dpe = —r, (D)pedt + g AW, + s, ® dQ,
pr = 7(7'nh XT — Yo,
where

d o d

s e dQ = Z Z-‘ii_y (£)dCi;(t)

i=1 j#i

14

and the process () is defined in equation (3.1.3).
Now, to solve the control problem, we use an ansatz:
Pt = Pa,- (t) 1= o, (E)X¢ + 10, (1)

where the p.(-) is a function and ¢ and v are functions valued in B. Then, we can show [10, Section
2.5] that ¢ and ¢ satisly a system of ODEs:

d
0ui(t) + 0i(t) (= 10: (01 + ri(0) = = D aiy (15 (1) = (1)) (3.3.5)
i
d
duput) + 6u(t) (— 0. + 2ri(0) = = 3 a3y (65(8) — 6u(2) (3.3.6)
ez

with boundary condition:

o
=

—]:_Gi

Once we solved ¢ and ¥, we can recover the optimal control 7 by [10, Section 2.5]:

Do (T
=, O (X S o

t

Equivalence between primal HIB and primal SMP solutions

It can be shown [10, Section 2.5.1] that

3.3.4 Dual problem with SMP

Recall that dual process V' is

AV, = —r,, Vidt — 01 Y, dW, +~,dM,, Y, =y.

fas

Then the generalised Hamiltonian H : [0,7] x R x R" x I x R x B" x R?*? is defined as:

d
H(t,y.7.1.p.q.5) = —r:(t)yp — 0] (t)yq + Zf}zxi“f.i-?z:f-
i#i

Hence the BSDE for adjoint processes (p, g, s) are defined, adapted from [11], as:

dps = (o, B)p: + 0L, (t)ge) At + g AW, + s, 0 dQ; (3.3.7)
-1 ooy

= Yr — d 3.3.8

pT G(YT T G(YT ()

Theorem 3.3.1. [10, Appendiz B.2] Let (
i, §

2 11,7) be some admissible dual control. Then (iy,7%) is
optimal if and only if the solution (Y, p, q, §)

of the FBSDE

dY, = —1o,Yedt — 0, Y TdW, + 4 dM,,

Y = Yo
dpy = [ra, (£)pr + 43 0o, ()] dt + G AW, + 5, @ dQ,
ﬁT - - G]r-rz YT T o

satisfy the following condition:
Po =10
'qi',i =10

15

Note that the second condition §;; = 0 means the term s; e d(); is zero and can be dropped from
the BSDE (5.2.1). Then we select an ansatz:

Pt = Pa (1) = da, (1) Ye + Ua, (1),

where qTJ vl [0,7] — R are some functions we need to solve for. Substitute into the BSDE and
equating the terms, we get

G = —Gas00,Yr. (3.3.9)

We will also obtain, for every i € I, two system of ODEs

- 9 -
006+ 01 (~2ri +10,) =Yg | = - & (3.3.10)
P

7 ¢
. 1
He (T = —
@:i(T) e
and
- - CS‘ ~ - o .
Oedhi + 01 (—0) = 3 gy 2 (t-‘"- - t-:uj) (3.3.11)
JF Pi
T i
Ty = 2t
Pi(T) G

Once we solved ¢ and 1, we can retrieve the optimal dual control by:

v, (& - &) (Bi-9) , (3.3.12)

®j ;

Equivalence between dual SMP and primal SMP solutions

It can be shown that:

16

Chapter 4

Deep learning algorithms

4.1 Neural network

In this section, we introduce the basic concepts of neural networks, in particular, the multi-layer
fully-connected neural networks.

+1

Figure 4.1: Sketch of a perceptron with n inputs from [6], the node has bias b and activation
function ¢(-)

A “perception” or a “node” is the basic unit of a neural network. In essence, it takes an input
x € R" and computes an output y € B. In more details, it performs a weighted sum with weights
w € ’". It might also add a bias, denoted by b in figure 4.1. Finally it passes the sum through
the “activation” function denoted by ¢(-). The purpose of the activation function is to add non-
linearity as otherwise the perceptron can only output linear terms of input z. The typical activation
functions are ReLU and sigmoid:

ReLU(x) = max(x,0),
1

sigmoid(z) = Tre=
+e "

The choice of activation functions can have a significant impact on the accuracy and the training
speed of the neural network. To put everything into formula, a perceptron computes:

Y= (Zuiilji + b) =p(w'z+bl)
=1

where w € R" and b € . In a neural network, the output from the perceptron can be used as an
input to another perceptron. A graph of perceptrons is then called a neural network. Note that

17

nodes are not required to be organised into layers. Also, the graph does not need to be acyclic.
For example, recurrent neural network passes output of the node back to the node as one of the
input.

A multi-layer feedforward neural network is a particular kind of arrangement for neural networks.
It contains an input layer, an output layer and a number of hidden layers. The number of input
nodes match the number of inputs to the network, and the output nodes match the number of
expected output. We will denote the number of hidden layers by L. Moreover, each hidden layer
has ! hidden nodes. In figure 4.2, we have L = 1 and { = 4. The neural network has 2 inputs
and 3 outputs. Furthermore, the feedforward network is fully connected, that is, every node in the
previous layer is connected to every node in the next layer. Moreover, the activation function is
not applied to the ontputs of output nodes.

input, layer

hidden layer '@

E\ A
output layer

Figure 4.2: Sketch of fully connected multi-layer feedforward neural network from [6], the network
has one hidden layer with four hidden nodes

Q0
5

Finally, we can count the number of parameters involved in the neural work, as this directly relates
the amount of computation required to train the network. Denote the number of inputs as p and
number of outputs as . The input layer has no parameters. The first hidden layer has p x | weights
and [bias. Any subsequent hidden layer has [weights and [bias. The output layer has | x g
weights and ¢ bias. In total,

(px1+0)+(L—1)x(*+1)+ (I xq+q).

Therefore, the number of parameters increases linearly with L, p, ¢ and quadratically with /.
Theorem 4.1.1 (Universal approximation theorem). [7/ Let (2, A, u) be probability space with
measure 1, and G be any Borel-measurable continuous function from a finite dimensional space to
another. Then a feed-forward multi-layer neural network can approzimate G to any desired degree
of accuracy, provided sufficiently many hidden units are availble.

4.1.1 Gradient descent

In machine learning, neural networks are typically used for solving “supervised learning” problems.
The problem usually specifies a collection of example inputs and the expected outputs. The neural
network is trained to minimise the difference between its outputs and the expected outputs.

In formal terms, suppose we have an example (xz,y) and the network has output g for &. Then
we can compute the loss £, or sometimes called cost, by:

L= fly.9)

18

where f: R? x B9 — [is the loss function. Note that (y,) is given so can be seen as fixed, and y
only depends on the parameters of the neural network. Denote the parameters as ©, we can then
express the loss as a function of the parameters:

L(O]y.=x) = fly.g), ©y:=Nalz)

Here, we use Ng to denote the neural network. Moreover, there can be n examples, so we want to
sum up the losses and find © that minimises:

LOIXY):=) fly.u). U :=No(w:). (4.1.1)
i=1
Cost
A
4 Learning step
I
I
|
: Minimum
I
|
1 L =
Random W W
initial value

Figure 4.3: [llustration of gradient decent for training parameter w from [8]

To find O, we can solve analytically

d’

— =0
de

However, this is usually intractable. The alternative is the gradient descent algorithm. This is an

iterative algorithm that updates @ in steps until it converges. To elaborate, denote the current

step by 7 and the current parameters by ©,;, then compute ©;,, by

dl
O =0 —y—=| .
O],
The key insight is that moving © in the reverse direction of the derivative will reduce the loss.
The algorithm is illustrated in figure 4.3 where the parameter w takes several steps and moves
gradually towards the minimal point.

At last, v in above equation is called the learning rate which controls the step size. It is important
to choose ~ appropriately as small leads to slow convergence and large + risks stepping over the
optimal point and failure to converge. There also exists adaptive algorithm like Adam [9] that
chooses ~ automatically.

The back-propagation algorithm applies gradient descent algorithm to train neural networks. The
idea is to compute gradient for parameters in hidden layers and input layers via chain rule and
so we can update them with gradient descent. The details are too involved to be covered in this
report. Interested readers can refer to [15].

4.1.2 Stochastic gradient descent and batching

Note that (4.1.1) computes the gradient over n training examples. Stochastic gradient descent
suggests that we can instead compute the gradient for individual example, which serves as an

19

estimation of the actual gradient. This can dramatically speeds up training as we do not need to
compute over all examples. However, the training might likely converge slower.

Batching is a middle ground between gradient descent and stochastic descent. It computes the
gradient for a mini-batch of size B. On one hand, the benefit of stochastic descent remains. On
the other hand, it can leverage modern computers’ parallelism capability to compute gradient for
the whole mini-batch simultaneously. The typical mini-batch has size 256 or 512.

4.1.3 Python implementation

We will use PyTorch to implement any deep learning algorithm in this report.

4.2 Deep learning for utility maximisation problem

The paper [4] introduces two novel approximation algorithm based on deep neural networks. While
the paper develops the methods for general utility maximisation problem, our study extends both
methods to solve Markov-switching quadratic utility maximisation. In this section, we will explain
both algorithms introduced in [4].

4.2.1 Deep controlled 2BSDE method for Markovian problem

The deep controlled 2BSDE method was introduced in [4, Chapter 3]. It is derived from HJB
approach hence can only be applied to Markovian problems where r, p and ¢ are deterministic
functions of time ¢. Furthermore, we need to assume the optimal control = can be expressed as a
deterministic function of wealth process X, ie.

me o= w(t, X¢).

Recall the primal value function u for utility maximisation is defined as in (2.2.3).
Theorem 4.2.1. Suppose that the value function u € Cl‘:”([ﬂ, 1) % R)WC“([O, T = R), and there ex-
ists an optimal control m € A. Then there exist continuous processes (V, Z,1') solving the following
2BSDE:

dV; = Z,x [o(t)dW,

dz, = —Zr(t)dt + Uyw] o (t)dW,
with boundary conditions Vi = U(Xp) and Zp = 0,U(Xp).

In essence, the processes V, 7 are defined as V; := u(t, X;), Z; := d,u(t, X;). Recall that wealth
process X, follows dynamics in equation (2.2.2):

dXe = X¢ (r(t) + 7] o(£)8(2)) dt + Xy o (£)dW,

with initial condition Xy = xy. Together with dynamics in theorem 4.2.1, we can simulate process
X, Vand Z fromt = 0 tot = T. To perform the simulation, split the interval [0,7] into N
discrete steps and index by & =0,..., N. Then starting with
Xo=m0, Vo=wo, Zy=z0,

we can apply Euler-Maruyama scheme using:

Xpy1 — Xy = Xp(r(ty) + ml o(8)0(8:)) Aty + Xpm[o () AW,

Viir — Vi = Zym] a () AW,

Ly — Zy = —Zyr(ty) Aty + Dyl o[t) AW,

where Aty := tip1 — b, AWg := Wigr — Wi, Suppose for some vy and zg such that the simulated

Vp and Zp match U(Xyp) and 8, U(X7p), then as vy = u(0, zy) by construction, we have found the
value of u at .

20

However, the process I and control 7 are still unknown. Note that I'; is approximating de.u(t, X¢),
and control 7 is assumed to be a function of X;. Therefore, Deep 2BSDE uses neural network to
approximate both I'y and m; by:

't = Ner (1, Xt) (4.2.1)
m = Ne- (1, Xt) (4.2.2)

where Ng(+) stands for some neural network with parameter ©. Instead of training a single neural
network that takes time and wealth as input, it is suggested to have one network per time step k.
For every step k, we then approximate

I, = J‘\"(-_)l'()i-g-)
m: = Ner (Xk)

where @} and O are for step k. This replaces a single complicated model with multiple simpler
and smaller models. Although it has a cost in memory, it is often faster to train a collection of
smaller models.

Training neural network

Putting all the parameters together, we define
of .= {eL}. O™ :={ef}.

and we need to train vg, zu_.(-)r_.(-)"'. For each epoch, the algorithm performs two rounds of simu-
lations. The first simulation freezes ©7 and trains vy, 2o, O using dynamic loss:

Lp =Ly, 20,0") = |Viy = U(Xx)[* + 5|2x — 0:U (Xn)"

Minimising £p trains the neural net to reach the terminal condition. In the second simulation, it
uses the updated vg, z5, OF. With these parameters fixed, it trains ©7 step by step, and for each
step k, it trains ©F by

Lo(k) = L(O] k) = —F(t,, Xp. T 23, 1)

where F' is the Hamiltonian control defined in (2.2.4). Minimising £, trains ©7 to find op-
timal control w that maximises the Hamiltonian. The algorithm repeats until the parameters
converge.

4.2.2 Deep SMP method for non-Markovian problem

As previously discussed, HLJB requires the control problem to be Markovian. However, this is not
a constraint for SMP. The deep SMP method is derived from SMP and so inherits this advan-
tage. The algorithm aims to solve the dual problem first and recover the primal solution via the
duality relationship. This is becanse the dual SMP condition is simpler to achieve than its primal
counterpart. Recall the dual problem from section 2.2.2. The dual process ¥ has dynamics :

dYs = Y, (r(t) + Sxc(v)) dt — Y, (0(2) + [o(8)] "or) Wiy Yo = o

The dual problem has adjoint processes, see [11, Chapter 2|, (P, ():) that satisfy the BSDE
below:

dPy(t) = [(7(t) + dic (ve) Po(t) + Qa(t) T (8(2) + [o(t)] 'ue)] dt + Qo(t) AW, (1.2.3)
Py(T) = —D,U(Yy).

Note that P, and)y are processes and we do not write t in subscript to avoid clustering of
symbols.

21

Theorem 4.2.2. [4, Theorem j.1] Let (yo,v) be an admissible dual control. Then (yo,v) is optimal
if and only if the solutions (P, (Qu) in (4.2.3) satisfy the following:

TI-10.
B0 =z, PO 4 pywaa) + Qu(t) o) 0 = 0
2(t)
for allt € (0,7 and almost surely.

Notice that the process P has both initial value at + = 0 and terminal value at ¢+ = T specified.
This system of FBSDE is one of the motivation for deep SMP method. The algorithm works as

follows. We split time horizon [0,7] into N discrete equal-size steps, indexed by k = 0,..., N.
Then we use Euler-Maruyama scheme to simulate processes Y and P, starting from Yy := wy,
Py(0) := zy:

Yierr = Yo — (B — t)Ya(r(te) + davr)) — Ya (8(tn) + o (f)_11-'A:)T dWi,
Py(k+1) = Py(k) — (tr1 — ti) [r(t) Pa(k) + Q2 (k)T Bty)] + Qz(k)dW,.

As the process (J» and the dual control v are unknown, we will approximate them at each step k
by neural networks:

Qu(k) = Pak)a(t) Tha Nz (%))
v, = Ney (Vi)
where Ng(-) denotes a neural network with parameters ©. h, is some differentiable surjective
function that ensures second condition in theorem 4.2.2 is satisfied. Also. as we do not know initial

value of Y, i.e. ¥, so we need to learn it from our training as well. Hence, putting all parameters
together, we have

Yo, e = {0 &—ul 0" := {(')J's}k\‘z_ul

In order to learn these parameters, we can compute their losses separately and apply back-
propagation to update them individually:

L(yo) = E [f}(lﬁ‘\r‘)] - Toko.
£(0%9) :=E [|’D Uy)7132(1\-')|2} _.

£(6}) := B [| R(k)da(v) + Qa(k) Talte) e

It is not hard to see the origins of these losses: yy's loss is to satisfy the dual objective; (Q2's loss
is derived from boundary condition of BSDE (4.2.3); v's loss is to satisfy the third condition of
theorem 4.2.2.

Remark 4.2.3. It is worth noticing that the Wiener process W is the only source of randomness
during the simulation. As we want to update 1y, ©F and ©V separately, we typically perform
three simulations per training epoch. It is recommended to keep using the same W instead of
spawning three different instances of W. This not only saves computation cost but also increases
convergence rate of the parameters.

Theorem 4.2.4. [, Theorem 3.%] Suppose (§y,0) is the optimal dual control with corresponding
state process Y and (Py. Q) satisfy the BSDE (4.2.3). Then the primal state process X associated
with the optimal primal control T satisfies:

Note that unlike the deep 2BSDE method, we do not have a parameter representing the primal
solution u(0, zy). To workaround this, we recall the duality relationship:

u(0,0) := sup E[U(Xr) | Xo = o] < inf {us[f}'(YT) | Yo = yo] + ;1:[,3,“}.

With theorem 4.2.4, we can recover the primal state X. Therefore, we can estimate an upper and
lower bound for u(0, zy) by Monte-Carlo method:

M

M
1 . . X 1 P)
M ?—1 U(Py(N)) < ul(0,2) < IV ?—1 U(Yn) + zoyo.

22

Chapter 5

Main results

Previous chapters have covered the preliminary knowledge. In this chapter, we will present the main
results of this thesis, that is, the numerical methods for unconstrained Markov regime-switching
quadratic utility maximisation problem.

5.1 Deep 2BSDE for Markov regime-switching utility max-
imisation
As theorem 4.2.1 is only proven for ordinary utility maximisation, we first extend it to handle the

regime-switching case. We assume the problem is Markovian, i.e. the optimal control m can be
expressed as function of X; and ay:

wy = w(f o, X)
where 7 has one more argument «; compared to the ordinary case. We also assnme the problem is
Markovian, i.e., market dynamics r, o, p are deterministic functions of time ¢ and a;. Recall the
definition of value function u from (3.2.3).
Theorem 5.1.1. If for any i € [1,...,d], we have u; € C**([0,T) x R) nC"([0,7] x R); and
there exists an optimal control m € A. Then there exist continuous processes (V. Z,I') solving the
Jollowing 2BSDE:
dV, = Ziw] 0a, (D)dW, + u] dM, (5.1.1)
dZ, = —Zyr, (At + Uyw] o, (OdW; + 2] dM; (5.1.2)
with terminal conditions
VT = {-""n-;- (AT) ZT = 81'{-";(\-; (AT)
In above, we define the d-dimensional process
ur(t, At) e (t, X¢)
U = . oz = d,uy =
ualt, Xy) Iy ualt, Xy)
Moreover, M is a martingale process associated with Markov chain o and is defined in (3.1.2):

T
M; = o — QTE}'.,d.?.
0

The proof of theorem 5.1.1 is shown in appendix A.1. Compared to theorem 4.2.1, theorem 5.1.1
has added a jump term to the dynamics of process V' and Z. Notice that if e, is fixed then
dM; = 0 and we have recovered theorem 4.2.1. Similar to section 4.2.1, we effectively define V, Z
such that

Vii= o, (8 Xe), 2t = Opua, (t, Xi).

23

5.1.1 Front-to-back training

The extended 2BSDE algorithm works as follows. Theorem 5.1.1 provides the dynamics for process
V and Z. Together with dynamics of X, we can simulate X, V, Z from ¢ = 0 to t = T". Starting
with initial condition

)i[} = I, oy = 1), ‘/[} = Up, d[} = 0.
where my, iy is given as input to the problem, vy, 2 is unknown. We would like to find vy and z;

such that the simulated Vi, Zp match U,,. (X7) and 8,0, (X7). If so, vy is the solution to value
function u at (0, iy, zq).

To perform the simulation, we split time [0,7] into discrete equal-sized steps indexed by k =
0,...,N. As the Markov chain « is independent of Brownian motion W, we can simulate o inde-
pendently using algorithm in section 3.1. Then, we can simulate X, V. Z using Euler-Maruyama’s
scheme:

Vier — Vi = Zpm] 0o, () AW + uf dMy,
Zhir — i = —Zpra, (L) Ay, + U] 00, (8) AW, + 2] AM,

o o

where
Aty =t — i
AMy. = Myy1 — My = (g1 — ag) — Q ap(tepr — te)
AWg ~ N0, g1 — L)
In above, A" denotes normal distribution. Moreover, the definition of AM; implicitly assumes

that Markov chain o jumps at most once within [t,t;41). Moreover, the jump happens at the
beginning of next step.

We will then need to approximate ., Uy, wg, 2 with neural networks. By definition of these
processes, it is natural to express 'y, wr,2zp as functions of t, X;, ;. Moreover, we make the
assumption that the control is Markovian, so that it can be expressed as function of {, X, «; too.
Similar to the ordinary case, instead of having a single model and passing time as input, we will
have one model per step k. Moreover, instead of having a; as the input to the neural network, we
will have one neural network per Markov state ¢ = 1,...,d. This is because o is discrete and any
function that takes it as input is discontinuous. Neural networks are only suited for approximating
continnous functions. To summarise, denote the current step as k, then

u, = (Nep (Xi), ..., Ny (Xi))"
zp = (Nez (Xi), .-, Noz (X)) T
Iy =Nor (X&)
T = Ner (Xi)

koo
where Ng(-) denotes a neural network with paramteres 6.x For convenience, we define
r r
e = {9;;}&-:4},&&1: 07 = {ei-‘t}k?[},itf: e = {93‘,}:5-:4},:'(:1-

In addition, we define ©F := (vo., 2,0%, 0%, V). To train OF, we compute the dynamic loss £p
defined as:

Lp = LOP) = Vi — Uy (X3)I* + %|ZN — 0,Uay (XN (5.1.3)

This trains the network to satisfy the terminal conditions for process V' and Z. Next, the control
loss L, (k) is computed for each step k:

La(k) = L(O] .) = —Ftp, ap, Xp,m, Z3, Iy)

[P
where [is the Hamiltonian defined in (3.2.4). This motivates the network to find the optimal
control 7 that maximises Hamiltonian F'.

The neural nets are trained iteratively. Similar to algorithm presented in section 4.2.1, we perform
two rounds of simulations per epoch. In the first round, we freeze ©™ and train © using dynamic
loss £5. We then update parameters ©F. In the next simulation, we will use the updated ©F and
train ©7 using control loss £;(-). The training completes when the paramteres converge.

24

5.1.2 Back-to-front training

The training algorithm mentioned in previous section is called “front-to-back” as the simulation
runs from t = 0 tot = 7. As we will see in chapter 6, the “front-to-back” approach trains the
network only at the hotspots, hence neural networks do not learn the overall shape of their targets.
In other words, the network is able to learn the optimal control m when state X is at the most
probable path. However, for X that deviates from the mean, it produces terrible estimation.

We can try different zy. However, this is messy as for each zy, we have a separate set of neural
networks approximating w, z, I and , and it is a challenge to combine them. The most intuitive
solution is to train the same neural network but with different starting point zy. Moreover, as we
will now effectively approximate the value function u and its derivative d,u for a range of x in
each step k. It is then inspired to use the approximation from step k + 1 to train step k.

We call this new approach “back-to-front”. It works as follows. Suppose step k + 1 is already
trained and we are now training step k. We choose x., iy randomly from range Rp and {1...., d}.
We then initialise X, e, V', Z as

Xy =z, oap =i, Vipi= J\"(:;;_Ik(;l.‘g.), Zy = "V‘:’i-..k(mi')'

We simulate as described in front-to-back but only for single step, and obtain X1, Vig1, Ziy1.
By construction, we should have

Vipr = (e, g1, Xerr)y, Vi = Oetlfay 1, py1, Xpg1)-
As step k + 1 i8 already trained, we can approximate u and d,u in above equation. Finally, we
compute the dynamic loss as
r] 2 1, . , .
Lp = Vi1 — wltpqrs oppr, Xppr)|” + §|4+1 — Bpultpyrs apgrs Xpga)[™

The control loss £, (k) is the same as before. For the special case k = N — 1, we do not need to
use approximations for 4 and dyu as we can compute them directly:

w;(T,x) = U(z), Opu(T,z)=0,U(x).
Compared to front-to-back, back-to-front offers huge time saving as we no longer need to perform

the full simulation. Moreover, at any point of the training, we only need to keep neural networks
for step k and k+1 in memory. This means memory consumption is no longer linear with N.

One important hyper-parameter is the ranges {Ry}y. For example, we can fit against Ryq1 at
step k + 1. It might so happen that X;,; simulated from step k is not within Ry..;. When this
happens, we have to drop this sample path as step k + 1 cannot approximate the value function
for this value of X; 1. It can also happen that the optimal path is not within the range. This will
no doubt lead to approximation error. In order to select the ranges, we can run a front-to-back
simulation and record the ranges of X, for all steps k. Then we can fit the model back-to-front
with the estimated ranges.

It is also possible to establish the range for X for any time £. Recall X's dynamics (3.2.1):
dXe = 1o, () Xedt + 7] 00, ()0, ()dt + 7] 0, (£)dW,.

As Markov chain a jumps, dX might jump but process X is still continuous. Also, d.X; is a normal
variable with mean being the drift term

Ta, () Xedt + 7] 0q, ()0, (t)dt
and standard deviation being
?r;ror(,z (t)\/&.

Therefore, X;. being the summation of all {dX,},<; and z;, is also a normal variable. Moreover,
as W is a Brownian motion, dW; is independent of each other. Therefore,

.
E[X,] = —] E[ra,(s)Xe+ 7} 00, (s)00,(s)] ds
"]

25

and
.
VX, = / V() 00, (£)]dt.
1]

Suppose we are able to calculate the mean and variance, we can then compute a range where we
are confident X; will be in.

5.2 Deep SMP method for Markov regime-switching

In this section, we extend deep SMP method introduced in section 4.2.2 for Markov-switching
quadratic utility maximisation. Recall the primal problem is to find:

sup E[U,, (X7) | Xo = w0, g = g
TEA
for some zy € R and ¢, € /. Similar to the original method, we will do so via the dual problem as
its SMP condition is easier to achieve. From section 3.2.2, we have dual process Y
dY; = —r,, Yidt — 9(1 YVidW; + "I':T dM;, Yy =1

where y and « are the dual control. The dual’s adjoint processes (p, ¢, s) satisfy BSDE:

dpe = (1o, (E)pe + 0L (1)) dt + qf AW, + 5, 0 dQ;

[
-1 - Govr
T — .
Ga T (7'“-;-

pr =
In fact, by theorem 3.3.1, we can omit the process s and obtain a FBSDE:
dpe = (ra, (O)pe + 00, ()qr) dt + g AW,

-1 Gt
— l_r = o
=G TG,

Po = Tp-
Note that p has both initial and terminal value specified.

The extended deep SMP method works as follows. We split time horizon [0,77] into N discrete
equal-size steps, indexed by k= 0,...,N. We can simulate the continuous Markov chain e using

algorithim mentioned in section 3.1 with ayg := 4. Moreover, from the dynamics of ¥ and p, we
can simulate them by Euler-Maruyama scheme. Starting from

Yo :=wo, po:= T,
and denoting the current step by k, we can approximate the dynamics of ¥ by:

Yipr = Y — o (£0) Vi (tegr — ti) — 0, (82) Yo AW, + 2] AM,,

where
AM; = Myg1 — My = (g1 — ap) — QTF‘-‘A-(h-H — 1)
AW ~ N(0, 41 — 1)

where A" stands for normal distribution. Similar to the deep 2BSDE, we assume the continuous
Markov chain a jumps at most once within interval [ty,#1+1). More importantly, we assume the
jump happens at the start of the interval. Note that we expect the resultant error to decrease as
we reduce the step size. Similarly, we can compute

Pt = Pic + (Ta (B)pr + 61, (8)) (tig1 — t) + g AW

26

However, we do not actually know the values of yo, 4% and gr. To workaround this, we assume
that

T = fr(t.Y:)
qe = folt, Yz, ove)

where fi ¢ [0,T] x R — B, f5:[0,T] x R x I — R" are some functions. We then approximate f,
and fs by neural networks. To elaborate, for each step & =0,..., N — 1, we will have one neural
network with parameter ©} such that

ot i) = Neg (1)

with Ng(-) representing the neural network. As mentioned in the 2BSDE case, having step-wise
models reduce the overall training time. As for fs, for every step k and Markov state i € I, we
define a neural network with parameter ©] ; such that:

Jalle, Yo, o) = Neg (Yy).

Remark 5.2.1. For f,, it is important to have one neural network per Markov state i. Suppose
we instead use single neural network such that

Ja(t, Vi, on) = Nea (Vi ag).

As oy, is discrete, g is also discrete when fixing Y. This discontinuity is problematic as neural
networks are not suited for approximating discontinuous functions.

For convenience, define
07 :={0) k., O":={0] }ri.

In order to train these parameters, we need to compute their losses:

L(yo, ©7) := Muy (Y1) + Ty, (5.2.1)
Yo + go. 2
L(OY) = (pT—iT(, g") . (5.2.2)

The first loss guarantees the optimality of dual control. The second loss aims at the terminal
condition of the FBSDE. For each training epoch, we run two rounds of simulations. In first
round, we freeze B9 and update (yy,07). In second simulation, we freeze (yy,©”) and train ©9.
For both simulations, we should use the same instance of o« and W.

Theorem 5.2.2 (Equivalence of dual and primal solution). [10, Appendiz B.3] Suppose (in,7)
is optimal for the dual problem. Let Y be the associated dual state and (p.i,§) be the associated
adjoint process that satisfy BSDE (5.2.1). Then the optimal control & and the associated state
process X satisfy:

oo,
t=lod] d

T =
Xz =P
for allt €0,7.
Finally, with theorem 5.2.2, we can recover the optimal state process by X; := p;. Recall the

duality relationship (3.2.8):

Sllle[ff"w-(XT] | Xy =xp,0p = iu] = liflrf {E[mmy- (YT] | Yo = wo. g = ?fu] T ii?uyu} .
mE R

We can therefore use Monte-Carlo simulation to approximate the expectation on both sides. This
gives an upper bound and a lower bound to solution of primal problem. That is:

M M
- ST - - . 1 s
fo'm-(?’l") < sup E[Uq, (X7) | Xo = z0. 0 = ig] < M Zm”r(}ﬂ + Tolo-
TeA !

i=1 ! j=1

1
M

27

Chapter 6

Numerical example

In this chapter, we will present a numerical example, verify the theoretical results in chapter 3 and
assess the mumerical solutions from algorithms introduced in chapter 5.

6.1 Crafting a numerical example

In our numerical example, we make further simplification that market dynamics r, o, # are constant
in time and only depend on state of Markov chain. To reflect the simplification, the dynamics of
wealth process X becomes

dX; = {f'th + 77 Ty O, bt + T 00, dWr Xo = 0.

And the value function becomes

[y

Gop X3 — gop X7 Xi=tay =i

]

S

w;(t,) =sup E [7_
™

We consider a Markov chain with d = 2 and the market with generator matrix:

o=(3 1)

which assumes we are equally likely to jump between two states. Also, there should be one jump

on average within interval [0,1]. Moreover, we consider n = 2 stocks. The time horizon is [0, 1],
ie., T = 1. The following lists the other parameters:

1 = 0.08 1y = 0.06

pp = (0.1 0.06)" po = (0.1 0.08) "

S (n.z n‘) oy — ([].1 0)
0 02 0 0.1

G =15 Gr =05

g1 =—2 gy = —1

We would like to solve the value function w;(t,z) for iy = 1 and zy = 1.5. The state 1 represents
market during recession and state 2 represents market during growth. During recession, interest
rate is higher, stock growth is lower and market volatility is higher. On the other hand, people are
easier to be satisfied. That is, the utility per wealth gain is higher. Figure 6.1 demonstrates the
difference in utility between two states.

—— state 1; recession
—— state 2; growth

-0 -0.5 00 0.5 1.0 L5 2.0 2.5 3.0
wealth

Figure 6.1: Utility versus wealth during recession (state 1) and growth (state 2)

6.2 Verify theoretical results

6.2.1 Primal problem with HIB

We will solve the ODEs in section 3.3.1. Note that b and ¢ have systems of homogeneous ODE so
can be solved analytically. For example, ¢ has solution:

Aot
z1e z T
c(t) = (vi va) (”;P,\Qz) ; (,,2) =(vi v2) (-G) (6.2.1)
where v and A are the eigenvectors and corresponding eigenvalues of matrix A.. However, it is
difficult to solve a analytically as its system of ODEs is not homogeneous.

Instead, we can approximate a;(t), b;(t), ¢;(#) numerically. This belongs to a broader class of prob-
lems called initial value problem. The approximation algorithm works as follows. We split [0, 7]
into discrete steps and perform step-by-step integration. Suppose we would like to approximate
z(t) for t = 0, and z(¢) satisfies ODE:

dx

= ()

where f is some function and z(0) is known. We can start from z(0) and compute for some small
h = 0:

z(t+h)=z(t) + f(t,z(t)) * h.

This is called the Euler's method. There are more advanced algorithms such as those covered in
[14]. 1 skip the details as this is not the main focus of this report.

I have chosen to use Runge-Kutta method as it was already implemented in multiple python
packages. To assess the accuracy of the Runge-Kutta approximation, we can compare the approx-
imation for ¢ against its analytical results from equation 6.2.1. As shown in table 6.1, the relative
error is below (.1 percent at time 0.

c1(0) ez (0)

Runge-Kutta -0.096725 -0.096713
analytical -0.069190 -0.069205
relative error(%) 0.0123 -0.0219

Table 6.1: Relative error of Runge-Kutta method for ¢

Remark 6.2.1. As we know ¢;(1") instead of ¢;(0), we actually approximate &;(7) = ¢;(T — 7)
with Runge-Kutta method then convert back to e (t).

29

Figure 6.2 shows the approximated e;(t), bi(t), ai(t) for t € [0,1].

— it o — m(f
T3 calt) LAG]
a1z
a8 a1
a0
u -1 =
14 a6
2 04
1.2
a0z
14
10 aoa
[0z] i s 1 00 0z 04 13 [m [0z [i3 s 10

Figure 6.2: Primal problem with HJB, plotted approximated c;(t),

method for time t € [0, 1]

6.2.2 Dual problem with HIB

bi(t), ai(t) from Runge-Kutta

Unlike the primal case, ODEs for ¢;(¢), i)i(f]_. a;(t) from section 3.3.2 are non-linear. We can still
approximate their solutions with Runge-Kutta method. The results are shown in figure 6.3.

133
W=7 - —
5 14 130 i
154
15 123
164
16 120
14 .
17 115
12
15 110
104
18 103
[LER — bk
by
20 100
an 0z a4 08] 1 i 0z a4 08 as 14 i [04] 05 10

Figure 6.3: Dual problem with HIJB, plotted approximated &(t],
method for time t € [0, 1]

Ej(r). a;(t) from Runge-Kutta

To verify the equivalence relationship, we transform the dual solutions into primal solutions ac-
cording to (3.3.4). We then plot the transformed primal solutions (solid) versus the actual primal
HJB solutions (dash) in figure 6.4. We can see that solutions match precisely for e;(t) and b;(f).
There is a small difference for a;(t) which is likely due to approximation error.

— -1/ |
1 P
s 1/¢ -
L
™ ot -
—
== ez L
as —
w1 -
12
14
a0 0z 04 04 s 10 o0 02 04 0 0s 1 a0 02 04 05 0s 10

Figure 6.4: Equivalence between primal and dual HJB solutions, plotted transformed dual solutions

versus actual primal solutions

30

6.2.3 Primal problem with SMP

Recall from section 3.3.3, we can solve the adjoint process p by solving v:(-), éi(-) : [0,7] x R
for every i = 1,...,d. Figure 6.5 plots the solutions to equation (3.3.5) and (3.3.6) obtained by
Runge-Kutta method. Moreover, we also verified the equivalence between HJIB and SMP solutions
as shown in figure 6.6.

00 0z 04 06 [E] 1w 00 0z 04 06 (] 1w

Figure 6.6: Showing equivalence between HJB and SMP solutions to primal problem; left graph
plots v; (solid) against b; (dash); right graph plots ¢; (solid) against ¢; (dash); all curves match
precisely so equivalence relation holds in our numerical example

6.2.4 Dual problem with SMP

Recall from section 3.3.4 that we can solve the dual problem with SMP by solving é:(-), U (-)
[0,T] 5 Rfori=1,...,d. We can again solve (3.3.10) and (3.3.11) by Runge-Kuntta method. The
results are plotted in figure 6.7.

20 > _,_'_/_'___/
¥2 05 4 —
194 —
104
L5
124
174
141
Lé+
146+
1.5
154
L4 —
et ;. 4
an 02 04 s s 10 an 02 04 s s 10

Figure 6.7: SMP solution to dual problem, 1,5;(-] and cj.u() plotted between [0,1] for i = 1,2

Furthermore, we can verify the equivalence relationship between HJB and SMP solutions. This

31

is shown in figure 6.8. As we can see, the solid lines and the dash lines are indistinguishable, so
equivalence relationship holds.

LR pe— i
" 05

N el ¥ /

— oy /f 10
15 L

7/ —
'y 12 St
17 / ™~
1 rd 4 =~
& =g
- ™~
L 16 - AN

1 ’_,-' — % hY

[15 & \
14 == - \

b——t— | L.l \

[0z 04 06 05] [0z 04 06 08]

Figure 6.8: Showing equivalence between HJB and SMP solutions to dual problem; left graph
plots 9y (solid) against —b; (dash); right graph plots ¢; (solid) against —e; (dash); all curves
match precisely so equivalence relation holds in our numerical example

6.3 Deep 2BSDE method

In this section, we use deep 2BSDE method introduced in section 5.1.2 to solve the primal problem
and report the results here. Recall that we aim to find the value of u; (0, zy) where iy := 1,2 :=
1.5. We will also approximate the corresponding optimal control .

6.3.1 Baseline

For the baseline result, we use N = 10. Recall that for every step k =0,..., N — 1 and Markowv
state ¢ = 1,....,d, we have four neural networks approximating wy,, zp, 'y, 7 respectively. We will
use the same architecture for all neural networks. It is a fully-connected three layer network with
one input layer, one output layer, and L = 2 hidden layers. Each hidden layer has { = 10 hidden
nodes.

The left subplot in figure 6.9 shows the evolution of dynamic loss L defined in (5.1.3). It is an
indicator for determining if the training has converged. Note that the graph shows the training of
5,000 epochs and x-axis represents the percentage of epochs passed. As shown, the dynamic loss
starts to converge at around 0 after 40% of epochs.

dynamic loss ema=0.000147 relative error vy ema=0.003573 relative error zp ema=0062013
1z
o
1 04
0s
05 4
[
ER
02
[2
1
0z o 1
ag [o
T T T T T T T T T T T T T T T T T T
a 2 a0 e s 100 a 20 i &0 £ 100 0 20 10 i) £ 100
epoch epoch epach

Figure 6.9: Ewvolution of losses during training, (left) shows dynamic loss £, (centre) shows
relative error of vy, (right) shows relative error of z;

Moreover, the parameter vy and zp is supposed to be trained towards w;, (0, x¢) and dyui, (0, xq).

32

From section 3.3.1, we know that w can be expressed as an ansatz (3.3.2)
1 2
w(t, r) = Er.'t-(t);r + bi(t)r + a;(t),

and ¢, b, a are solved for our numerical example in section 6.2.1. Hence, we can compute the
analytical value

ug(0,1.5) = 1.1383, d,up(0,1.5) = —0.1732.

Then we can compare our approximated vy, 2z, against this and calculate the relative error. The
centre and right subplots of figure 6.9 then shows the evolution of these losses. Firstly, we can
see that dynamic loss plotted on the left is a good proxy for the actual approximation error. The
relative errors follow the same pattern as dynamic error and converges around 0 after 40% of the
epochs. Moreover, the title shows the exponential moving average error which indicates that vy
has only 0.3% relative error at the end of training. This is a remarkable result. On the other hand,
the error in z, is at 6% which is much larger.

Next, we examine the paths of state process X. We take a batch of 512 simulations and plot them
in left subplot of figure 6.10. We can see that X fans out from a single point xy = 1.5. This
is as expected. The paths are forming a single cluster. This is also expected from X's dynamics
(3.2.1):

dX, = 7o, (O X, dt + 7] o0, (£)0,, (Hdt + 7] oy, (t)dW,.

As Markov chain « jumps, d.X might jump but process X is still continuons. In contrast to this, the
dual process ¥ has a jump term in its dynamics (3.2.6). As we will later, process Y's trajectories
will split into a couple of clusters. Furthermore, we then look at the sample probability density of
Xn—1 as shown in 2nd plot of figure 6.10. We have also plot normal distribution with sample mean
and sample deviation (orange dash line). It is obvious that Xy -1 follows a normal distribution.
This is again as expected as dX is a normal variable and so sum of dXj for £ < N — 1 is still a
normal variable.

sample paths for X probability density of Xy,
1675 =1 sample pdf
— = normal pf
1650 b
e
1635
1500 15
&
g
= 1573 [
=
15304
1525 s
1500
14754 L
0 2 H & 5 155 150 1575 le0 1435 1e 1475
stepk Ko

Figure 6.10: Sample trajectories of process X, (left) shows the paths on all steps, (right) plots the
sample probability density of Xy_; and compare to normal distribution

Finally, we want to assess how well the neural networks approximate their targets. Recall that for
every step k and Markov state i, we approximate wg, zy, 'y, m: as functions of X;. We can also
find the analytical values. As shown in section 6.2.1, we have an ansatz (3.3.2) for value function
u. Then we have analytical forms for uy, z;, 'y from their definitions. As for 7, we can obtain
its analytical expression from (3.2.5). Finally, if we fix k = N — 1, ¢t = ¢, and ap = i, then
the analytical forms become just a function of X;. So we can compare the analytical valnes and
numerical estimations over a range of . We have chosen to use the = range from our batch of
simulations. This is plotted in figure 6.11.

Starting with w in the first colmmnn, it seems the approximation is far from the analytical values.
This is because u is only used in w[dM; term in (5.1.1). As Q in our numerical example is
symmetric, i.e. equal chance to jump between state 1 and state 2, w, dM; results into some

33

u(t = 0.9000,i =1, x}) 2[4 = 0900 =1, ¥ Tt = 09000, i = 1. %) Tt = 0900, = 1.x)

IS5 L®I LTS LaM 165 165 LS 155 1530 I5% LN L&S L0 L& L35 LS LD Ll L@5 6% Ls L5 158 157 LAW L&S L& LS

Figure 6.11: Approximations to w, z, ', at last step, the first row shows for a;, = i = 1 and
second row shows for i = 2; compare against analytical solutions (dash)

multiply of (us(f,z) — wy(f,2)). Hence only the difference is trained. If we instead compute
wy — uq, we see that it is around —0.35 from numerical values and around —0.3 from analytical
values. There is still a gap which is likely due to training error. The same applies to z which is
shown in second column. z is only used along with dA;. The error is larger in z which is consistent
with what we observed between vy and z;.

Next, we look at I'y in 3rd column. Notice that the y-scale is much smaller comparing to other
graphs. The relative error in both i = 1 and i = 2 is well below 1%. Neural networks have
approximated [' pretty well. Finally, we look at .. Note that as n = 2, m, € R? so there are
two curves for each state. We can see that the fitting is good around = = 1.6 but gets poorer as
x moves away [rom 1.6. To understand why the network is well trained at 1.6, notice that 1.6
is the mean of normal distribution in the right plot of figure 6.10. As paths centre around 1.6,
parameters activated at = = 1.6 have the biggest impact on final loss, so get the most training. It
is no surprise they are trained the best. The more intrigning is why it does not train well besides
x = 1.6. Notice that the gap between approximation and analytical is actually symmetrical and
has opposite sign around = = 1.6. Recall that ©} is trained to maximise Hamiltonian F* (3.2.4)
which includes a linear term of w. We therefore suspect that any [over/under]estimation in one
side is cancelled out by [under/over]estimation on the other side.

6.3.2 Impact of step size

N L I epochs B relative error vy relative error zp Time(s)
502 10 5.000 512 0.0079 0.1260 01:23
10 2 10 5,000 512 0.0039 0.0611 02:48
20 2 10 5.000 512 0.0021 0.0300 05:34
50 2 10 5,000 512 0.0016 0.0238 06:52

Table 6.2: Impact of different number of steps NV for 2BSDE front-to-back

In previous section, we have established the baseline model using N = 10. In this section, we
experiment with different number of steps N and evaluate the impact on training accuracy and
training time. We will keep other hyper-parameters as before. For each N, we will train the
network with same number of epochs and same batch size B per epoch. In all cases, the training
converges. The results are shown in table 6.2. As shown in figure 6.12, the increase in training time
is roughly linearly with number of steps N. On the other hand, the relative errors show a non-
linear improvement. We do expect improvement from larger N as quantisation error from Euler-

34

Maruyama scheme is reduced when At reduces. However, it was not clear why the improvement
is not linear.

time(s) relative error oy relative error =
350 e iy .
. H 0124
. wor 4=
am
010
.00
504 3
.00 < a.08 1
2w _ B d
.00 1 '] -
. . 006 3
b 000
. ana -
100 4= oo 4 L L T
. | h 002 L.
10 1 2 = 10 0 30 40 30 10 20 30 40 30
N N N

Figure 6.12: Plotting of impact of training time and relative errors against different N

6.3.3 Impact of deeper and wider network

In this section, we will experiment with different neural network architectures including changing
number of hidden layers L and mumber of hidden nodes per hidden layer [. of steps N and evaluate
the impact on training accuracy and training time. The results are shown in table 6.3. As shown,
there is no obvious improvement in relative error when we increase or decrease L and [. 1 think this
can be attributed to the fact that, in our numerical example, the target functions are all roughly
linear. This is obvious to see from figure 6.11. Hence making the model wider/deeper, which
inereases non-linearity of the model, does not improve the accuracy.

N L | epochs B relative error 1y relative error z; Time(s)
0 1 10 5,000 512 0.0039 0.0613 01:51
0 2 10 5,000 512 0.0039 0.0611 02:48
0 2 20 5,000 512 0.0039 0.0613 03:14
0 3 10 5,000 512 0.0040 0.0612 03:31

Table 6.3: Lmpact of different number of steps N for 2BSDE front-to-back

35

6.4 Deep 2BSDE method back-to-front

In previous section, we use the front-to-back approach for deep 2BSDE method. As shown in figure
6.11, we can see that neural networks do not learn the shape of their target functions. This is
because the networks are trained only at the hotspots. In this section, we will apply the back-to-
front approach which should learn the shapes of the target functions well. We will use the same
network architecture as previous section. It will be a fully-connected multi-layer neural networks
consists of one input layer, one output layer and L hidden layers. Each hidden layer contains [
hidden nodes. We use sigmoid as the activation function.

6.4.1 Baseline

We will use N =5, L = 2 and [= 10. As mentioned, one additional hyper-parameter for back-to-
front is the ranges R, each step k is trained on. We will use the same range for all steps:

Ry =R :=[1.0,2.0].

Notice that zg = 1.5 is the mid of this interval.

We firstly train the last step, i.e. & = N —1, for 30,000 epochs and a batch size of 512. Figure 6.13
shows the evolution of its losses. Note that the x-axis is scaled down to represent the percentage
of epochs done. The left figure plots the dynamic loss £p (5.1.3) against training epochs. We
also compute the relative error between analytical value of w;(f,) (3.3.2), obatined by Runge-
Kutta method, and approximations from neural networks. The error is computed and averaged
over 50 evenly spaced points within range R. The centre diagram plots for state i = 1 and the
right diagram for state i = 2. It is worth noting that relative error is not used during training
as it requires an analytical solution which most problems do not have. This is used only for
validating the performance of our neural networks. Moreover, both the dynamic loss and relative
error decrease swiftly and converge around 0. Furthermore, the dynamic loss and absolute errors
demonstrate similar patterns which suggests that dynamic loss is a good proxy for the absolute
error. This makes sense as dynamic loss is partly a square of the absolute error.

dynamic loss ema=0004532 relative error 1y ema=0.0224 relative error iy ema=0 0351
10 b 05
0s os 04
£ ouaq Eus Eos
i : :
§ £ £
54 T o4 702
N N) L\/——ﬂw
00 a0 i)
a 50 100 150 et} a 50 100 150 200 a 50 m 150 00
epach epach epach

Figure 6.13: Evolution of losses of step N —1 during training, plots of dynamic losses (left), relative
loss of u for i = 1 (centre) and ¢ = 2 (right), x-axis represents percentage ol epochs done

Finally, the title of centre and right plot states the exponential moving average of relative error, and
it is around 2% and 3.5%. This is certainly not as good as the 0.4% from front-to-back approach.
However, that was computed only for zy = 1.5 instead of averaging over 50 points. Also, back-to-
front appraoch is approximating the entire curve instead of a single point, so additional error is
inevitable.

After determining the training has converged, we now examine the predictions from neural networks
and compare them against the benchmark. In order to compute the analytical values as benchmark,
recall that u has antasz (3.3.2). Then by construction and (3.2.5), we can obtain analytical forms
of wg, z¢, I't and ¢, which is some function of £, a¢ and X;. Then for any step & (so t := #;) and

36

O, % 2t = SN, %) (LA,) = O x)

04 Las
S
02 S £
on L35
0 LE
1 LS
04
\ 138
i a8 =
1 Ll
20 o 12 f4 U)
2zt~ ORI, x)
— ‘\\ "
04 -
N \
L . e
.
o \
0l] 5
a0z L
20 12 [4 L) [VY I w1z a1)

Figure 6.14: Compare approximations at step N — 1 for w, z, I' and 7 versus their analytical
values; approximation is in solid line and analytical in dash, note that 7 has 2 lines, one for each
stock

Markov state ay := i, they are functions of x. Similarly, our neural network takes X; as input,
hence we can compare approximation with analytical solutions over a range of x. This is shown in
figure 6.14 with the solid line being our approximations and dash line being the benchmark.

From figure 6.14, the approximations to u, z and 7 have matched with the benchmark for both
Markov states i = 1 and 7 = 2. As for I', it might seen at first that there is a large mismatch.
This is actually due to the small y-axis scale. The actual relative error is around 0.5%. The neural
networks have managed to learn the correct shapes and values. This is in great contrast with figure
6.11 which shows front-to-back does not learn the actual shapes of target functions.

Finally, it is interesting to observe the approximations outside the designated training region.
The last step is trained with = € [1.,2.]. We can instead plot for = € [—1,4] as shown in figure
6.15. Unsurprisingly, the neural network performed really poorly. In general, neural network does
not generalise well outside of the training domain. As mentioned in the previous discussion, this
motivates the requirement of capping z when training back-to-front, that is, if = is outside of the
training range of next step, we will ignore this training sample and do not compute the dynamic
loss. This is also a problem with front-to-back training. When X; advances into a rare path, neural
net performs really poorly and generate large gradient, causing instability for training.

a4 = OENLY ilt = 0EN0x Tyt = 08000, Tyl = 0S00, x
. 3 Lal
e 1
— T [
! \\\ L3] = "
1 0 \\ L wn
2 ! T~ 12 \
—1 %
3 5 . Lo
5
T i H H 3 1 0 H 3 H 1 o 1 B H H
g, x| T2t = (F8000, 5
!] . M, I
A 5
[N TP R \\
- 0
., 085 .
w o = B
. I \\ \ i
o S , T 25
L] 0
10
15
T T T T T T T T T T T T T T T T T g T r T T T
T 1 H 3 3 1 T 1 H 3 H 1] 1 1 3 H 1] i T 7 1

Figure 6.15: Compare approximations at step N —1 for u, z, [and & versus their analytical values
with extended range where z is untrained

So far, we have looked at the behaviour of neural networks at last step or &£ = N — 1. We now
look at the results of first step k& = 0. As the back-to-front training describes, we can recursively
train step k by step k+ 1. Eventually, we will reach step 0. Figure 6.16 then show the evolution of
dynamic loss and relative errors of w;(0,z) for i = 1 and ¢ = 2. Note that the dynamic loss (left)
is computed with respect to wy, z; estimated from step k = 1, while the relative errors (centre,
right) are between approximations of & = 0 and analytical values.

dynamic loss ema=0000397 relative error 1y ema=0.0197 relative errar 1y ema=00235
14
10
124
s
104 (]
H £ & 06
£ osd
£ o8 Eas E
E £ i
_2 06 a g 04
a E a4 E
044
az
iz 0z
aod an wl T TTTN——m——
a 20 40 L 1 100 a -4 40 il a0 100 a 2 40 o a0 100
epach epach epach

Figure 6.16: Evolution of losses of step & = 0 during training, plots of dynamic losses (left), relative
loss of u for i = 1 (centre) and ¢ = 2 (right), x-axis represents percentage of epochs done

Overall, we can see that dynamic losses and relative error has converged in the first half the epochs.
The exponential moving average of relative error of u; and wuy are around 2%. This is surprisingly
good given that we have 2% error already in step k= N — 1.

To further understand the approximation error at step 0, note that each step k is trained to
approximate the next step k + 1, so its approximation error is the summation all errors from all
subsequent steps. Suppose each step has bound € on its approximation error, then step 0 will
have approximation error N x e compared to the actual benchmark value in the worst case. Note
that as each step can over-approximate or under-approximate, so these errors can cancel each out.
Moreover, it will be useful to see how approximations of u evolves from step N — 1 to 0. We plot
in figure 6.17 the approximations at steps k& = 0,1,2,3 except the last. Pay particular attention
to us(f,) on the second row, we can see that step & = 3 is underestimating the benchmark. On
top of this, step & = 2 further underestimates the benchmark. However, step k = (I was able
to recover by likely overestimating. So under approximation and over approximation cancel each
other out.

[= OOy) [t = 0200y wylf = 04000 %) [= CLE0)
L3
S R L == i
L5
s
L ™
L \
] i s LS
' N N
N s L8 w 5
™ \, N Y
m \
\) Lm . L
A 7 N Y
™ i
jh 12 L4 s L8 20 Lo 12 14 16 18 20 L 12 L4 ¥ L8 20 [12 L4 L& L8 20
s — i) sl - 2000, ¥ uzlt — A0,) sl = ds0.x)
L T s —
o +— L = L —— ™ A o
. / \ 106 \ " / i /
L4 y. LM Lz / 951
™ _-"'r \\ ™ . ™ / 1935
L f © . ,f \ am .f"l/ 19m /
wm X /! S| f A /
% Al i s ra as |-fol
e ! " ¥ 7
™ 1as
1 L2 L4 Ls L8 20 Lo 12 14 16 18 11} L 12 L4 15 LA 20 L 12 L4 L& L8 20

Figure 6.17: Evolution of approximations to u;(t,x) by steps k = 0,1, 2,3, the first row shows for
i = 1 and second for i = 2

w1 = CLNLx) [= DO, x) Talt = 0000, x) [= CL, x)

e, 4 L ——|
L5 + ~ T — wa
. L ——
L Lol 2
m
L
L5 \\
\ uz L
™ .8 s m
\ 4
L
~J L .,
A v v v - T Hit T T T T
o 1r fa s 1 2 W 1z (4 15 18
= (1 — RN,) T4 = F0000,)
0 4
um
. 1
" . am 0
N, um
w a2 1
\ 04 \\] —= 2
™ -
10 [] 10 [[P 1a] ¥ 1 ' s 10 [1a s

Figure 6.18: Compare approximations at step k = 0 for u, z, [and versus their analytical values

Finally, we look at the approximations by step k = 0 to w, z, I', 7. This is plotted in figure 6.18.
As we can see, the fitting is good overall except for I' at Markov state i = 2. On the other hand,
7 has a very decent fit.

6.4.2 Impact of step size

Recall the simulation is based on Euler-Maruyama's scheme. The idea is to replace the infinitesi-
mally small df in the dynamics with finite At and so we can simulate the processes in finite number
of steps. Hence, the bigger At, the bigger the approximation error. Therefore, we should be able
to reduce the approximation error in each step by using smaller step sizes, or equivalently bigger
N. In this section, we experiment with different N and see how it impacts the relative error

We start with training only the last step, i.e., k = N — 1. We will fix other hyper-parameters and
train for the same amount of epochs. The results are shown in table 6.4.

N L I epochs B minz maxz relative error w1 relative error ua Time(s)
5 2 10 30,000 512 1.0 2.0 0.0224 0.0351 1:52
10 2 10 30,000 512 1.0 2.0 0.0073 0.0129 1:54
20 2 10 30,000 512 1.0 2.0 0.0038 0.0075 1:54
50 2 10 30,000 512 1.0 2.0 0.0013 0.0018 1:54

Table 6.4: Relative error and training time of step k = N — 1 with different number of steps N

As we can see, increasing N reduces approximation error in last step more than linearly. As we
discussed in previous section, the relative error at step 0 is the summation of approximation error
of all subsequent steps, so linear with N and per-step approximation error e. As increasing N
reduces € more than linearly, the overall relative error in step 0 should decrease. Moreover, if
we can assumme the stepwise approximation error € as independent random variables with mean 0,
which is most likely the case, then approximation errors from different steps can cancel out each
other. To see it differently, the final approximation error can be defined as

N-1
5= E €
k

=0
By Central Limit Theorem, with large enough N, s — NE[¢] = 0.

Table 6.5 shows the relative error at step k = 0. We can see that increasing N indeed reduces the
relative error in step 0. However, one obvious limitation of “back-to-front” is also made obvious

39

in this table. It takes 30,000 epochs, 40 minutes to train a neural network with N = 20 while it
takes only 5,000 epochs and 5 minutes for front-to-back as shown in table 6.2. Not only it takes
more epochs, each epoch of front-to-back takes longer (0.08s vs 0.03s). The increase in number of
epochs is expected as we are training for entire curve while front-to-back is mostly training for a
single point.

N L I epochs B minz maxz relative error u; relative error uy Time(s)
5 2 10 30,000 512 1.0 2.0 0.0197 0.0235 10:12
10 2 10 30,000 512 1.0 2.0 0.0153 0.0106 20:42
20 2 10 30,000 512 1.0 2.0 0.0092 0.0080 41:38

Table 6.5: Relative error and training time of step & = 0 with different number of steps N

6.4.3 Impact of choice of ranges R;

In this section, we want to examine the impact of the choice of R. In the baseline, we have chosen
to use [1.0,2.0]. In this section, we will try ranges of sizes 0.2, 0.6 and 1.0 but all with midpoint
at zg = 1.5. Intuitively, the approximation error should increase when the approximation range
increases. The result is shown in table 6.6. Surprisingly, the relative error for small range R is not
noticeably better than the error for bigger range.

N L I epochs B minz maxxz relative error uy relative error wy Time(s)
10 1 10 30,000 512 1.4 1.6 0.0080 0.0125 20:53
10 1 10 30,000 512 1.2 1.8 0.0194 0.0086 20:42
10 1 10 30,000 512 1.0 2.0 0.0153 0.0106 20:42

Table 6.6: Relative error and training time of step & = 0 with different number choices of R

40

6.5 Deep SMP method

Recall that we are trying to approximate the primal value function « and the optimal primal control
7w with g = 1.5 and 7y = 1. In this section, we will apply the deep SMP method introduced in
section 5.2.

6.5.1 Baseline

In terms of neural networks, we used the same architecture for Ngs () and Ng; (). Each neural
network is a fully-connected multi-layer perception with one input layer, one output layer and
L = 2 hidden layers. Each hidden layer has { = 10 hidden nodes. We use sigmoid function as the
activation functions and perceptions have bias. Finally, we will split the time horizon into N = 10
steps. We now report the results.

In deep SMP method, we can estimate an upper bound and a lower bound for the primal value
u;,(0, zy) using the primal and dual gain function:

1 M
Ulower *= 1 ZU“T (pr)

j=1
M
1 -
Unpper = M § m-n-;-(}T) - Loto-
=
Moreover, from section 3.3, we know
1

wi(t,x) = ir.i(i);l:u + bi(t)r + a;(t)

and functions ¢;(-), bi(-), ai(-) are solved in section 6.2.1. Therefore, we can obtain the exact
analytical value of u; (0, 2). In the left subplot of figure 6.19, we plot the estimated npper bound
and lower bound at different stages of training. We also plot, in dash line, the analytical value
i, (0, 20). As we can see, the hounds converge at around the exact value.

uif=01=1,xr=15 P losses W
130 _
| 0 015
125 ~
|| 07 0.10
] |
120 | . e LA s
At WAL B L, o (1 0.5
118 LTAT Uk A WAL a5
0004
110 044
03 -
105 el
02
100 —— upper 0,10 4
bower 014
it S § -
analytical o] IRER
0 El an & a0 1m 0 Eil a0 &0 £l 1m a 20 40 a0 £l 100
epochs epochs epochs

Figure 6.19: Evolution of value estimation (left), loss of process p (centre) and parameter yy (right)
during training

In the centre subplot of figure 6.19, we plot the loss £(©7) defined in equation (5.2.2). We can
see that the loss is going down fast before flattening around 0. This indicates the training has
converged. Finally, the right subplot shows the parameter y; which is the starting point of dual
process Y. Similarly, we can see that it has converged as well.

Note that we do not see much detail in figure 6.19 as the initial bounds and losses skew the y-axis.
Figure 6.20 shows the evolution if we train the neural network for additional epochs. This offers
interesting details after the network has converged. First of all, notice that the bounds (left) and
loss (centre) are simply oscillating without improving. This hints that we have reached the optimal
point.

41

wit=0,i=1,%=15 p losses o

0.0300 4 —0132
120
00275 4 —013
115
s —01m
114
— — 013
1144
—0.140
0.0200 4
112
/ —0142
o 0.0175 4
SUE —0144
Hpper 00150 o
108 lower — 0146
== analytical | o5
1006 — 0145 4
0 Edl a0 & &0 1m 0 Edl 40 &0 £l 1m a 20 40 a0 £l 100
epochs epochs epochs

Figure 6.20: Evolution of value estimation (left), loss of process p (centre) and parameter yy (right)
after training has converged

Moreover, it might seem odd that the upper bound estimation (orange) can go below the lower
bound estimation (blue). This is okay as the duality (3.2.8) only depicts the inequality in expec-
tations

EU(X)] = {E[mar (Y7)] + zoyo} -

Individual path can exist where dual gain is below primal gain. Furthermore, we can see the dual
gain is oscillating in much bigger extent than the primal gain. We suspect this is related to the
dual process dynamic containing a jump term.

Finally, we compute the relative error of the bounds:

Uypper — “-t'.;([l I[})
“'ln(nr ‘EU)
o (0, 7o) — Uiower

R.E'IEIF]““.(_‘I- = W = 0.0002 £ 0.0006
ig WMy R0

RelErr,pp. : = 0.0074 £ 0.0022

where i, (0, o) is obtained analytically. Note that relative error is in fact a random variable so
we include its standard deviation. Both bounds, especially the lower bound, have error below 1%
which is a promising sign.

6.5.2 Approximation versus analytical

Instead of looking at the final loss, we can also examine each step and compare approximation of
~ and g against their analytical counterparts. This helps us understand how well the network has
learned these intermediate values. In particular, we look at final step k = N — 1.

Recall that for step k and Markov state ap = i, we approximate gp by neural network Ngz (i)
From equation (3.3.9), we see that g can be expressed as a function of (t, a4, Y;)

4 = qrn(tr Y!.) = 7&’0,9(“}’!,-

We have solved function ¢ in section 6.2.4. With ¢ = #. and ap = i fixed, we can compare our
approximation with the analytical solution for a range of y. This is plotted in figure 6.21 for both
i =1andi=2 Notethat g;(fy,y) € R", we denote each component by superscript [in g!.

42

1=09000 i=1 t=009000 i=2

~, oz .
4 4
0 = .
~
al -
““_‘ L
X _ TS
24—t St - 7
. a0 =
— qlappmx T =t o
frapprox ~. - =
—— i PP Sig L -l = =
- . e . - g
- L =4 02 == o
. . d !
ooz 4 — . ¥ — q: approx
-
A a3 - appron
- !
- s -
e e R i b
-
i 04 0z an 0z i 04 0z an az
v v

Figure (.21: Plotting approximations of g; versus exact values at step k = N — 1; left plot shows
for state ¢+ = 1 and right plot shows for state i = 2

At first glance, the neural networks seem to fit poorly. However, there is a logical explanation for
this. The problem is with the range of Y the neural networks are trained on. To elaborate, we
shall observe the trajectories of ¥. We take a batch of 512 simulations and plot them in figure
6.22. The first plot shows the trajectories. Notice that Y fans out from a single point as we have
a single starting point .

sample paths for ¥ pwhability density of Yu
0z 10
ai i1
£ o]
02 §
N
04
2
06
o
0 z 4 [] 06 04 0z a0 0z
stepk L

Figure 6.22: Sample trajectories of dual process Y (left); distribution of ¥y (right)

Moreover, the paths gradually split up into two clusters. This is more noticeable in the second
plot which shows the sample probability density of Yv_1. As we can see, there is a major peak at
around —0.3. There is another slightly flatter peak at around 0.1. To understand the origins of
these two bell-shaped distributions, recall that our numerical example has generator matrix

o= (7 _11).

As “the interval before jump from state " is an expounential random variable with rate Q;;, we
expect there to be one jump within the interval [0,T] where T = 1. The further into the horizon,
the more likely the jump will occur. Once the jump occurs, the Markov chain a is likely to stay
in the new state until the end. Hence, the first peak corresponds to a path without any jump and
stays at state ip = 1. This is the most likely case so obtains the highest density. The second peak
represents the paths that perform single jump to state 2. As the jump can occur at different steps,
the bell shape is less concentrated. We can also see from the left plot in figure 6.22 that jumps
occur more often in the later half of the paths, which is expected. The last but not the least, recall
that dynamics of dual process Y (3.2.6) is driven by the jump term and a Brownian motion:

dY; = —1g,Yydt — 6] Y, dW, + 4 dM,.
Without the jump term, Yy 1 is a normal variable which is why the peaks are bell-shaped.

To conclude, the neural networks are trained mostly at around —0.3 and 0.1. More importantly,
when Y1 is around —0.3, the Markov chain ay—; is most likely to be 1. Vice versa, when Yy 1

43

is near 0.1, ay —1 18 most likely to be 2. Hence, the neural network Nes (+)is only trained around
—0.3fori =1 and 0.1 for i = 2. Now, if we look at figure 6.21 again, we can see this is indeed the
case. For ¢ = 1 and y = —0.3, the neural network is very accurate for ¢¥ and slightly off for ¢7.
On the other hand, for i = 2 and y = 0.1, the neural network has a good approximation for both
g%, 93. As neural network cannot generalise outside of its training domain, it is expected that it

does not fit well elsewhere.

Finally, we will assess approximations of 4. The process + is valued in B and we denote its element
by 4; for i = 1,... d. Section 6.2.4 shows that processes 7; and ~; should satisty relation (3.3.12)
and section 6.2.4 solves ¢ and ¢. We can then evaluate v; (t) — ~i(t) for t € [0, T7:

% (8) = ilt) = F(t, Y1)

for some function f. On the other hand, for every step k with t = 1;,, we approximate 7, = Ng; (V).
So we can compare Ngy(y) with f(£r,y) for a range of y.This is shown in figure 6.23. Similar to
process ¢, the networks does not fit well overall. However, for i = 1, the approximation is precisely
the same as the analytical value at y = —0.3. Similarly, for i = 2, the approximation matches
nicely with analytical value at values close to y = 0.1. Note that for i = 2, the best matching does
not occur at y = 0.1 actually. We suspect this is due to training error.

1=0.9000 i=1 j=2 t=0.9000 i=2 j=1

— oty — 7| APPTOK

= 06

0.4 4

024

i 04 0z on 0z

Figure 6.23: Plotting approximations of 4 versus analytical values at step k = N — 1; left plot
shows for state 4o — 71 right plot shows for state 71 — 7o

6.5.3 Impact of step size

In previous section, we have established the baseline model using N = 10. In this section, we
experiment with different number of steps N and evaluate the impact on training accuracy and
training time. We will keep other hyper-parameters as before. For each N, we will train the
network with same number of epochs and same batch size B per epoch. In all cases, the training
converges. The results are shown in table 6.7.

N R 1 epochs B RelErryppes RelErriowe: Time(s)

5 2 10 5000 512 0.0080 £0.0026 0.0003 £ 0.0006 00:38
0 2 10 5,000 512 0.0074 £0.0022 0.0002 £ 0.0006 01:06
20 2 10 5000 512 0.0058 £0.0022 0.0002 £ 0.0005 02:23
50 2 10 5,000 512 0.0034 +0.0024 0.0003 + 0.0006 06:16

Table 6.7: Relative error and training time with different number of steps N

As shown in figure 6.24, we can see an almost linear relationship between N and training time,
and between N and relative error in the upper bound. It is intuitive to see improvement as N
increases. For example, recall that we make the assumption a¢ only jumps once and only jumps
at the begining of the interval. Any error derived from this assumption should reduce as At
reduces. Similarly, quantisation error from Euler-Maruyama scheme should also reduce as time

44

step Af reduces, although this is less significant as r, u, o are all time independent. Furthermore,
RelErr)yywer does not improve at all, which is surprising.

time(s) RelErruppes
- 0008 -8
3004 - -
.
2504 T .07
2007 0.004
..
1304
L4 0.005 4
1004
000
-
a4 -
L -
10 1] El 40 Ell 0 il 3 40 Ell
N N

Figure 6.24: Impact of different number of steps N'; left plot shows impact on training time and
right plot shows impact on relative error in upper bound

6.5.4 Impact of deeper and wider network

In this section, we examine the impact of depth and breadth of neural network by changing number
of hidden layers R and hidden nodes per layer {. Intuitively, the deeper and broader the network,
the more non-linearity can be modelled by the network. Note that we did not keep the number of
epochs the same as bigger models require more epochs to train.

N R 1 epochs B RelErr,pper RelErrigper Time(s)
0 1 10 5,000 512 0.0064 £0.0023 0.0004 £ 0.0006 00:38
10 2 10 5,000 512 0.0074 £0.0022 0.0002 £ 0.0006 01:06
10 3 10 20,000 512 0.0068 £0.0026 0.0004 £ 0.0006 06:17
10 2 20 10,000 512 0.0075£0.0021 0.0003 £ 0.0005 03:06

Table 6.8: Relative error and training time with different hidden layers and hidden nodes

The results are shown in table 6.8. The error bands for L = 1,2, 3 basically overlap each other so
any improvement is not statistically significant. It is similar for [= 10, 20. This is unsurprising as
(3.3.9) and (3.3.12) indicates that + and ¢ can be expressed as linear functions of Y;. Therefore,
in fact, we can instead fit a linear curve of ¥;. Making the neural network more wider and deeper
makes it better for approximating non-linear function which does not help in this case. On the
other hand, it inereases the risk of overfitting.

6.5.5 Limitation of deep SMP method

As shown in section 6.5.2, neural networks are fitted around only a couple values of the domain.
This makes it difficnlt to learn the shape of the overall solution. For example, in figure 6.21, the
curve of approximation is no where close to the analytical solution.

45

Conclusion

In this study, we successfully designed two numerical algorithms for unconstrained Markov regime-
switching quadratic utility maximisation problem. We used analytical solutions to assess the
quality of the approximations, and the results are promising. We have also verified theoretical
results from previous work with numerical examples. It is worth emphasising that the numerical
methods developed in this study can be easily extended to solve problems where analytical solutions
cannot be found.

In terms of future work, it will be interesting to deploy the numerical algorithms for Markov regime-
switching utility maximisation with constrained controls. The control constraints adds flexibility
to the problem but also impose additional complexity. One example of such constraint can be no
short-selling. Moreover, the numerical methods can be extended to tackle other utility functions
under Markov regime-switching settings.

46

Appendix A

Technical Proofs

A.1 Extension of 2BSDE

Proof. As stated in [10, Appendix A.1], with u being the value function, take arbitrary i, t and =,
the HJB equation for Markov switching problem is:

d
0 = (dpu) + sup {({'L 1) [r‘-(f]:r + ?rTrr‘-(r)t?‘-(r)} + i (Dwtt) -r}‘-(f]Trr-Q} + Z gijui(t, x)

J#i
d
= (Gpu) + sup F(t,i. 2, m, Oprt, Opat) + z iy (t, x)
i i
where F is the Hamiltonian control:
apy s T 1 T2
Flt,i,o,m,2,7) =z (f‘i[ﬂ:lf + T rf‘(f]ﬂl(f]} + 357 loi(t) o) .

It would be convenient to simply the HLIB equation. Note that

d d d d
Z gij (wy(t,z) —u;(t, x)) = Zqi_‘; wi(t,x) | —u(t,z) Zq"f = Z qi gt o)
Jj=1

J#Fi JF FES
—qii

and this is equivalent to

i1 g2 ... Udl
¥ iy P U
[ul(r,;i.‘] e urg(f_.;r]) T2 G2 2 £ = uTQTr:"
G1d G2d - Udd
where w := (uy (t,7).... _.urf(f_.;i.‘J)T. Hence we can simplify the notation as

0= () + F(t i, o7, e, Ouat) +u' Qe

*

where 7* is the strategy that solves supremum.

Let 7 be the optimal control, X be the associated wealth process and « be the Markov chain, we
have:

0= (u)+ Flt,ap, X¢,mp, gty Gppt) + u;r Q. (A1.1)

where w; = (uy(t, X¢), ... _.'!Lrj(f_.X;_)]T.

Next, define processes
Vi o= o, (t, Xi). (A.1.2)

47

Apply Ito's formula:
dV; = (Bpu)dt + (0, u)d)it— —(Dppu)d[Xy + (V= Vi) (A.1.3)

where (V; — V,_) represents the jump in V; when Markov chain jumps. Recall that a, € RY, it is
more convenient to write the jump term as:

Vi = Vie =) (o — o) = u dav,.

From [5, Appendix B], there is a martingale process M associated with the Markov chain «:
-
M = o — QTE}',,d.?.
0

Here, () is the generator matrix of a. Hence the jump term is
Vi —Vii =] QTavdt + u] dM,.

Substituting above equation back into A.1.3 and expand the other terms, we arrive at

dVy = {((‘3;1;] + (Opur) [r“t){; - rr;rrrmﬂm) (Opput) - |{}' fr;IQ} dt
+ (@), (AW, + u] QT adt + u] th
= {(('?;u) + Ft o, Xy omp, O, Oy put) + wy QTr.'r;} dt + (Opu)m] 00, dW; + u dM,,
and note that the first term is zero as it is the HJB A.1.1, so we have
dV; = (0. u)'frt oo, dW; +u, dﬂh.

Next, define

Zy = By, (£, X)) (A.1.4)

oy

We similarly apply Ito

59
47, = (a f‘)dr—(a DdX, + & (a—") d[X]e + (% — Z,)

dxdt 2\0

d*u ‘
= (?3;1:('3#) dt + (Opput) {(T“z)i; +m, rr“zﬁ“z) dt + 77 o, (t)dWw, }

+= (d ”) oL m|tdt+ (2 — 2,.).
Oz :

Again, we can rewrite the jump term Z; — Z; as
Zy— Ly = z;r(r.'rt —oy) =z, Q ot + z; th

where z; := d,u;. Furthermore, by HIB A.1.1, we can write

Fu 80 a .. . o
EEeT = Emu = s {f’ (f o, Xy, g, Do, Dppun) + 1y QT"":}
3
= —;—f'(t cvg, Xy, 7y, Oy, 8 ,u) z;rQTo-L.
dr

Further expanding,

a o a (.) 1 2
ok (t, e, Xp e, Oyt Opat) = P {((L:u) (ro, Xi + 7] 0a,00,) + B (Oratt) o f | }

03 .
= (Opatt) (ra, Xt + ?r?m,aﬂnz) + (Opu)ra, + % (%) }a?;fr;}z .

Putting all terms together, we have

dZy = —(Opu)r o, di + (04 U‘.)'f(;rrf“zd”"; + z;rth

oy

48

Finally, we define

I.‘lr = f)_,._,.({,‘l UA;)

Tidying up the terms, we get:

dVi = Zyn a0, dW; + w] dM,

dZ, = —Zgo,dt +Tynlo,, dW, + 2] dM,

49

Bibliography

(1]

[2

3

8
o
(10]

(11]

(12]

[13)
[14)

15

N. Azevedo, D. Pinheiro, and G. W Weber. Dynamic programming for a markov-switching
jumpdiffusion. Journal of computational and applied mathematics, 267:1-19, Sep 2014.

Richard Bellman. Dynamic programming. Princeton University Press, Princeton N.J, 1957.
Incudes bibliographical references and index.; ID: alma991448814401591.

Baojun Bian, Sheng Miao, and Harry Zheng. Smooth value functions for a class of nonsmooth
utility maximization problems. SIAM jouwrnal on financial mathematics, 2(1):727-747, 2011.

Ashley Davey and Harry Zheng. Deep learning for constrained utility maximisation. Method-
ology and computing in applied probability, 24(2):661-692, Nov 26, 2021.

Robert J. (Robert James) Elliott, Lakhdar Aggoun, and John B. (John Barratt) Moore.
Hidden Markov models estimation and control. Springer-Verlag, New York, 1995.

Mehrali Hemmatinezhad, Mohammad Gholizadeh, Mohammadrahim Ramezaniyan, Shahram
Shafiee, and Amin Ghazi Zahedi. Predicting the success of nations in asian games using neural
network. 2022.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are

universal approximators. Neural Networks, 2(5):359-366, 1989. ID: 271125.
Sahdev Kansal. Quick guide to gradient descent and its variants.
Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

Anand Krishnakumar and Harry Zheng. Utility maximisation in an incomplete market. Tech-
nical report, 2022.

Yusong Li and Harry Zheng. Weak necessary and sufficient stochastic maximum principle
for markovian regime-switching diffusion models. Applied mathematics and optimization,
71(1):39-77, May 07, 2014.

Yusong Li and Harry Zheng. Constrained quadratic risk minimization via forward and back-
ward stochastic differential equations. SIAM journal on control and optimization, 56(2):1130~
1153, Jan 2018.

Huyen Pham. Continuous-time stochastic control and eptimization with financial applications.
Springer, Dordrecht, 2009.

Endre Sli and D. F. (D Mayers. An introduction to numerical analysis. Cambridge University
Press, Cambridge, 2003.

Wikipedia contributors. Backpropagation — Wikipedia, the free encyclopedia. https://
en.wikipedia.org/w/index.php?title=Backpropagation&oldid=1104872812,
2022. [Online; accessed 3-September-2022].

