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Abstract

In this thesis, we propose a two-factor stock price model and construct a dynamic wealth allocation
scheme to form a portfolio through the timeline which aims to minimise the quadratic risk consisting
of the running cost and the variance of the terminal total wealth at a targeted level, where the
two factors are slowly varying and fast varying. To solve the scheme from the setup, we apply four
different methods: the primal HIB equation, the dual HJB equation, the primal FBSDEs, and
the dual FBSDESs, and we also prove their equivalences theoretically. In addition, we also analyse
the simplified cases theoretically with the assumption that the running cost is zero, including
introducing the correlation structure of the Brownian motions and the convex cone constraint on
the optimal controls or the amount allocated to each stock at any time spot. Furthermore, since the
non-linear system can be barely solved analytically, we apply the finite difference scheme to solve
the PDEs arising from the primal and dual HIB equations to verify their equivalence numerically,
and we also transform the problem of solving the primal and dual FBSDEs into a problem solving
two corresponding optimisation problems in order not to break the nonanticipativeness. However,
due to the lack of computing powers and the high dimensional nature of our problem, we are
unable to fully solve the transformed optimisation problems with satisfactory speed. Nevertheless,
we verify the effectiveness of FBSDE methods by evaluating the optimisation objectives with the
initial guesses produced by utilising the links between these two FBSDE methods, which supports
the effectiveness of the methods. Lastly, we test the nmimerical schema on two settings with different
scales to test the stability of our algorithm.
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Chapter 1

Introduction

The factor investment idea can be dated back to Fama and French three-factor model. The na-
ture of the specification is that we are assuming there exists a factor structure where the value of
factors can impact the prices of stocks. Nevertheless, the factors themselves can vary over time,
for example, the GDP growth rate, the inflation rate, the ROE ratio, the net profit rate, etc., and
this incentivised us to parameterise their dynamics. The factors, generally, can be roughly divided
into two groups: the slowly varying factors and the fast varying factors. Therefore, we simplify our
discussion by only specifying two factors according to Fouque & Hu (2020): one is slowly varying
and the other is fast varying. Meanwhile, the so called factor structure can be also embedded into
the dynamics ol prices of stocks by making the drift term and the local volatility term dependent
on the factors, except for different functional forms of different stocks.

With the specification of the dynamics of the factors and the factor structures, we are able to make
a dynamic decision of allocating the wealth into different stocks at each time spot to minimise the
quadratic risk defined by Li & Zheng (2018): the sum of the running costs and the quadratic risk
of the terminal total wealth. This objective is intuitive: the first component can be interpreted
as one's preference to less exposure from risky assets during the time period, and according to Hu
& Zhou (2006), the second component can be treated as the variance of the terminal total wealth
with a targeted level. Clearly we prefer a stabler growth and thus a stabler closer-to-the-target
terminal total wealth. Given the objective, we are able to establish the framework to solve it. Li
& Zheng (2018) provide a thorough discussion about the way to establish the primal Hamilton-
Jacobi-Bellman (HJB) equation, the dual HJB equation, the primal forward-backward stochastic
differential equations (FBSDEs) and the dual FBSDEs and give the link between the two FBSDE
methods. Ma et al. (2020) provide a more detailed description for the strong duality, and, more
importantly, demonstrate a concrete example for the single factor dynamic portfolio optimisation
through the dual HIB equation method, which gives us an anchor to construct our double factor
dual process. Yong & Zhou (1999) and Rockafellar (1970) provide detailed theoretical backgrounds
of the F'BSDE method. Our work is based on those works, extending to the two factor dynamic
portfolio optimisation context with the objective of minimising the quadratic risk and solving the
problem both theoretically and numerically by the primal HIB equation, the dual HJB equation,
the primal FBSDEs, and the dual FBSDEs. In addition, we analyse the simplified case where the
running cost is set to zero, and under this setting, we further discuss the impact of introducing
the correlation structure of the Brownian motions and the impact of introducing the convex cone
to the optimal controls (i.e. the wealth we should allocate to each stock) theoretically.

However, it is generally unrealistic to fully solve the problem by either method by hand, which
motivated us to dig into the numerical solution of HIB-type partial differential equations (PDEs)
and FBSDEs, and simulations of the optimal total wealth paths. When solving the HJB-type
PDEs arising from the primal and dual HJB equations by the finite difference scheme, we faced
the divergence issue due to the lack of refinement of the time discretisation. LeVeque (1998) dis-
cusses a rule to mitigate the divergence issue by providing the rough number of time intervals
we should make given the discretisations of the two factors dimensions of the value functions. In
addition to the primal and dnual HJB methods, Zhu & Zheng (2022) provide a detailed description
of transforming the problem of solving the FBSDEs into a problem of solving an equivalent opti-




misation problem without breaking the nonanticipativeness of the solution. However, due to the
restrictions of computing powers and the high dimensional nature of our problem, we are unable
to solve the optimisation with relatively acceptable speed. Nevertheless, we try to verify FBSDE
method’s validity by evaluating the optimisation objective using the initial guesses by utilising the
links mentioned in Li & Zheng (2018).

The rest of the thesis is organised as follows: Chapter 2 describes the details of the model setup and
formulates the quadratic risk optimisation problem; Chapter 3 solves the primal HJB equation into
three PDEs using the quadratic ansatz; Chapter 4 derives and solves the dual HIB equation also
into three PDEs using the similar quadratic ansatz, and verifies the equivalence between the primal
and the dual HIB equations theoretically: Chapter 5 discusses three special cases theoretically
under the assumption that the running cost is zero including introducing the correlation structures
of Brownian motion and the convex cone constraint; Chapter 6 elaborates the primal and dual
FBSDEs and states the links between them; Chapter 7 establishes the mumerical methods for
solving the primal and dual HJB equation, transforms the problem of solving FBSDEs into a
problem of solving optimisation problems, and presents the numerical results under two settings
with different scale to test the equivalence and the stability of the algorithm.




Chapter 2

Model Setup

We are considering a portfolio optimisation problem driven by a multiscale factor framework in-
spired by Fouque & Hu (2020). More specifically, there are two factors, n: and ¢, that drive the
movement, including the drift term and the local volatility, of the prices of the stocks (N stocks in
total), while these two factors are slowly varying and fast varying and follow two separate stochastic
processes. We summarise them as follows:

dSn,t = pn (15, G )Sn e dl + Z,\,::l T (e, Ce)Sn e dWi ey Sno = 0,

dng, = Lb(n,)dt + %a(q:)dﬂ-"{”, 9 > 0, (2.0.1)
d¢y = de(G)dt + Val(¢)dW, G >0,

where W, ;. W' and W{ are mutually independent. The slowly varying and the fast varying
structures are controlled by two constants: e and 4, both of which are sufficiently small. Thus, we
can imagine that 7 is the fast varying factor as 1/e significantly scales up its infinitesimal changes,
whereas (; is the slowly varying factor as d significantly scales down its infinitesimal changes. In-
tuitively, we can treat the slowly varying factor as a long-term (e.g. monthly) driver, and the fast
varying factor as a short-term (e.g. daily) driver.

From now on, to simplify our discussion, we denote the drift terms by:
po=py, ol
the local volatility term by:
= (Tnm)NxN;
and the collection of the mutually independent Brownian motions that drive the stock prices by:
W= Wi, Wi

We base our discussion on the following settings: let (2, F, {F;}iep, 1), F) be the filtered probabil-

ity space. {Fi}eepo,7) is the natural filtration generated by (We, W', H-"f) and is augmented by all
the P-null sets in F.

Assuming we invest m; = [?rl__;, ‘as ,?r‘\:__t]’ in the N stocks and the total wealth is denoted by X[
(so the amount invested in the bank account is X7 — mwj1), we then can directly give the dynamics
of the total wealth:
dX7T =d(X] —m1) +d(m1)
=re( X[ — w 1)df + i [, Go)dt + a (e, G )AW] (2.0.2)
=[XTre + w0 (e, ) — re)] di + o (e, G)dWe, X = x0,
where r; is the short rate which can be varied by time. Our objective is to minimise the risk subject

to the admissibility of (X, ¢, ¢, m¢), which is equivalent to solving the value function H (t, z,n.()
(especially, m; € K') defined as:

T
H(t,z,n,()=minE {/ FO, X7 e )dt + g(XT )X =2, = 0,6 = C}, (2.0.3)
me i




where:

flt,z,m) = éQt.z.‘Q + S + érr'Rtrr,

glz) = %A.].‘Q + Br,

Qi eR, S eRY, and R; € BYV*N are Fi-measurable functions such that

J
Q: S
S: R
is non-negative definite for all (w,t) € Q x [0,7], the matrix R, is symmetric, A is a positive
constant, and B is a constant.

The intuition behind the optimisation objective (or the risk metric) can be interpreted in two
parts. The first part is the expectation of the integral, which is called the running cost of the
strategy. The running cost, for example, can be treated as a penalty for large exposure to risky
assets il we make @ and S equal to zero. The second part is the expectation of the gquadratic
function of the terminal value of the total wealth. Inspired by Hu & Zhou (2006, Section 6), it can
be treated as a penalty for large variance of the terminal total wealth. More specifically, it can
be derived from the classical mean-variance optimisation (i.e. given a level of the expectation of
the terminal total wealth, minimising the variance of the terminal total wealth) by transforming
it into an unconstrained problem parameterised by the Lagrange multiplier.




Chapter 3

Primal HJB Equation

With the formalised optimisation problem, we are able to derive the HIB equation directly from
the dynamic programming principle:

inf {%rr’[R— % Hoo')m + [XS8' + dx H(p —r1)'] w}
+0,H + Xrox H + é(g)c2 +LoH + LEH =0,

with the terminal condition: .
H(T, X,n,¢) = GAXQ + BX,
where:

b a?
LE = =8, + —d2,
- 2¢ "

) 1 g
LY = bcd; + 501707

To simplify our discussion, we assume that & = RV from now on. According to the first order
condition, the optimal control @* is obtained (assuming that (R + f)ﬁfﬁcrcr’) is invertible):

(R+ &5 Hoo') " + [XS +OxH(p—r1)] =10
. - (3.0.1)
— n'=—(R+&Hoo') ' [XS+dxH(p—r1)],
and therefore, the PDE for H(t.z, 7, () is:
—é (XS +axH(p—r1)] (R+0%Hao') " [ X8+ dyH(pu—r1)] soa)

+0H + XrdxH + éQ){Q +LOH + LIH =0,
with the terminal condition: .
H(T X.n()= 5AX2 + BX.
To solve it, we can use the ansatz:
H(t, X, 1,C) = volt,n, Q) +vi(t, 1, )X + ot n, Q) X2,

to establish a group of PDEs for vy, vy and v, by substituting the ansatz into (3.0.2), grouping
terms in order of power of X, and equating all the three coellicients of each power of X to zeors.
Here is the results:

Doy + 2001 + %Q — %[S +2u(pr —71)] (R + 2vpaa’) ™ [S + 20y (pn — 71)] = 0,
Doy + {r—(p—11)(R+ 2000’ )"} [S + 2vo(p — 1))} vy = 0, (3.0.3)

1 .
Duy — 5 (p — r1) (R + 2woo’) Hp—rl)vi =0,




where
D=8+ L+ L,
and the terminal conditions are:
(L, n.C) =0,
T, ¢) =B,
A
(T, n,C) = =5
Finally, by taking advantage of the ansatz above, the optimal control 7" can be expressed as

follows:
7 = —(R+2umaa’) H{X[S + 2up(p — r1)] + vy (p—r1)}. (3.0.4)

It is noteworthy that the optimal control «* does not depend on vy, which means if we do not
‘are about the precise form of the value function H and only want to know the optimal control
7" and the path of the total wealth, we do not need to solve vy explicitly. In fact, we will see in
all following discussions, we normally do not have to solve the PDEs in full to obtain the optimal
control(s) and the corresponding path(s) of state variable(s) in both primal HJB equation and dual
HIB equation.

10




Chapter 4

Dual HJB Equation

Solving the primal HJB equation is sometimes not the easiest way, while using the duality may
simplify the procedure. Although under this setting, the dual HIB equation is not obviously easier
to solve, for the completeness of the theoretical analysis, we derive it in this section, and finally we
will be able to verify its equivalence to the primal HJB equation method both theoretically and
numerically.

4.1 Derivation of Dual HJB Equation

In this section, we will derive the dual HJB equation following the same logic in Li & Zheng (2018,
Remark 1, page 1135) by constructing a supermartingale, utilising its property to derive a lower
bound of the primal value function, and linking the primal and the dual value functions by the
strong duality due to Ma et al. (2020), which is a more intuitive way to comprehend. We firstly
define the dual process as follows:

dY; = o, dt + B, dW, + 4, dW," + Etd'l-l-"f. Yy = wo, (4.1.1)
where the coefficients are chosen to make the stochastic process

¢
XY, — / (XTa. + 7.8, )ds

0
be a supermartingale. By [to’s formula, we have:
d(XTY;) = {(re Y + o) XT + 7p [Ye(pe — 1) + o B,]} dt + local martingale
= (X[ e, + m;8,)dt + local martingale,
and we thus have:
e = o — 1Y,
Biu=0B8, - Yi(p—rad)

Furthermore, by the definition of supermartingale, we have:

T
E {X%YT - / (XTa,+ rr,:ﬁHst} < XY = zovo- (4.1.2)
0
To internalise the constraint of the control, we define a penalty function:
+oo, wée K,
L = : .
Vi (m) { 0, wek,

so we have an oqui\-‘alonco:

T
miR'IE {] Ft, X7y )dt —g(){r})}
e 0

T
= max[E {/ [t X7 ) — Wye(my)| dt — g(X%)} .
"' 0

11




In addition, we define:

ot o, @) =sup{—fl(t,z.7) — Vg (w) + za+ 73},

mr(y) = sup {—g(z] —zy}.

Finally, using (4.1.2), we have:

T
max E {f [ (6, XT ) — Wic(me)] dt — g(X%)}
0

T
A r.-ﬁ(f.n-:,ﬁg)df—m-r(i’an)]}-

Given the above results, we are able to define the dual value function by treating the latter term
in above expression as a function of y:

w358

<  min {1.‘[};;“—1}5

T
H(t.y..¢) = win E {/ B(t,ap, By )dt + mp (Y1) | Vi =y = 1, G = C}- (4.1.3)

o,

According to (Ma et al. 2020, Theorem 2.1, page 7), we have the strong duality and thus are able
to link the primal and dual value functions as follows:

Hit,z,n.()=— muin [H(f-y-f?-C) + -ry}

] (4.1.4)
=max [—H(f.y.n.(] — .1:1;] .
u
The optimal y = y(t,z,n. () satisfies:
—x — 8y H (t,y(t,2,1,0),1,0) =0, (4.1.5)
and thus, (4.1.4) can be expressed as:
H(t,2,n,¢) = —H(t y(t,2,n,¢),n.¢) — zy(t,2,1,0). (4.1.6)

Following (4.1.5), we can have some further conclusions:

—1- 02 Hixy=0

= dxy = —%,
of H
— O, H — 03 H,y =0
= dy =— E)ylr'),,wﬂ
oy H
— O H - 9LHy =0
= Ody=— ay,aﬁwﬁ
o3 H

12




It is straightforward to obtain the following relationship by differentiating (4.1.6) in terms of ¢, =,
7, and (:

hH = — 8,H,

dxH =—y,

% H = — dyy.

a,H=—28,H,

92H = — 92H — 9y0,Hoy

_ oz @ (17
' % H
O H=—0.H,
92H = — 02H — Oy Hocy
w  (OydcH)?
— o+ \OOH)
%L H

Thus, we know that the optimal initial value of Y (Le. yf) is:

Yo = — dx H (0, 0,70, Co)

(4.1.8)
= —v1(0, 10, Co) — 202(0, 70, Co)z0.

To simplify the discussion, we now make K = EY and we obtain the HJB equation for H by
dynamic programming principle:

1 2 £ r oy — - . y
inf {Eaf,ﬁ [[ﬁ —Y(p— )] (ea) B — V(- r1)] + A —gz}
+(a—rY)OyH + sup[—f(t,z,m) + zae + 7' 3| (4.1.9)

L

+y d, H NG

ay + r')yf)(ﬁ'\/ﬁaf} +OH + Ly H+ LIH =0,

with the terminal condition:

H(T,Y,n,¢) = mgp(Y).

We firstly solve the maximisation inside the HJB equation by solving the first order condition:

—Qr—S'm+a=0,
— S —-Rm+8=0,

which gives:

a—SR'3
T= o ap-la’
Q-SR™S (4.1.10)
R !SS'R'B—aR'S 1
T = — + R 3.
Q-SSR 'S
and: )
. lla-SR B2 1_,..,
ot B)=-——F—+ -8R B 4.1.11
(t0.B) =3 gty T PR B (4.1.11)
If {'Jf,fi > 0, the optimal 1* and ¢* should be:
. _it’}yf}uf‘}
Ve 9L H (4112)
_ DyvO-H
MV Rty
¢ o7 H

13




It can be noted that 82 H (T, Y,7,¢) > U, which serves as a necessary condition for the positiveness
of the second order derivative of H with respect to Y across the whole timeline, and it can be
verified by the following:

H(T,y.1.¢) =mr(y)

=sup {7%.&1.‘2 — Bz — .1.‘3;}

2
__ Ly Bry\ gL Bty
= ZA( A) (B y]( A)

_y*+2By+ B?
N 24 ‘

By substituting (4.1.10) and (4.1.12) into the HJB equation for ﬂ, we have:

(1 o? hwo1 LRT'SS'RY 1
33,5{57(33’3 ady H + ,@[ f)Y (oa’) _EiQfs'R_lS_iﬂ },@
SR! I , _
“log =g + AV (=11 (00) l]ﬁ}
Ly, H)PE 1 (0O H JZH
2 &H 2 RH

= T . . _
—rYayH + Ee}ém’zm —r1)(o0’) H(u—r1) + 0 H + LSH + LOH =
with the terminal condition:

- Y2+ 2BY + B?
H(I,I.H,C)=T-

The way to compute the optimal a* and 3* is theoretically simple but practically tedious, so we
just present the results here:

B =R+ 03H(co’) ] RHY (00') Hp —11) -~y HR'S],

=S'R 'R '+8tH(co") ] LAY (00') N —r1) — Oy HR 'S (4.1.13)
- H(Q-S'R'S).
We can then substitute them into the HJB equation for H and we get:

1y - e y - _

-3 0y HY (00’) M (p—rl) - R 'SovH] [R™" + 8y H(aa') ] !

(R AY (60') H(p—rl) — R 'SoyH]| - (3yH (Q-—S'R'S)
(4.1.14)

1 (r'?ya,,ﬂ 22 (BydcH)AS
2 9lH 2 9LH

PR P . o €7 ]
—rY oy H + Er)f,h’l p—r1)(oa’)y (p—r1)+ 8,H+ L H+ LLH =
with the terminal condition:

V2 4+ 2BY + B?

H(T.Y,n.¢) = o

To solve (4.1.14), we apply the ansatz:

H(t,Y,n,6) = do(t,n,C) + D1 (t, 7, Q)Y + Dalt, , QY.

By substituting it into (4.1.14), grouping terms in order of power of Y, and equating all the three

14




coefficients of each power of ¥ to zero. We have the following results:

—2i[(ea’) H(p—rl) — RT'S)[R™! + iy(oa’) 17"

(o) Hu—rl)— R'S]—2#3(Q - S'R™'S)

a?(9,ia)?  125(0:1y)?
€Uy (4]

+ip[(p — 1) (oa’) Hp —rl) — 27] —

200 {[(ea’) Hp—rl) - RT'S)[R ' + iyloe ) IR7IS —Q + SRS}
riy — U.Q('J,,i_:'wla,,i_:'g _ fut’if)(_i:hf)(ﬁg £ Diy =0,
€Uy U
1.
731?f{S’R"L[R"1 +ilee ) TTRTIS +Q - SRS}
a2(0,i)°  PO(0c0): .
T aer, 4, T P=0
where the terminal conditions are:
o e B?
w(l,n,C) = ﬂ
o e B
n(T,n,C) = E
o e 1
(T, n,C) = 1

With this ansatz, we can express all controls in terms of @, 01, and ©s:

B =R +20(a0) Y] {20V [(00’) N —r1) - R'S|— RIS},

o' =S'R'[R '+ ?.i?g(cra")_l]_l {20Y([(oa') " (p—r1) - R™'S| -1 RS}
— (i +5Y) Q-8 R'S),

L. a d, i + 20, T.Y

VT

o g\/d—,a(m —20@2}'.

£ =

21y
yh = — 2o+ 01(0.10. )
o 202(0, 70, Co)

+ Diiy = 0,

(4.1.15)

(4.1.16)

Again, we do not have to solve 7y to obtain these optimal controls and the corresponding path of

Y.
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4.2 Theoretical Verification of the Equivalence between the
Dual and Primal HJB Equations

We can verity, once we combine (4.1.7) and (4.1.14), that the PDEs (4.1.14) will be converted to
the PDEs for H in (3.0.3):

- 1 f}xH 1 -1 , ' -1 1 =1 -t
LHS——E[—{.}%H[O’O’) (n—rl)+ R'SX [R + Z ) ]
- —’,3§H (00") (i —r1) + RISX| - SX*(Q— S'R'S) - rXoxH
a3y H 2
L(AdxH)? . )
_E(e}); H] (p—r1)(oo’) Yp—rl)—8,H— LoH — L2H
X

=%XQS’{I - [I n ag(;ﬁ(a'o"]_lﬁ’.} _1}3‘15
+ ﬁ(f}xﬁ)?m — {1~ [RHR oo’ + 1] (oo (- 11)
+ XOxHS'(9%Hoo' + R) '(p—11) — %qu —rXOxH-8.H—-LH - LiH
:%XQS’(GE(HGG’ +R) 'S+ %{f)XHJQ(,u. —r1) (5 Hoo' + R) - rl)
+XOxHS'(0%Hoo' + R) '(p—rl) — %QXQ —rXOxH - 9,H— LiH — CiH
:%[xs +OxH(p—r1)] (0% Hoe' + R)7HXS +dxH(p —r1)]
- %QXQ —rXOxH - 8;H — LH — LIH,

where the cross partial derivative terms are cancelled out by the same terms with opposite sign in
the relationship between (82H,921) and (621, 82H), and the second to the last step is obtained
by using the fact that:
I=|I+ L(aa’rlﬂ I+ ;(crcr;)_lR -
0% H 0% H
I=[0%HR ‘o0’ + I|[03HR ‘oo’ +I] .

Therefore, the dual HIB equation and the primal HJB equation are equivalent intrinsically.

In addition to the theoretical equivalence, we can obtain some useful relations between the dual
HIJB equation and the primal HIB equation. With the ansatzes of both primal and dual value
functions, we can derive the relationship between (vg, v1, v2) and (T, i, 72):

H(t, X,n,() = max(—H — XY)

¥
= max(—ip — 0¥ — &Y? - XY)
1
=—(X+#)? -7
4172 1) 0
1 b i
=—X? %X*L — 7y
Al 2y Aty

and thus we have:

v

vo = v, v

- L

N = —, 4.2.1
i1 T ( )
P 1

2T Ty




By (4.2.1), we immediately know that the last equation of (5.2.12) is equivalent to (4.1.8). In
addition, we can easily use the dual ILJB equation to recover the the optimal control * and the
corresponding primal state variable X™ by using (4.1.7), (4.1.10), (5.2.12), and (4.2.1). We start
from (4.1.10) to express the optimal control w* in terms of vy, vy, and X7 :

m =R 'S (1 +20:Y)
+ R R 4 20(00") ] (20:Y [(00) N — 1) - R7'S| - 0, RS}
=R7'[R' +2is(c0’) "] 'l{ [R™' +20a(oa’) | S(in + 202Y)
+20,Y[(eo’) Hpu—r1) - R'S| - ﬁlR"lS}

-1
:_LR* {R‘L + _)i(aa’)-l] (eo’) ! {is s lygs Vip — rl)]

2119 2ua 21

—(2uy00' + R)! {is - {LS— (o — rl)] (v + 20, X J}

2‘!,'2 2‘!,'2

— _ (2meo’ + R)! {X"'[s 4 20s(p — 1)) + v (o — rl)} _.

which coincides with (3.0.4). Furthermore, we can express the state variable X in terms of ¥ for
the convenience of validating the equivalence mumerically later:

X™ = g — 25, Y .ot At (4.2.2)
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Chapter 5

Simplified Case: f =0

Suppose @ =0, § =0, and R = 0, or equivalently, f = 0. This makes the model more tractable.
In addition, this also makes our optimisation objective purely focus on minimising the variance of
the terminal total wealth. In this chapter, we will firstly discuss the simplified primal HJB equation
and the dual HIB equation, and partly solve them using the Feynman-Kac theorem. Secondly, we
will introduce the correlation structure of the Brownian motions and then try to see whether it is
compatible with the uncorrelated structure. Lastly, we will introduce the constraint, specifically,
a convex cone, on the control from the perspective of the dual HJB equation. We will only discuss
the last two setups theoretically in this paper.

5.1 Primal and Dual HJB under f =0

5.1.1 Primal HJB Equation

By directly plugging in the zero coefficients of the running cost function, the primal HJB equation
(3.0.2) becomes:

dx H)?
DH + XrdyH —#(u—rl)’(a’a”]”(u—rl] =0, (5.1.1)
20vH
with the terminal condition: .
H(T, X,n,¢) = SAXQ + BX.
Using the same ansatz:
H(t, X,n,¢) =volt,n, C) +v1(t, 0. )X + valt,m, C)er
we obtain the PDEs for vy, 1, and wva:
Dy + [2r — (p—11) (oa’) 1 —rL)]v, =
Dy + [r— (p—r1) (ea’) Hu — r1)v, =0,
r =1 i"% .
Do+ (p—rl)(oco) (u—rl)— =0,
4y
with the terminal conditions:
va(T,n,¢) =
n(T.n.¢) = B
(T, n,¢) =10
Noting that the structures of PDEs of v, and v, in (5.1.2) are both linear, we can use the mul-
tidimensional Feynman-Kac theorem to express vy and v, through the conditional expectation as
follows:

A
3

nl 1 -1"1-7' —r1)’ | —rl)|ds
i"z[ﬁ’?:@):h{gﬂﬁf’ Bro{p—ri)iee) e lJ'l'mtzf?:C::C},

i,']_[f_.r?,c) —E {Bﬁlﬂ'[-‘;--{p—!l]’{ﬂ'g"]—]{F_J-l'] ll.s'm! — an! — C} .
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In addition, with the aforementioned solved ansatz, the optimal control * can be expressed as
follows:

w(t, X,0,0) =(0% Hoo'!) " [Ox H(p — r1)]
v + 2v. X

== T(o’o’*]"l(u —rl).

(5.1.4)

5.1.2 Dual HJB Equation

From the general case of the dual HIB equation, it is nontrivial to derive the dual HIB equation
by directly plugging in f = 0 as R™" will be hard to deal with. Instead, we notice that in the
supremum calculation in (4.1.9), we can easily know that the optimal o* and 3" should both be
zero as otherwise r and m will explode the supremum. In addition, the optimisations of 4 and £
do not involve f so the optimisation results with respect to these two controls remain the same.
Then the dual HIB equation becomes:

1 (Dyd, H)? % 1(8y 0 H)22

. 1, -
DH—rYdyvH+-0i HY*(p—11)(ea’ ) Hpu—r1)— _ — _ =0, (5.1.5
rYoyH+ 30y (B—r1)(o0’) (p—r1)—3 BIN, T H . (5.1.5)

with the terminal condition:

S Y2+ 2BY + B*
H(I,I.H,C)=T-

By plugging in the same ansatz:
A(t,Y.0,0) = o(t,7,Q) + 81(t, 7. Q)Y + da(t,m, Y2,

and expressing the dual HIB equation as a polynomial of ¥, we obtain the PDEs for 7, ¢1, and

Vot

a2(Dyin)?  126(0ci,)?
E‘E'Q ‘!jg
(12(')”'!-51(')”1-]2 Fﬁ(')(iﬁlf)(ﬁg -0

Dig + [(p— 1) (oa’) " — 1) — 2r]is — =0,

Dy — 7y — — - (5.1.6)
U2 o
a2(B,0)?  126(0ciy)?
Dig — — =0
Y0 T T At 4,
with the terminal conditions: ]
(T n.C) = ﬂ’
. B
n(T.n.C) = E,
o B?
w(T,n,¢) = A

It is not difficult to spot that @y and ©, are both independent of 7 and ¢ due to their - and (-
independent terminal conditions. More specifically, we can see the point from two aspects starting
from ©7. On the one hand, if we look a little step backward from the terminal time T, as @ (T) is
independent of 1 and ¢, all derivatives with respeet to 5 and ¢ at T will be zero and thus, &) at a
slightly earlier time should also be independent of # and ¢. By proceeding this logic backwardly,
we will ultimately find that ¢ is independent of 1 and ¢ thronghout the timeline. On the other
hand, if we assime that ¥ is independent of # and ¢ before we solve its PDE given that & (7T)
is independent of 7 and ¢, then we will be able to spot that the dynamics of #; becomes also
independent of 7 and ¢:
vy —riq = 0,

which also leads to an - and (-independent structure of ¢ throughout the timeline. As for i,
since we already know that 01 is independent of 5 and ¢, all derivatives of ©1 with respect to 1 and
¢ become zero and we can reason from the same two aspects aforementioned, given that oy(7T) is
independent of # and ¢, then we can conclude that oy is independent of 5 and ¢ throughout the
timeline. In addition, this fact makes the dynamics of @y become:

dsiig = 0,
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indicating 0 is a constant. So we conclude the solution of them as follows:

B T s
'i:'l(f) — 70—.]';1 I{.s]ll.ﬁ,
A =
, (5.1.7)
B
io(t) = —.
oy(t) 24
With this ansatz, we can express all controls in terms of @y, 7, and @:
IB* = 0.‘
a* =0,
. a 0,0y + 2d,0.Y
y =
Ve oo 2% (5.1.8)
dety + 20,0,
= SRVt S el
iy
= — zg + U1 (0,10, Co)
o 205 (0,m0,Co)

5.2 Introducing the Correlation under f =0

Previously, our discussion is restricted to the uncorrelated case. Now we introduce the correlation
among W,, W', and W{ for the theoretical completeness and we will lastly verify that we can
start from the correlated case to the uncorrelated case by making p = I. Let us assume that the
correlation structure is in a general form:

P ,0” p(
p=1{p" 1 p, (5.2.1)
o i
pp 1

where p is the correlation matrix of W,
no__ [ n . n ]’ = RN'
P =101 PN
is the correlation vector between W, and W/,
¢ [aC ¢ N
pC=1lpi, o py] ER

is the correlation vector between W, and Wy, p" is the correlation between W," and W, and
p € BN*? and positive semidefinite. To simplify the calculation, we still derive the primal HIB
equation and the dual HJDB equation under the assumption f = 0.

5.2.1 Primal HJB Equation

The effect of the appearance of the correlation structure is introducing three additional terms in the
primal H.JB equation arising from the cross partial derivatives, and by the dynamic programming
principle, the primal HIB equation (5.1.1) becomes:

1 ! -
inf {50)(11‘ wopa't + | H(p— 1) + OX('?,,H%;)’”O" + Ox 0 H \/E{p(’cr’] :rr}
ks
+DH + Xrdy H =0,
with the terminal condition: .
H(T, X,n,¢) = 5AX2 + BX,
where: 5
- d
D="D+/—alp"d,d..
VI ¢ o (a8
The optimisation in terms of m is in a quadratic form and thus the optimal control is:

oL pet)t e 1) 4+ 08 H- ool + D I -
I {')E(H(JPO-J OxHip—rl) r)xa,,h'\/;crp r)xr?(h’h/gcrp . (5.2.2)
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By plugging in (5.2.2), we can obtain:

1 ] !
-~ [(‘BXH(“ —rl)+ ('3)({'3,,Hi\/_o'p” + r')xﬁ(jﬂ\/go'p(} (epo’) !
% €

(5.2.3)
[z}xﬁ(,u — 1) + Ox 0, H %o’p” + f)xf3(H|f\/dTJpci| +DH + Xriy H = 0.
€
with the terminal condition: )
H(T,X.n.¢) = 5AX? + BX.
By applying the ansatz:
H(t, X, 1.¢) = vo(t,n,¢) +vi(t,m, ()X + valt, n, () X7,
we have the PDEs:
1 a 1
—— |wlp —rl)+ —0,vop’ + IVe0,va0p° | (opa) ™!
Ua \/; d
[i,'g(,u, —rl)+ %f),,i,'gcrp” + f‘v/gf}(i,'go'p(:l +2rve + Do = 0,
1 . _ 1
—— |w(p—r1) + %r‘},,i,'gap” + f\/ar'?ci.lgopf (opo’)~!
vz ¢ . (5.2.4)
[1,'1(;1, —rl) + %0“1,'10',0” + !\/3('3( 1,'lcrp(} + vy + Doy =0,
1 .a 1
~1n; v(p—rl) + 7?(‘3“1“0',0” + !‘/E('?(i.llcrp(‘ (epo’)!
vi(p—rl) + ir')”ulcrp” + I\/d_'aﬂ,qo'p( + Dy =
NG

with the terminal conditions:
ve(T,n, C) =
n(Tn.C) =
vo(T,n,¢) =0.

Therefore, we can express the optimal control by taking advantage of the ansatz once we solve
them from (5.2.4) as follows:

A
o

(1

\/EU'O” + 28031V 50 p*

= — zi(crpcr')_l{){ [21)2(;_:, — 1) + 28,0,
(]

+u(p—rl)+ ('3”‘!.'1%0',0” + vﬁ\/gcrpf }

5.2.2 Dual HJB Equation

We still assume the dynamics of ¥ follows (4.1.1), but take the correlation into consideration, and
thus we have:

d(XY) = [aX + 7' (B +~vap’ + Lap®)|dt + local martingale,
where:
ayp = oy — 1Yy,
Bi=0"" B, Yi(p —ri1)].
Notint that when f = 0:

8(t.a.B,7,€) = sup{za+ (B + vop” + Eopd)},

7
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we have:
¢ =0,
a =10,
B +rap! +Eopt =0,

as otherwise ¢ should be positive infinity by selecting a wild value of x or 3. We then have the
dual HJB equation by dynamic programming principle:

1., ~ ’ ’
inf {—r’)éh’{,@ —Y(p—r)](ep e ) B - Y (p—rl)]| +4% + &
£, Btepn tiepi=0 | 2
F2960" 208 Y — )] (3" +65) |
- a = Lo
—~,-(aye),,ﬂﬁ + Oy I HVBIp") + E(Dyv 0, H \/_p + v HVSI)
+HB-Y(u—r1)e" YBya, HTP’ + aya(ﬁ\/ﬁ.fpf)} +DH —rY8yH = 0.
with the terminal condition:
- Y?+2BY + B*
HT,Yn{)=—————.
(T.Y,1,¢) 54
By plugging in the constraint of 3, we can obtain a quadratic optimisation with respect to v and
[
&

I T

inf {Ez’lﬂ'z + 5/‘125,2 + AzyE + Agy + Arnf}

R -
+DH + —aém’zm —r1)(ep te" ) Hp —1r1) (5.2.6)

-y [rayff—( —r1) o' 1((3y(?,,ﬂf

P!+ Oy 0 HVBlpS) } 0,

with the terminal condition:
V2 4+ 2BY + B?

H(T,Y,n,¢) = ST
where:
Ay =03 H [p"(p - 2D)p" + 1],
Ay =08 H [pV(p—2D)p* +1],
Ay =03 H (p"° + p" pp* —2p"p%)

Ay =—0Hp"(I—-plo  (un—r1)Y

) ) (5.2.7)
+ f)y('),,H% (1—-p"p") +0yO-H Vol (p" —p"p%),
Ay =— 0V Hp (I — p)o (- r1)Y
- a - s .
+ r')yr'),,ﬁﬁ (p"° = p"'p%) + Oy o HV'él (1-p"p%).
The optimisers are:
o AgAy — ApAy
o = =
AyAy — A3 -
Ay — A4 (528)
S A A2
and the dual HIB equation becomes:
2A3 A4 A; — ATA, — AZA e
S AR STl L DH 4+ -0EHY (u - 1) (ep te’) Hpu —r1)
2(A A, — A) 2 (5.2.9)
dodia

-Y |rovH +(p—r1) o' Yovo, H Ay 3 HV31p®)

f"‘
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with the terminal condition:

- Y2 4+ 2BY + B?
HT. Y g.()=—— =
(1Y, n.0) 5

By plugging in the same ansatz:
H(f~ }’r m, C) = ﬂ[}(fr T C) - ﬂl(f: 7 C)Y Al ﬂQ(fr m C)Yur
and expressing the dual HIB equation as a polynomial of ¥, we obtain the PDEs for 7, ©1, and
‘E‘QI
243441 451 — ApAf, — A1 A5,
2(A; 4, — A3)
—2p— 110 [ 0, 0,p" + 1V30e,pC | + Dity = 0,
NG
Az A sy + Ay Ay Ay — A Ay Ay — A A5 Ay o (5.2.10)
A]_}]_Q — A%] H 4.
_ _ =1 i
(w—rl)e (\/;
2/‘1;4}/-].42A!',2 — A2A§2 — A1A§2
2(A Ay — A2)

oy (k) (op o) o rl) - 2r]

f},,i—:']_p” + h/gf}(f:']_pc) + 151-:']_ =1,

+ Dip =0,

with the terminal conditions:

1
(T, C) = 24"

B
n(T,n, () = a

BZ
w(T,n,¢) = ﬂ

where:
Ay =28, [p" (p — 20)p" + 1],
Ay =20y [pS(p—20)p* + 1],
Az =20y (p"° + p"'pp° —2p"'p") .
Ay =AnY + Ap,
A; =AY + A5,
Ay =—2iup" (I — p)o(n—r1)

+ 20,,132% (1— p"p¢) +20,5,V/31 (0" — p"p%) (5.2.11)

(1—p"p%) +acnVal (p" — p"'p°) .

a

Ve
Asy == 20np" (I - p)o ™ (u—r1)

+ 2(’3,,1?2% (p" — p"p") + 20,0, Vél (1-p"p%),

A.; o :('3” ‘ij]_

Ao :('3”1?1% (P — p"pt) + Aty Vil (1-p"p").

With this ansatz, we can express all controls in terms of @, 1, and 02:

(AgAs — ApAy)op? + (AzAy — A A )opt

g=- A A, — A2
a* =0,
* A:‘}Aﬁ - A2A4
T A, AT (5.2.12)

o AzAy — A1 As

ST oA A, - Az

_zo+01(0,70, &)
20(0, 70, Co) ‘

*
Wy =
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Similar to the uncorrelated case under f = 0, we can also conclude that:

B r
B(t) = g KO,

o (5.2.13)
iy(t) = VR

Following the similar logic, starting from v;, we can assume that 7, is independent of 5 and ¢
throughout the timeline due to the fact that (7" is independent of 1 and ¢, which makes Ayo
and S;; become zero and ultimately makes the dynamics of 74 becomes:
ity — iy =
As for 7y, it is more trivial to see that:
g = 0,

given Ayp and Asy are zero.

5.2.3 Verification: f) = I{;\"72]><{:\"72]

Lastly, we let p to be identity matrix, p” and p¢ to be zero vectors, and p° to be zero (‘no
correlation condition’ for short) to verify the correlated case can go back to the uncorrelated case
(under the assumption f = 0). We can immediately infer that D = D.

For the primal HJB equation, when we apply the no correlation condition to (5.2.2), we immediately

get:
T = —.L(O'D'f)_lf}xﬁ(‘u —rl),
0% H '

which is identical to (5.1.4). Then, (5.2.3) becomes:

—% [OxH(p—r1)] (oa) " dx H(p —r1)| + DH + Xrdx H = 0.
2% H

with the terminal condition: )
H(T,X.n,¢) = EAXQ + BX,

and (5.2.4) becomes:

—vy(p—rl)(oa’ )" Hp —rl) + 2rvy + Dy = 0,
—v(p—r1)(ea )" Hp—r1)+1v; + Dy =0,
2
8 (p—r1)(o0’) (- r1) + Drg = 0.
41.‘2
with the terminal conditions:
va(T, 1. C) =
n(T,n,¢) =B,
vo(T,n,C) =0,

which are both identical to (5.1.1) and (5.1.2) respectively.

A
=

For the dual HJB equation, when we apply the no correlation condition, firstly the constraint on
B becomes 3 = 0, and (5.2.7) becomes:

A =0%H,
Ay =81 H,
A:‘} :ﬂ_.
=~ (L
Ay =0y 0, H—,
€

N
As =0y 0 H VL.
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Given thiH_. (‘-}26) becomes:
inf —1 02’_&"'2 - —1 (‘32’&52 + Oy H —y+ ('35’0 H\/Shc
£ 2 ! ! 2 ! v \/F ' ¢ I

~ 1 ., - . _
+DH + 30,%& Yip—r1) (oo Hp—rl) —rYOvH =0,
with the terminal condition:
s Y2 4+ 2BY + B?
H(TY,0,0) = ————

which is a quadratic optimisation with respect to 4 and £. Now (5.2.8) becomes:

L vo

V= —

a2t
o VO HIG
h 92H
and thus (5.2.9) becomes:
—(By 8, H)22 — (Dy0-H )25 S B -
Oy 0, 1) = O OH)TO | ) CRAY 1) (o) Mp 1) rYayH =0,
20 H 2
with the terminal condition:
P Y24+ 2BY + B2
H(T.Y,7.() S E—

which is identical to (5.1.5). Furthermore, alter plugging the ansate:

H(f. }’r 1, C) = 'ij[}(f_. N C) - ﬁl(r: B C)}’ L ﬁz(fﬂ?s C)}’Qr

(5.2.11) becomes:

Ay =20y
Az =0,
Ay =A40Y + Ayp

_a
r'-l.;]_ 22(';” Ve —=

\/Er

]
Ao :du”l_ﬁr

7
Agy =20, 52V,
/‘lr,g :f)fi'l\/gf,
and (5.2.10) becomes:

—(8y52) 22 — (9:8)21%8 i
(Oy02)™ - G170 (e — 1) (@a’) (e — r1) — 2r] + Diyy =
)

2 LI
—t’)” i.'1t’)” i,'Q% — Jrin O i,'gfzd

— }“‘ij]_ - D‘E']_ = f]_.

i:'g
—(3,51)2% — (0.1)2 125
(00 )5 - (0cn) Dy =0,
4?,‘Q
with the terminal conditions: )
wa(T,n,C) = A
B
(T, n,¢)=—,
n(T,n,q) 1
I B?
w(Ln,¢) = 24’




which is identical to (5.1.6). In summary, the correlation setting is compatible with the no corre-
lation setting.

5.3 Introducing the Convex Cone under f =0

Previously we assumed that K = BV, In this section, we assume K is a closed convex cone and
only consider the uncorrelated case. In addition, since f = 0, & should be zero as otherwise we
can always choose an arbitrary X to explode ¢, and according to Li & Zheng (2018, Section 4.2,
page 1144), we further assume 3 € K" where:

K'={B:8nm<0, ¥re K}
is the polar cone of K. Given these assumptions, we can conclude that the optimal ¢ should be
zero, and thus, by the dynamic programming principle, the dual HJB equation becomes:

1., -~ . ‘
nf, {Eaéﬁ [(B=Y (1 - 1)/ (ee) B Y (n—r1)] +9° + €]
‘ f r3 l . . e \/—.
+ova,H Fm- + Ay HVAlE
—rYoyH+DH =0,

with the terminal condition:
= Y2+ 2BY + B?
HT.Y () =———7 7.
(T.Y,1,C) 74 :
The optimisations with respect to v and £ are the same as the previous results as they are uncon-
strained:

y 0, H =

o 2OV
Oy H

o OvO.HVGI

s o2H

However, the optimisation with respect to @ is nontrivial and it is dependent of the value of Y.
We derive the optimisation in three cases:

1. If ¥ = 0, it is obvious that 8 = 0 is in KY. Thus, the infimum term of B is zero and is
obtained when 8% = 0.

2. Y = 0
2 a3 2
inf o8- Yo Hu—r1) = inf V| 't — o Yu—r1)
,Bl‘enK“ e '8 o Hp—r1) BE’:nK“ ey ¢ (e —r1)]
2
=y? g‘12;(” E'a_lg — cr_l(,u — r]_]E
=v2|e '8, — o (p—r1)|’,
where: )
B, =arg min [0 'B—o (p—r1)|, (5.3.1)
BeK®
and the second equality is due to ¥ > 0 and 8/ is still in K.
3HY <0
) 2
J{:‘,i":n}g‘I [[e=t8-Yo(u—r1) :ﬁ'{’:n}fc“ y2 [ a"l? —o Hp— r1)|
2
=Y? inf :'cr_1 ’6, —cr_l(,u,—rl):
_iy;:}(u | —Y |

=Y? e 1B+ (u—r1)|”.
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where:

3_ = arg min lo '8+ Y u—r1), (5.3.2)
and the second equality is due to ¥ < 0 and 3/(-Y) is still in K.
Therefore, we can define:
0 iy =0,
Ot.Y)=¢ o'8_+o Hu—-11) ifY <0, (5.3.3)
e '3, —oHp—rl) HY >0,
and the dual HIB equation becomes:
- L a1 Oy H)2E 1 (9yd H )2
DH—thH—TYHQW%H—TMHf} c _LOvOH)TH _ (5.3.4)
2 2 0tH 2 9iH

with the terminal condition:

s Y2+ 2BY + B2
H(TY,.0) = ——7——.

Furthermore, by plugging the ansatez:
H(t, Y, ¢) = dy(t,n,¢) + i1 (t,0, Q)Y + (£, 1, )Y 2,

and expressing the dual HIB equation as a polynomial of V', we are able to get the similar PDEs
for 4, i, and 12 as follows:

. 2(B2)?  128(Dci2)?
Dy + (|2 — 2r)7, — 02l LolOm)

3 Us
29, Byl 1280cT1 00
A~y dyta ISl cih dcta

Dy —riy —

Ei-:'g ﬁQ
(1.2((')”‘!-5]_)2 Jud(f)(ijl)2
Aty 41y

Diy — =10,

with the terminal conditions:

(T, 1,¢) =

0 (T,n,¢) =

2%l 2

i'[](:rr B C) =
Following the similar logic, it is not hard to observe that:

B T
() = 70—.12 J{."Jllﬁ,

A
B2




Chapter 6

FBSDE Method

With the F'BSDE method, we are able to transform the problem of solving a stochastic control
problem into a problem of solving a stochastic Hamiltonian system, which may be more tractable.
Inn this section, we will derive both primal and dual FBSDE systems for the general uncorrelated
setting, and we will also see the equivalence of the primal and dual FBSDE systems.

6.1 Primal Problem and the Associated FBSDE

In the previous primal problem setting, we have three state variables: X, 75, and ¢. Hence, the
associated adjoint process p, (t) € B? and the associated control g, (t) € R¥*(N T2 Before we write
down the dynamic of py(f), we firstly simplify our discussion by setting no correlation structure
and K = BV and reformalise the dynamics of all the three state variables in a matrix form as
follows:

XT XTr+ o' (p—rl) o 0 0 W,
d|l n | = b d+( 0 5 0 )d '[-l-"!:
¢ cé 0 0 Vol W (6.1.1)
X g
1 =1
</ Co

According to Yong & Zhou (1999, Section 3.1, page 115), the following dynamics of p, () admit a
unique Fi-adapted solution pair (p,,q,):

dpy(t) ={ -

r')(X"r—Tr’(u—rl),%,r{i} ' N
X1, ) -2

0 (ﬂ_. G O) ’ N+41

axr 0| T W

a(m'ad n, ﬂ}] ' j

7{.)(){“,”,0 q(t)

%

7v(X’r.n.(].f“.~Xﬂr"T) } dr*ql“‘)d A

="

|
v

(6.1.2)

rowo,u w'op N (0 7wyl wHdcel\
:{_ 0 & 0 |em=-> {0 0 0 |gi®)

0 0 decd i=t \0 0 0

0 0 0 0 0 0

dya N+

-0 o)e (0 0 0 gt

0 0 0 0 0 dedva

QX™ + 8'm Wi
+ 0 }df +q,(t)d | W

0 Wy




with the terminal condition:

pi(T) == Vix=n0 9(X™(T

|rr:1'r‘

AX™(T)+ B
=— 0
0
where:
o= :crl_. _cr"\"]
a(t) = [qi(t).-- a7 T (1)]

and 7" is the optimal control. We now define the Hamiltonian using Yong & Zhou (1999, (3.10),
page 116) to assist to write down the maximum principle:

X7+ 7' (e —rl) m'a 0 0
H(r.X",w,Pl,q1)=<p1.. z >—t1‘ | 0 & 0
ed 0 0 Vol
— f(t. X", 7
)i“'r—':r —rl) N (6.1.3)
=p; Z“’ o’qpt
@ (N+1)2 T (N+2).3 1 rrry 2 , 1
+ 7 g\’ .'.x/Eqi )3 _ EQ(M) — S TX" — E'rr’Rrr,

where ¢}, j = 1,-++ ,N+2, i = 1,2,3 is the element of g, (t) at ™ column and i*" row. According

to the local form of the maximum principle (Yong & Zhou 1999, (3.26), page 120), we have the

relationship among (X™ ,«*, p,,q,):
(m ") VaH(E X " prg) <0,
' (6.1.4)
= (7" —m) |pi(p —7r1) Zq ol —X™ S— Rx"| >0,
i=1
where: .
P
P1(f) = pé
P
and m € K is an arbitrary control. As we previously assumed that K = RY, (6.1.4) can be
simplified further as follows:
N
p—rl) Z al - X™ 8§ - Rrx* =0. (6.1.5)

In fact, we can simplify the primal FBDSE system by getting rid of the last two dimensions of p;.
From (6.1.2), we immediately know that:

q{'( =0,¥j=1,--- ,N+2, i=23,
pi=0
P:f:(]:

for all £ € [0,7] satisfy (6.1.2) for the last two dimensions, which is then guaranteed by the
uniqueness of the solution under some technical conditions according to Yong & Zhou (1999, page
116). More specifically, the unigueness of the solution is guaranteed if the following assumptions
are satisfied:

Assumption 6.1.1. (K.,d) is a separable metric space and T > 0.
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Assumption 6.1.2. The maps:

fuy(t,z,m, ¢, m) = b(a)
e(¢)d
m'a(n.C) 0 0
Gtz C.m) = 0 \‘f” 0
0 0 V¢
1

flt,z,n, ¢ m) = %Q:r2 + 8w+ E?r’R':r_.
1 .
glt,z,n.(,m) = EAJ.‘Z + Bz,

are measurable, and there exists a constant L > 0 and o modulus of continuity @ : [0,00) — [0, 00)
such that for (t,z,n,¢,m) € {p, 0, f,g}, we have:

T Ty |
|1’."|(f__;1j__1?__c__1r] —(t, z, 0, H_.I?I')| = .L' U fz '_‘;‘(dv(rﬁ-))
| \C <
[v(¢,0,0,0,m)| < L,
forallt €(0,7], z,2 € R, n,n € R, C.CHE E, and 7 € BV,

Assumption 6.1.3. The maps 7, &, f, and g are C? in (z,1,(). Moreover, there ezists a
constant L > 0 and a modulus of continuity w : [0,00) — [0,00) such that for ¥(t,z,n,(,7) €
{, 7, f, g}, we have:

| [T €T
Viamo Wt 2. 0,67) = Vg g ot &, Ca) < L g | = [ 7] +@(d(m, 7))
¢ ¢
1 T
IVV et 20,0 m) — VV e g (2, &, h.Com) <@ n|—=1\{n]l+ d(m, )
¢ ¢/

for allt €[0,7], z,2 € R, n,p € R, CCHE B, and 7,7 € BV,

We can thus simplify the system into the general version and the unrestricted version by removing
1 and (:

1. The general version:

dX™ = [X“"r + (g —rl)]dt + 7 ed W,
X™(0) =z,

. ) (6.1.6)
dpy = [~rpy + QX™ + 8'w*|dt + g d[W, W) WE
p1(T) = —AX™ (T) - B,
and the maximum principle:
(" — ) {i1 (1~ 1) + olLnsw, Onsaldy — XS — Re* | >0, (6.1.7)

where:

- 11 N+2,1 N
@(t) = [a" o () € RV
and 7 € K is an arbitrary control.

2. The unrestricted version (K = R¥): the dynamics of the system is the same as the general
version, and the only difference is the maximum principle:

(g —r1) +o[Inen, Oyx2)g, — X™ §— Rr* = 0. (6.1.8)
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Before we move on to the dual problem, let us further discuss the maximum principle under the
assumption K = BV, It is clear that the maximum principle provides some information among
the state variables, the optimal primal control, the associated adjoint process, and the associated
control. More importantly, if we further assume S = 0, then we can solve * from (6.1.8) explicitly:

"= B G 1)+ ol O}

which directly links the associated adjoint process and control to the optimal primal control.
However, one may ask what will happen if § and R are set to zero simultaneously? It seems that
(6.1.8) no longer provides such a link aforementioned, and thus the system seems to be decoupled.
Nevertheless, we should notice that the last condition in (6.1.6) reminds us that we still need to
choose a control 7 to make sure that the terminal value of p; and X matched in the specific
way, and therefore, the system is actually not decoupled even when we set S and R to be zero
simultaneously.

6.2 Dual Problem and the Associated FBSDE

Similar to the primal problem, we firstly reformalise the dynamics of all the three state variables
as follows:

Y a—1rY [13 —¥Y(pu— ?"]-)]r =1y £ W,
d 2 = L dt + 0 v e \/0_ d H-"t:
o 0 0 &l W
) ! (6.2.1)
¥ Yo
n =1
C 0 CU

and analogously, the associated adjoint process of the dual problem (i.e. p,(f)) should be three
dimensional:

9 (a—rY. b co Y —Y(p—r1))(a"1) b
dmu)—{_{ﬁﬁL_f;ng] 5:{ (B=Y(u-rley00)]

) Z oY, 1.0)
—_ f}(“r.T.ﬂ) q\‘+l( ] (}(r 0 \/_{) q-N+2(f]
aY,n.¢) ! AY.1.¢) :
| W,
—memmmm}: dt + g, (t)d [ W/
lyo=yg.e=¢* =" .B=B" a=a" W
- 0 0
={— 0 2t 0 |pt) (6.2.2)
0 0 d(t’.‘d
N [(—(p—rL){e™ ) =Y (yu) () (Dep) (a1
-2 0 0 0 a3(1)
i=1 0 0 0
0 0 0 0 0 0
o Ee o)@rm (o0 0 | e
0 0 0 0 0 divd
0 W,
<o }dr—q2(r)d W)
0 W
with the terminal condition:
p2(r) :_V‘Y__”__(J m'T(I’[T))l_\’ju:yl:._{ £ y=5".8=8" n=a"
Y (T)+B
A
=— 0
0

31




where:

It is straightforward to see that:

@' =0¥j=1, N+2 i=23,
q;ﬂl—ﬂ,

e =0,

P =0,

p3 =0,

for all t £ [0,7] satisfy (6.2.2) for the last two dimensions, which is then guaranteed by the
unigueness of the solution under As.kumption 6.1.1 to Assumption 6.1.3 where the state variables
become (Y, 1, (), controls become (e, 3,7, yy), and the maps become:

a-f_r(f)y
fio(t oy Goon By, Ey) = [
e(¢)d
{(B=Y(u(n, Q) —rt)1} e n¢) A 13
oot y.nC oo B,7.80) = 0 “\{/I:‘;J 0
0 0 VAl
1 S'R'8) 1,
oty m Coo, 3,7, 8 50) = 5(2’)711_{[; 553 '8,
+ 2By + B?
oty m. G, 3.7, & y0) = 71} 2; .

Therefore, we can simplify the system by removing # and ¢ and adapt to the similar notation as
previous discussion:

dY* = (a* —rY*)dE+ [8" — V¥ (e — r1)]'e" "W, + v AW + AW,
Y*(0) = 14’[1:
dpy = [rpa + gho ™' ( — r1)]dt + GHd W, (6.2.3)
o Y“(T)+ B
p(T) = —%,
where:
po(t) = py(t) € R
=g e () €RY,
and:

V¢ = ylw.a®B8 L)
is the state variable under the optimal dual controls. In this case, the dimensionality of the g, is
different from ¢, (£).
To proceed to the optimality of Y*, we need to make sure that the following Assumption holds:

Assumption 6.2.1. Let (&,3) be given, and let o, B be any admissible controls. Then there exists
a stochastic process Z, which it is a real valued progressively measurable process on [0,T] x 0,

satisfying:
T
F f |Z(r)|dr] < o0,
il
and: o i R
20) > ot a(t) + e alt), Blt) + € B(1) — o(t, ﬂ'(f)sﬁ).

£*

for (P @ Leb)-a.e. (w,t) € Q2 x[0,T], and € € (0,1].
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The optimality of Y'* is then gnaranteed by the following sufficient and necessary condition, which
serves as the 'maximum principle’, according to Li & Zheng (2018, Theorem 7, page 1138) and
Rockafellar (1970, Theorem 23.5, page 218):

P2(0) = xo,
o' lq, € K, (6.2.4)
(ﬁQrU;_lQQ) S aé(ﬂ'*rﬁ*)r

where d¢(a*, 3") is the set of generalised gradients evaluated at (a*, 3").

Remark 6.2.2. If K = BN, we can eapress (6.2.4) more explicitly. From (4.1.11), we know the
aplicit form of ¢:

1{a—S'R'3)?
2 Q-SR'S

b(t . B) = + AR,

and thus, we obtain two equations as follows using the last condition in (6.2.4), which indicates

that (ps,e'~1q,)" is the gradient of ¢ evaluated at (o*, 3%):
.t - S'R13
PSR s’ )
R1S(a* — SR (6.2.5)
o'qg,=R 3" - .

Q-SR'S

Remark 6.2.3. The above explicit conditions (6.2.5) can be also derived from the mazimum prin-
ciple similar to the previous argument using the Hamiltonian. To verify this, we define the Hamil-
tonian as follows:

HELY, o, 3,7,8, P2, Ga) = (Po, 0 — 1Y) +tr :";'2[13— Yip— ?"1)]’0"_1]

— o(t, o, B)
=(a—rY)pa+ [B-Y(u—rl1)o" g, (6.2.6)
_ltﬂ'—fv"R‘Hﬁ)2 R -
2 Q-S'R'S P RB

We differentiate it with respect to o and 3 (given that H does not explicitly depend on v and £) at
(ﬂ.*.‘ﬁ*]"

Po o' -8'R'B"

- sk o s A 2T Q-§ RS

Vi H(tY, o8, B o dn) = | - e L
UqQ_R 16 - O-S'R-'5

and equate them to zero (when K =RV ) and will get the eract results shown in (6.2.5). Follow-
ing the similar arqgument as the previous section, although +* and £ do not appear in the above
equations (or more specifically, in H ), it does not necessarily mean that these two controls have no
effect or can be chosen arbitrarily. Instead, their values will affect Y*(T') and then consequently
the terminal condition of po.

6.3 Links between the primal and dual FBSDEs

From (6.2.5), we can observe that the right hand sides of these equations exactly match with those
of (4.1.10). It is also not difficult to figure out that the structure of the drift term of the dynamics
of py is quite similar to that of X™ | and the structure of the drift term of the dynamics of Y* is
quite similar to that of fi;. Indeed, the relationship is gnaranteed by Li & Zheng (2018, Theorem
9, page 1139) and Li & Zheng (2018, Theorem 11, page 1139). More specifically, we have the
following two theorems:
Theorem 6.3.1 (from dual problem to primal problem). Suppose that (y, o, 3",~4*,£") is optimal
for the dual problem. Let (Y*,po,qs) be the associated process that satisfies the FFBSDE (6.2.3)
and condition (6.2.4). Define:

=o' 'q,. (6.3.1)
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Then w* s the optimal control for the primal problem with the initial total wealth x¢, and the
optimal total wealth process X™ and the associated adjoint processes (p1,q,) are given by the
following equations:

X" = po,
=Y (6.3.2)
a =B V(p-ro 5T

Theorem 6.3.2 (from primal problem to dual problem). Suppose that 7% € K is optimal for
the primal problem with the initial total wealth xo. Let (x™ .P1.q,) be the associated process that
satisfies the FBSDE (6.1.6) and condition (6.1.7). Define:

yo = p1(0),
a* = Qer' 7SF1T*_.

B =oa[Iy.y, Oyyxalg, +Y*(p—rl), (6.3.3)
o N411
Y= N
*-c,* _ qi\'—%—?._ll

Then (y,a*, 3", v*,£*): is the optimal control for the dual problem. The optimal dual state process
Y* and associated adjoint processes (p2,q.) are given by:

Y* =pi,
By = X, (6.3.4)
Gy =o',
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Chapter 7

Numerical Methods for HJB
equations and FBSDEs

According to the previous discussion, our problem can bearly be solved analytically, even alter
making the functionals in the setup explicitly, for example, (7, (). o(n.), a(n), b(n), (), 1({),
etc. Thus, we have to resort to the numerical methods to solve the problem. In this chapter, we will
walk through some basic ideas of discretising the PDEs and the FBSDE systems, and then focus
on the finite difference method for solving PDEs for the HJB equations and transforming solving
FBSDEs into solving optimisations. We will only discuss the general case without introducing
the correlation structure. Lastly, we will also specify a setup for our problem, solve it through
the primal HIB equation and the dual HJB equation, and verify the equivalence of all the four
methods we discussed before.

7.1 Solving the Primal and Dual HJB equations Numeri-
cally

This section is purely based on the finite difference method to solve PDEs numerically, which is
an intuitive and computationally efficient way to solve PDEs. We will discuss the primal HJB
equation and the dual HJB equation separately.

7.1.1 Primal HJB Equation

For the primal HIB equation (3.0.3), we discretise the PDEs by ¢, 1, and ¢, namely, by making
the three functions to be solved into three separate three-dimensional grids and initialising the last
two-dimensional grids (i.e. at £ = T") by each function’s terminal conditions. One grid should be
formed by At An+ AC, where:

T
At = —,

Ny

Nmax — Tmin
Ap = e Timin (7.1.1)

N,

Cmru — Cmiu
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And we propagate the values through the PDEs backwardly as follows:

.. i .. !
4 2;),;;3'1'}..&- " %QE _ % [Sk- " 21,;7..3'7.1"(“(._9 _ ok 1]]

.. .. .. -1 - ..
[Ri' a1 21),;-.?:* a.x-__r-_k(o.tz.r-.k')’] {S’" a 21.;-..?-.#'(“1-..3’ _ r"'l]] .

i i+1,j.k iy gk iy2 i+1..k i—1,5.k iy gk
phdkml ik I’_"'Q L I L TV — 2,
2 S € An 2¢ An?
ik ik fgbLk o igoLk i ik
A U, vy N ld(f"’]Q U, + vy — 2u,
' AC 27\ AC?

. ;. 1_'_*. '_._J‘. b 1 1_'_1‘. '_1_.'_1‘. '_._li‘.
bt 1"(1+ Wk 111 [a;)z 1"(1+ vE _1"(1 s _2”11..1.

1Ii._',i._.ir—]. igk 0 v "
t € An 2¢ An?
L Al AN STV L Gl et il
' AC 2 AC2

-1

" { ko (i - 1y’ [Rk " 21,;.?.&0_(‘__”0_{___;);]

i k—1 i.j.k
]

v —u B | R | N
v : € An 2¢ An?
i1k ik INESN! ij—1.k ik
Sl vy” -y’ lJUﬁ]Q vy’ + vy — 2vy”
: AC 2\ AC2

with the terminal conditions:
voltn, i, C5) =0,
v ltn, . m.¢) = B,
1
2

va(bn, i () = 54,
i=0,--,N,, j=0,- Ne¢
where:

vy F = vy (i, G),

VI = (i, ).

v5 " = vy (e 1, )

Q" = Q(t):

S = S(te).

R* = R(ty),

= (),

i = p(mi, ).
ol = a(n, ),

a’ = aln;),
b= bn:),
¢ = (),
=g,

0 = Thnin + 187, § = Cuin + JAC 1 = BAL,
i=0,- Ny, 7=0,--- Ne, k=0, , N

Here are more detailed descriptions of the procedure:
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1.

It is not difficult to spot that if we only care about the optimal control #* and the optimal
total wealth path X™ , we only need to solve vy and vy from (7.1.2). And we will only focus
on ve and v in the following discussion.

. As the finite difference scheme involves computational errors and tends to accumulate them

through the timeline, we need to ensure the stability of the numerical calculation, and a
rough rule is to make:

At ~ Anx A(, (7.1.3)
according to LeVeque (1998, Section 12.3, page 157).

. We need to know #,,in: %mazs Cmins and pae. Since the dynamics of 77 and ¢ are independent

of controls, we can directly simulate them Neimulazion times using the following discretisation:

ke m?

b(n) a(ni’) -

g =g R A R LA

k41 k p VE (7.1.4)
Gy = G+ delGr) At + VBI(GM)VALZ .

where Z;_’J” and Z;m are the k' realisation of the standard normal distribution indepen-

dently in the mt" simulation, and ni* and (* are the values of 7 and ( at #; in the m®"

simulation. By (7.1.4), we can extract the range of 1 and (.

. At each t;,, we will walk throngh all possible combinations of (7,, ;) to fulfill ui’""i‘:" and u;"‘i""

based on the later time spot (i.e. i,'i'?'H'l_. 1
i1kl i1kl it Lkl ig—1 k1
Uy L Uy , Uy ) Uy )

ALkt i—Llgk+l igtLk+l i1kl igk+l
A i i L Vs .

[ Uy
. When it comes to the upper boundaries of the
grid (i.e. when i = N, or j = N¢), we are no longer able to compute the partial derivatives
with respect to i and ¢ using the ‘a-step-backward’ approximation demonstrated in (7.1.2).
Instead, we need to approximate the value of the partial derivatives using the values a steps

away from the boundaries:

uium{f+1:.m'u}___;__&- o omin{i,N,—1}j.k

an“l (thsmin ) = AT;J
1)I;m'“{i+1:A-",j—-..i._Jk- _ ylmm{:__N.,— L}k
Dyva (i, ) = =2 A7 2
“i:min{.f+l._‘\":}._k _ yx._miu{j._Nc —1}k
Aeon (te, i, ) = — Ac -
i)Ii:min{.'}+l._N;}._.ir _ ylx._miu{j._l\"; —1}k
Deva(ty,mi, ) = =2 AC 2

“i,m.{i+1:;\«",},__j,_&- N qu-“[,—11;\;,,—2}:_;,_1- _ 2“;-:4111{1',_NW— 1}k

1

vy (b, mis G) =

An?
‘ yminliF LN, ik | min(i=L N, =2h gk o min{iN, =1}k
920yt 1yis ;) = 22 2 2
GaUalle, i, G5 AnQ
fmin{j+1, N}k omin{j— 1N, —2} .k imin{j, N —1},k
‘ v +v — 2v
92v, (L 1, i) = L 1 1
t'(LL A-.-??x.-C_y - ACZ
iomin{j+1, Ntk imin{ j—1,Ne—2} .k inin{j, Ne—1}k
2 Uy + Uy — 2u,
g (t LG =
((1,2 ;:ﬁ(.-c_f - ACQ

. It is not difficult to spot that some terms are time-independent or v-independent, and if we

compute them at each £y, then we simply repeat Ny+1 times’ computation, which significantly
slows down the computing speed. Therefore, we can compute those time- or v-independent
components including, for instance, p™7, o'/, af, Q*, before we start solving the PDEs and
this will not incur additional interpolation costs as all computations during solving PDEs
are on the pre-defined grids. More specifically, we can compute p™ as an N, * Nex N 1
array, S¥ as an N; * N + 1 array, and a’ as an N, x 1 array. Another advantage of doing so
is that we can vectorise some of the computations. For example, after we solve v and when
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we are about to solve v1, the coefficient of ui"j"k is independent of vy itself, and this leads us
to vectorise the multiplication between the coeficient and 1)?'"":", which can further save the
computing costs.

After solving the PDEs above mumerically, we are able to get the optimal control * and the optimal
total wealth path X™ . For a single simulation, we need to firstly get a series of realisations of
independent (N + 2) dimensional standard normal random variables:

Z[% Z[f e 4}\‘ ) Z[E
Z.ll Z.f o ﬁl\ aa (7.1.5)
zN, z%, ...z 7%, Zy,

to be used as the simulated Brownian motions. And then we use the last two columns to simulate
a path of (5, C):

_ b{ni) alie) o
M1 = T e At \/; Af[&_, (Tlﬁ)

o1 = G + 0e(G) At + Vol(G)VALZ].

Note that the subscription represents at ¢, and has nothing to do with the grid we defined previ-
ously. Before we move onto the next step, we need to ensure that the simulated path of both state
variables should be bounded by their ranges calculated previously, as otherwise we are unable to do
the extrapolation for the v’s. If the values of these two state variables at any time spot fall outside
their ranges, we need to redo the simulation until all values are bounded by their ranges. Then we
simulate the optimal total wealth path X™ and calculate the optimal control #* simultaneously
as follows:

-1

mp = = R+ 2uati i 6o (ks 6o (s ) |
{X;_" {S" + 2ua (t, T G 2 Ci) — r"1]} (g, s G [ g G) — 8 1]}, (7.1.7)
X7 =XT + {X:."r*' + 7ot (e i) — r"l]} At + o (g, G) ZL VAL
with the initial condition:
X[f' = xyq,
where:
Zy =2}, 2.

In (7.1.7), we need a interpolation scheme to compute values of functions of 1 and ¢ evaluated at
non-grid points. The scheme is a multidimensional linear scheme. For example, if n;; € [n:, 7i41]
and ¢, € [¢;, 1] [k represents the time while i and j represent the grid) and we are going to
evaluate va(ti, i, (i) (noting that ¢ is always on the grid point), it can be interpolated as follows:

Mg — M G — G ik ikl = Tk Sk — G pid Lk
= 5

va (ke Mo Cic)

An Ac An Al
(7.1.8)
oM MG = Gk gk Tk MGk — G gLk
An AC F Ang  A¢ 7 '
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7.1.2 Dual HJB Equation

For the dual HIB equation (4.1.15), adapting to the previous notation, we discretise the PDEs as
follows:

i ~i4+1,4,k ~ k iv2? ~i+1,9.k ~i—1,7,k ~1,5,k
skt _gigk U BT @) ittt g oy
i T
€ An 2e An?
GhatLE _ ik 1 GLatLk | sid=lk _ onidk
del =2 + Z8(1 2
AC 2 AC?
r i -1 2y
] =t - (Y s

(a_sz ﬁ;+l:.f-.'i‘ o 1‘5;-.:’::‘ (1”)25 1‘;;-_.1"’]--.“ o 1‘;;-..1-."‘
ﬂ‘]é-..l-.k' An ﬁi:.]-.k' AL ’

i =i+lgk =gk ive ~itlgk | ~i-1.4k PR
k=1 _giik B0 s N G R} — 2
J 1 2
€ An 2¢ An
phatLE _ghidk sigbLh | gid-Lk _ggidk
P P Sl S T E 1o 1 1
AC 2 NG

4 2{.11.?116'1?;-...'-.*'{ { :O.xr..i(o.ir.i)’] -1 (.u'i"j — 1) — [R"")—ISI’"}F
(7.1.9)
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with the terminal conditions:

- B?
Toltn, 17, Cj) EYE
- B
Uyt i GG) = 1
_ 1
taltN,. 0. G5) = A

where:

~i, gk

Uy = Ul 13 G
0 = (i G).

=i,k

Uy " = Toltr. i G ).

Analogous to the previous analysis, we have several points to mention:

After solving the PDEs above numerically, we are able to get the optimal controls v}, a*, 8%, +*,

. As we only need to care about the optimal controls 5, o*, 3°, v*, and n*, and the optimal

dual state variable path Y*, it suffices to only solve ©y and #,. Thus, we will only discuss
solving 1 and ¢ from now on.

. We will use the same grids as those of the primal problem and it will antomatically satisfy

the stability condition.

. To make the results from the dual problem and the primal problem comparable, we simply

use the same simulated n and ¢ obtained during solving the primal problem.

. The way to fulfill ﬁil"j"i‘ and 757" is the same as the previous one: based on the later time

spot (i.e. ﬁi,__],_.is'+l‘ ij’.+1""i"l'+l: i—;i—lﬁjri+1r ﬁir.j+l,i-+lr 1-:';"j_L'k+l_.

ikl ig— Lkl . . . .
(i J+LE+L 057 1y Also, we will have to deal with evaluations at boundaries and we
simply use the same approximation technique aforementioned.

ikl il gkl i1kl
Ty s Ty ) Ty ,

5. Likewise, we can speed up the computations by pre-computing some time-independent or

D-independent components, which are basically the same as those of the primal problem.
Meanwhile, we can also vectorise our computations in solving v, so that we can further save
the computing costs.

*

and £*, and the optimal dual state variable path ¥ *. For a single simulation, we can use the same
realisations of independent (N + 2) dimensional standard normal random variables in (7.1.5) to
construct the Brownian motions. Furthermore, we can also use the same single simulations of 7
and ¢ as in solving the primal problem so that we are making both dual and primal problems
comparable and circumventing the out-of-range issue of n and ¢. Then we simulate the optimal
state variable path Y* and calculate the optimal controls 3, a*, A%, 4%, and £* simultaneously as
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follows:
Bi = {(RH)™ + 2da(te,me, Go) [o (e, Ge)or (e, 6]}
{Qﬁg(n-.m.ckmf {lcr(m._.mcr(m,qJ’]‘l [y ) — 7%1] — (R*)'IS*}
— B (s ey G ) (RY) S }
-1

o =(S*) (RS {(R) 1 4 205ty ) [0 Ok o) (i, )]

{aﬁgm.m.ck-)i’; {lo . G0 (e, )1 [, ) = r*1] - (RF) 7' s*}

(7.1.10)
—mm-,m-,cm(ﬂ*dIS‘}
— (01 (taes i Gi) + Dot e, G ) YR (QF — (8%) (RF)18%),
= a(ng) Oy (Er, Mg, ) + 20,00 (Er, e, G )Y
k Ve 20z (b, M, Ci)
<001 (Fiy My Co) + 2002 (Fes iy G ) Yy
& — (e \/Efc 1 k k
o (Ce) 209 (g, ey Cic)
P =Y+ (o = YA+ {81 - Y2 [ G) — 1)} o (e, G T 2 VA
+ALZIVAL + 1 Z VAL
with the initial condition:
« _ro+ (0,70, Co)
¥ = 205 (0, 10, Co) ' (7.1.11)

Analogously, we still need the same interpolation scheme for ¢, and . In addition, we will also
need to do the interpolations for &y, d,ta, &y, and d vy to compute 47 and &}. Technically,
we firstly need to compute N; # IV, * N¢ arrays for each partial derivative. Let us take 9,0, as an
example:

ﬁi‘l’l.-_}-lii _ .!':]il-..f-.lii

Gyt = L—— L 7.1.12
i} x (7.1.12)
where we need to take care of the out-of-range issue of 1 and ¢ by using the ‘a-step-backward’
approximation. Then finally, we are able to apply the same interpolation scheme to compute ~;
and &.

After solving the dual problem numerically, we are able to recover the optimal total wealth path
X™ using Y*, ¢; and 7, by (4.2.2).

7.2 Solving the Primal and Dual FBSDEs Numerically

This section is inspired by Zhu & Zheng (2022, Section 4). It is not difficult to spot that we are
given the terminal conditions of SDEs, for example, (6.2.3). If it is an ODE, then we can start
from the terminal time to progress backwardly withont any severe issue. However, if it is an SDE,
then solve it backwardly given the terminal condition will break the nonanticipativeness of the
solution. Thus, we need to come up with a scheme to circumvent this issue and the solution is to
transtorm the problem of solving the FBSDE into a problem of solving an optimisation problem.

7.2.1 Primal FBSDE Method

For the primal FBSDE method, we can solve it by transforming it into a minimisation problem.
To solve p1 from (6.1.6) backwardly is hard, as we need to know X™ firstly. However, we can
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treat the terminal condition as follows:
pu(T) + AX™(T) + B=0
— E [(ﬁl(T) L AXT(T) + 5)2] —0.
Thus we can consider this to be an error minimisation problem as follows:
min E [(ﬁl(l’")fAX"‘(T)fb’F]. (7.2.1)
P1(0).4,
Therefore, we can discretise the time horizon into m intervals and then make the optimal controls
7* and g, piecewise constant. More specifically, we are going to solve the following optimisation
problem:
. 2
omin E [(ﬁl(r,u) + AX™(t,) + B) } _.
Pro-gy 0 9 m—

subject to:
X (tp1) = X7 (1) + [X™ (40 + 7' (. — r D)) At + 71 o M VAT
X~ (0) = zq,
Prltivr) = pu(ts) + [—rpr(t:) + QX™ () + 8w} |At + gy, [M i, M, MF)'VAE,
p1(0) = pro,

where t; = (iT")/m, At = T/m, M; is the i™ iid realisation of the N-dimensional standard
normal random variable for X™ , M is the ¢*" i.i.d realisation of the standard normal random
variable for 5, and M? is the "

and:

1.i.d realisation of the standard normal random wvariable for (,

pilti)(p—r1) + o[Inun, Oyxalgqy, — X™ (t)S — Rm] = 0.

if we take K = RV,

To ensure that numerical results of the primal FBSDEs are comparable with the primal HJB
equation, we need to mal«.‘ m=N,, My = Z,, M' = Z;_’, and MJE = ZE-‘ and then we can extract
the simulated path of X™ from the FBSDEs. However, we should notice that the extraction may
not be precisely matched with the results produced by the primal HJB equation or recovered by
the dual HJB equation. Although theoretically we can treat g, to be optimised as an N; * N, *
Nex (N +2) % 1 array, in practice, Ny # (N + 2) % 1 is generally a sufficiently large number which
is already computationally demanding for the optimisation algorithm. Therefore, we at most can
approximate it as an N; * N % 1 array, indicating that g, to be optimised is approximated to be
independent of  and ¢ and is the source of the errors.

7.2.2 Dual FBSDE Method

For the dual FBSDE method, the logic is roughly the same. We firstly transform the problem into

the following optimisation:
Y*(T)+ B\’
min K (352(1")7¥) ] (7.2.2)

o, E.da A

Then we discretise the time horizon into m intervals and make the optimal controls a*, 3%, ~*,
£, and g, piecewise constant. More specifically, we are going to solve the following optimisation

problem:
h Y*(tn) + B\
(Pz[fm] + f) ] .

min ¥
Yo ¥ Ym—1:800 " Em—1.92 00 @2 m—1

subject to:
Y* (i) =Y (t:) + (of —rY " (t:))At
{8 = Y*(t:)(p — 1)) M+ M+ M WAL
Y*(0) =y,
Poltivr) =pats) + [rpo(t:) + b0~ — r1)]At + &;,_iﬂ’fimr
P2 (0) =0,
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where the time interval length and the simulated Brownian motions are the same as those of the
primal FBSDEs, and:
f‘t‘: _ SJ’ R ]',8:
- Q-SR'S’
R7'S(at —S'RT'B])
Q-S'R'S

}‘32“()

o'q,,; = R_L,(_']: -
if we take K = RN,

Likewise, we are unable to fully parameterise the controls v, £, and g, due to the unrealistic high
dimensionalities. Instead, we approximate them as only time-dependent: « and £ are approximated
as two Nyx1 arrays and @, is approximated as an N+ N +1 array, which contribute to the matching
EITOLS.

7.3 Numerical Results of Solutions of PDEs and Simula-
tions for FBSDEs

In this section, we are going to present the results produced by the previously mentioned numerical
methods. We will specify our settings (one with a smaller scale and another with a larger scale)
and will mainly focus on comparing results produced by different methods and testing the stability
of the algorithm.

7.3.1 Smaller Scaled Setting

For the smaller scaled setting, we simplify the only-time-dependent components by making them
constant throughout the time since in practice we may not be always able to precisely describe the
time structure of them and this setting will not impair the generality:

Qt) =0,
S(t) =1,
(7.3.1)
R(t)=1,
(1) = 0.001.
For the constants in our model, we specify them as follows:
N=2,
T=
A=2
B =-22
e =0.01, (7.3.2)
4 =0.01
ry = 10,
o = 0.01
¢ =0.01
The rationale to choose B = —22 is that we want to centre the terminal total wealth around 11, a

number slightly higher than zge™”, as —B/A represents the mean of X7 .
We also want 1 and ( to be able to reach negative numbers. In order to avoid over complications,

we simply parameterise their dynamics as follows:

a(n) = 0.1,
b(m) = 0.1, (7.3.3)
Q) = 0.1,
1(¢)=0.1.




For the specification of the dynamics of the stock prices, we use the

Lis
un,¢) = (if,f_ jg)

1,43
0’(1’?~C]—(En ] 10:)-

3
2[}C 10 2 1 i

F

Finally, we specify the grid parameters as follows:

N, = 625,

N, = 25,
N = 25.

following parameterisations:

(7.3.4)

(7.3.5)

Firstly, after we solve both primal and dual HIB equations, we have the grids of vy, wa, #1, and
Uy in hand, and we are able to verify the correctness by using (4.2.1) and plotting the errors (but

we are unable to visualise the values since they are
histograms of the errors:
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Figure 7.1: Histogram of absolute errors produced by |v =
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Figure 7.2: Histogram of absolute errors produced by |#y — ﬁ .

all three dimensional arrays). Here are the

where |1 is on 10" magnitude and |72 is on 107! magnitude. Although the second errors seem to
be significantly larger than the first, they are still acceptable as relatively they are on 1% magnitude.

Next, we can simulate X™ and Y™* using the solved components, and recover X™ form Y* to

check the equivalence. Here are the single simulation results:
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Figure 7.4: Single simulation result of ¥'*.

Through (4.2.2), we are able to recover X™ from Y*. We demonstrate the recovered path and

the errors as follows:
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Figure 7.5: X™ vs. recovered X™ and their errors produced by X™ — (=i — 20,Y™*).

Again, the errors are relatively small as they are on the relative 0.1% magnitude.
In addition to the single simulation, we also conduct the batch simulations (i.e. simulate the paths

100 times) for both X™ and Y*. To have a better idea about the distribution of X™ across the
timeline, we plot the mean, 25% percentiles and 75% percentiles in one figure as follows:
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Figure 7.6: Batch simulation results of X7

We also compute the recovered X™ from Y* in each simulation and their absolute errors across
the timeline. We average them and plot them against the timeline as follows:
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Figure 7.7: Averaged absolute errors produced by |X™ — (=i — 20Y")|.

The averaged errors are on the relative 0.1% magnitude, which is a strong evidence corroborating
the equivalence of the primal and dual HJB equations.

As for the verification of the FBSDE method, unfortunately, we are unable to finish the optimisation
due to the exceptionally high dimension. We can, however, produce an initial guess for both
optimisations (i.e. (7.2.1) and (7.2.2)) by “cheating” via Theorem 6.3.1 and Theorem 6.3.2 and
averaging the primal and dual optimal controls that we calculated during the batch simulations of
X7 and Y* at each time spot. We then evaluate the equivalence by comparing both optimisation
objectives (index i represents the i** simulation):

1iny

. 2
=2 |t + AXT ) () + B
100 & [ ' ]

and: 100 2
L (Y")(tn)+ B
100 Z [ A ]

with their corresponding initial guesses produced by “cheating” and other arbitrary initial guesses
(i.e. by itialising all controls at all time spots across all dimensions by 1). Here are the results:

Primal Obj | Dual Obj
“Cheating” 2668.75 0.93
Arbitrary T017.89 6.17

Table 7.1: Values of optimisation objectives
where the smaller figure is more appreciated. It is clear that the figure achieved by “cheating” is

smaller than the arbitrary initialisation, although “cheating” does not perform critically well in
the primal objective evaluation. Overall it is a good evidence to support the equivalence.
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7.3.2 Larger Scaled Setting

To test the stability of the algorithm, we redo the procedure on a larger scale. The grid parameters
become:

N, = 2500,
N,y = 50, (7.3.6)
N: = 50.

And we also increase the number of stocks to be considered to N = 5 with the updated dynamics
specifications:

1
C—mn)
e
pinC) = E”’_i_ac .
= — 156
f—HC—ir
5 e .
1 3 (7.3.7)
Pn_i—_i 0 0 0 0
1 3
= ipa 8 0 0 0
( ) = ﬁc_i i] i 1 4+ 140+ 2 0 0
7 nrc n 2]."’2‘ ll“ “1].[}C ll“ ].21?Ii ].E !'11 1 ].C 3 n
= +d wntn Nt =(+E I+ i+2
R O A i A L T 1 2., 3
Wt wmtw Wl twmitw witwltw st

Following the same logic as the previous section, we simply plot all figures as follows:
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Figure 7.8: Histogram of absolute errors produced by |#; — 2]
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Figure 7.9: Histogram of absolute errors produced by |2 — ﬁ .
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Figure 7.10: Single simulation result of X™ .
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Figure 7.11: Single simulation result of Y™*.
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Figure 7.12: X™ vs. recovered X™ and their errors produced by X™ — (= — 20,Y*).
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Figure 7.14: Averaged absolute errors produced by |[X™ — (—iy — 20, Y*)|.

and also the performance table similar to Table 7.3.1 as follows:

Primal Obj

Dual Obj

“Cheating”

2165.68

2,19

Arbitrary

540562.11

23.88

Table 7.2: Values of optimisation objectives

From the above results, we know that the distribution of errors produced by [0 — 77| becomes more

Do,

fat-tailed, but still relatively acceptable. Also the averaged absolute errors |[X™ — (=i — 20, Y™)|
are relatively acceptable, although they are almost doubled than that of the smaller scaled setting.
In the performance table, we know that the figure achieved by “cheating” in the primal objective
evaluation is improved relatively significantly, althongh that in the dual objective evaluation is
slightly worsen off. In summary, the results of the larger scaled setting support the stability of our

algorithm.
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Chapter 8

Conclusion

In this paper, we discuss a continuous-time dynamic portfolio optimisation problem under multi-
scale stochastic structures with the optimisation objective of minimising the quadratic risk function
in the total wealth process and the portfolio strategy. We introduce the two-factor stochastic struc-
ture for the stock price dynamics and allow the number of stock to be an arbitrary number. We
then applied four methods to solve the problem including the primal HJB eqaution, the dual HJB
equation, the primal FBSDE method, and the dual FBSDE method and focus on their theoretical
and numerical equivalences. The numerical results strongly support the equivalence between the
primal and dual HIB equations. Nevertheless, subject to the speed of computing and the high
dimensional nature, we are unable to solve the optimisations arising from the numerical method
of solving the primal and dual FBSDEs. We instead check the effectiveness of FBSDE methods by
evaluating the terminal variances using the initial guesses produced by “cheating” with Theorem
6.3.1 and Theorem 6.3.2, which also supports the equivalence among the four methods.

In addition to the general case, we briefly discuss the simplified case by assuming f = 0, the cor-
related case under the simplified setting, and the convex cone constraint without the correlation
structure, and verify the compatibility between the correlated case and the uncorrelated case.

There are still a lot of possible extensions to the results discussed in this thesis. The most important
thing on the to-do list is to numerically solve the optimisation problems arising from the FBSDE
methods so that we are able to verify their equivalences more directly. On the other hand, if we
have sufficiently strong computing powers, then we may try to refine the optimisation problems
by fully parameterising controls with the dependence structure of # and ¢. Lastly, we can do more
numerical experiments to discover the impact of the parameters in this model to the optimal total
wealth process.
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