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Abstract

In this paper we explore the use of signature kernels, which is one of the kernel methods based on
support vector machine framework, in predicting US economic recessions. In particular, we tackle
binary classification task of forecasting whether it was in recession period or not indicated by

0/1. We examine powers of Treasury term spreads and other macroeconomic variables including

ccess Bond Premium(EBP) ete. to forecast recession periods. We also do the comparison of
results between using RBF kernel only and using RBF kernel as static kernel in signature kernel
framework, the results showed that indeed, signature kernel has improved the performance of solely

using RBF kernel to predict in terms of comprehensive performance metrics.
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Chapter 1

Introduction

Recession is not an unfamiliar word in the 21°f century, we have experienced several extreme global
economy recession in the former two decades. Many studies tried to capture some features or in-
dicators that highly correlated to this financial disaster. Among them, Michael Puglia and Adam
Tucker (2020) gave comprehensive explanation that Treasury term spread, or inverted Treasury
yield curve is a strong indicator of recession in the United States [4]. Indeed, in early 1980s, the
term spread between the 3-month Treasury bill discount and 10-year on-the-run yield-to-maturity
was even negative, in other words, the level of 10-year Treasury bill yield-to-maturity was lower

than that of 3-month discount since the double dip recession occurred [5].

It is natural with arising of the issue of predicting recessions, and this issue was researched in a
lot of previous studies by econometrists and mathematicians and is still one of the most concerned
topic in present. This binary classification task has been studied using a variety of machine learning
methods including probit method, XGBoost classifier, Random Forest, Neural Network, Support
Vector Machine, ete. In particular, support vector machine is one of the most commonly used
supervised machine learning methods because of their robustness and high accuracy in classifica-
tion tasks. SVM's have been proved to be promising and successful in time series classification,
especially for data with high dimensional feature space, i.e. data with a large number of features
[6]. In the very beginning, SVM's were only useful for classifying linearly separable data, and
the usage was fairly limited, researchers started to seek if there is any ways or methods that can
be implemented on SVM's such that they are able to manage some more sophisticated problems.
Therefore, fortunately, Bernhard Schilkopf and Alexander J. Smola(2001) has described a method
of tracking non-linear features of data, in other words, we are enabled to classify non-linearly sep-

arable data, this procedure is known as kernel tricks [7], which bronght SVM’s to a higher extend.

In our paper, we are going to deal with sequential data, then there is a challenging task of designing
appropriate kernel functions, otherwise, with referenced to [8], some kernel functions including

the widely-used family of Dynamic Time Warping (DTW) kernels performed poor when classifying




time series. C. Salvi et al. therefore pointed out that a principal constraint where most machine
learning model have to face is symmetry present in the data, this obstacle became more significant
when confronting with sequential data, this is to encounter with much bigger, for example infinite-
dimensional, group of symmetries [9]. Hence we are introducing another family of kernel functions,
namely, signature kernels, based on the signature of a given path, which can be considered as inner

product of two signatures, to deal with sequential data more efficiently.

This paper is structured as follows. In Chapter 2, we first give a plain description of data source
and the reason why we chose them as components of feature set in our training model, afterwards,
the cleaning and processing of which is stated as well. Chapter 3 covers the detailed theoretical
background of our approach, starting from ideas behind support vector machines, followed by
kernel tricks and some examples, the last part of this chapter would be the main technique in this
paper, as suggested in our title, the mechanism of signature and signature kernels. Chapter 4
goes into detail abont the implementation of the models and algorithms, in the following, we will
state the results of how models are performing as well. Subsequently, elaborate explanation of
potential reasons why some models performed better than others will be given. Finally, Chapter
5 concludes the paper, discussing some open questions and stating any further studies should be

continued on the topic.




Chapter 2

Data

The primary purpose of this paper is to compare the performance of predictions made by signature

kernels and the machine learning methods used in previous studies, hence we are going to use similar

financial market and macroeconomic data as our feature set throughout the research. Therefore,

the features we have chosen are fairly standard and the results using previous methods should

be consistent with that in the past literature. Specifically, we used mainly consistent data with

Michael Puglia and Adam Tucker (2020).

2.1

Features and Label

The first feature we have chosen is term spreads, or yield curve slope(Slope hereafter), we
chose the difference between monthly average of 10-year Treasury spot yield(on investment

basis) and 3-month Treasury bill discount in the Federal Reserve's H.15 series.

The second one is related to stock market, it is not surprise to choose S&P 500 index as
our measure. To be consistent with Estrella and Mishkin (1998), we computed 3-month log

difference of end-month values of the index [10], we will call this series as SP500 hereafter.

Then we consider credit market as well, Excess Bond Premium(E BP hereafter) in Gilchrist
and Zakrajsek (2012) was used to reflect the conditions [11], which started available from

1973 and is a monthly series.

As for risk free interest rate, we use the end-of-month values of the effective federal funds

rate (F'F hereafter) as in Wright (2006) [12].

Moreover, as in Puglia and Adam Tucker (2020), Federal Reserve Bank of Chicago’s Na-
tional Financial Conditions Index (N FC'I hereafter) is used to give more information about

financial conditions that Excess Bond Premium provided [4].

All the data series above can be concluded as financial market inputs, we will introduce

two more series to augment our feature space, namely, a macroeconomic/business conditions




index and a survey-based measure of recession probability. The first one is Aruoba-Diebold-
Scotti business conditions index (ADS hereafter), we use this to capture macroeconomic

conditions.

e The survey measure we include in this paper is cumulative probability of recession over
four quarters calculated from the Federal Reserve Bank of Philadelphia’s Survey of Profes-
sional Forecasters (SPF hereafter). There are RECESS1 to RECESSH, ie. five series of
probabilities in total, and we are going to calculate the cumulated probability of recession
assiing the probabilities of recession in quarters calculated from RECESS2 to RECESSS

are independent.

e Finally, we add another measure of term premium in our analysis. Again, to be consistent as
in [4], we are going to use the 6-month percentage point change in the 5-year term premium

of Adrian, Crump and Moench(AC M5D hereafter).

The recession indicator we use is as same as in most literature, i.e. National Bureau of Economic
Research(NBER)-dated recessions indicator. Different form the assumptions made by Michael
Puglia and Adam Tucker (2020) in their paper of twelve month period of prediction, we will in-
clude three, six, nine months as the period of prediction as well. Specifically, the indicator is
defined as true or 1, if any of the following p (chosen between three, six, nine, or twelve) months

falls into recession period, and false or 0 otherwise.

All data used is monthly, starting from January 1973, since EB P started available from that time,
ended up with July 2022(595 months were included).

Figure 2.1 and 2.2 summarizes nine series of data, and shaded areas indicate recession periods.

2.2 Data Pre-processing

Cleaning the data is one of the crucial steps in ensuring data indeed makes sense when fed into
model, because otherwise it may cause serious errors when fitting the model. For example, since
SPF is quarterly data, stands for the cumulated probability of recession over four quarters cal-
culated from the Federal Reserve Bank of Philadelphia’s Survey of Professional Forecasters, while
other data series are all monthly updated, hence we assume the probability is the same for three
months in every single quarter recorded. Despite there being other methods including linear inter-
polation, we choose to use a constant value so that we do not create data points that do not exist

by ourselves.

Also, there are some shifts we need to specify. As we have mentioned in the previous section,
the recession indicator is defined as 1 if any of the following p (chosen between three, six, nine,
or twelve) months fell in the NBER-dated recession periods [4]. In other words, we are going to

model Pr(NBER1,t4p = 1) with different collections of features using signature kernels. Hence
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we added p 1's before each recession to be consistent with this framework, which made the com-

parison of the results more convenient.

Further, as mentioned in [13], for SVM models, the data are often standardised in two way
namely, MinMazr and MeanVariance. They are, doing some transformations on each datum

point, for MinM azx, based on extrema(minima and maxima) of training data in the way of

T; — min(x;)
max(r;) — min(z;)’

-
Zp =

And for MeanVariance, we calculate the mean and standard deviation of the training data and

do the transformation

on each datum point. In our later implementation, we will present the comparison of the results
of None, MinMar and MeanVariance standardised data, and we will see which method will

perform better.

Last but not least, since our goal is to predict future recessions, and to compute signatures, the
rolling window scheme is used, i.e. we will use a 5-month window to predict if the next month is

in one year period before or in recession period.




Chapter 3

Methodology

In this Chapter, we first give detailed explanation of theoretical background about the methods
we used to forecast. Starting from maximal margin classification, the basic idea of support vector
machines, followed by the mechanics of support vector classifier and introduce kernel tricks, a
transformation of data that allow work in high dimension.

Secondly, we are introducing concepts of signature and corresponding signature kernels as the kernel
of support vector classifiers. Then we will give a proof that signature kernel is the solution of a
linear second order, hyperbolic partial differential equation (PDE) if the inputs are continuously

differentiable paths, as mentioned in [9], numerical approach is also provided and hence can be

used in practical implementation.

3.1 Support Vector Machines for Classification

The support vector machine(SVM) model was first introduced in Vladimir N. Vapnik et al.(1992)
and was a both powerful and straightforward model, based on ideas of geometrically solving clas-
sification or regression problems [14].

In this section, we start by describing separating hyperplanes, the main idea of SVM models.
Followed by the kernel method, namely, transforming data using certain functions and thus can

capture non-linearity features, several examples of common kernels will also be introduced.

3.1.1 Hard Margin Classification

We start by considering the classification problem with regular setup, where the input variables

are continuous and linearly separable, and the output variable is binary:
(i) — .00 i) (i) - N
xli _(.1.1 o) err 5 y®efo1}, i=1,... N

Without loss of generality, we chose 0 and 1 as the two classes of our outcomes, to be consistent

with recession period indicators. To visualise the general concept, we consider 2-dimensional case

13




at the very beginning, i.e. x'¥ = (;r‘li’],;rg’]), and is sketched below (See in Figure 3.1 (Source:
M. Barahona et al. 2020 [1])). Then the ideas of SVM are intuitively easy: find the hyperplane
and use it to bisect the input space then divide the input data into two classes. In Figure 3.1, the
blue line is what we are interested in, i.e. the hyperplane(it is a line for x € R?:it is a plane for

x € R?). The two shaded areas in orange and red indicate the two classes of the points.

N xw+b<0
So @ @

Figure 3.1: Sketch of a support vector machine with input dimension two and binary outcome

Then we want to generalise the case to higher dimensions, and to find the separating hyperplane
in the form of

{xeR [(wx)+b=0},.weRF.beR, (3.1.1)

where w is vertical normal to the hyperplane. This is to say that any point x'¥ = (;r{l”. . .;rj)iJ)
lying on the hyperplane satisfies equation 3.1.1. Our goal here is to obtain w and b, which define
the hyperplane. Once we have determined both, a separating hyperplane is defined and we can

have the following deciding rules of binary classes [1]:

x-w+b>0 theniy=1
Given x, if (3.1.2)

x-w+b<0 theny=0

In other words, we first the model on the training data set, and find the hyperplane based on that.
And to classify the test data, what we only need to do is to compute x- w+ b and to see whether it
is negative or not. If the sign is negative, then the y corresponded to x is classified as (0, and vice
versa. Another fact worth to mention is that, regardless of the sign, consider the absolute value
of x - w + b, if the value is far larger than 0, it indicates the classification is confident in this case.
Otherwise, if the value is close to 0, it can cause some uncertainties due to it is not assured how

close the point is to the separating hyperplane.
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As we can see in Figure 3.1, once we determined a separating hyperplane(line in this case), we
can have infinite lines such that bisects the input space theoretically as a result of infinitesimal
translation. Therefore, it is sensible to find the 'widest street’ possible through the data, i.e. to
find the hyperplane that separates the points as far as possible, which means to maximise the
distance between the hyperplane and the closest points of the two classes. The distance between
the separating hyperplane and points in each class is called geometrical margin, where the mini-
mum value of margin is called margin. It became natural for us to maximise margin and find the
optimised hyperplane, namely, the mazimal margin hyperplane. As we have seen in Figure 3.1,
the hyperplane is ‘supported’ by =, and z_, the normal vectors from the hyperplane to the closet
points from the two classes(x is for class 1 and = _ is for class 00), these are called support vectors,

and that is also the reason of the name of this method.

Now the problem becomes finding the width of the street we mentioned above, the first step is to
set up the problem mathematically. Similar to 3.1.2, we still use the notations in the Figure 3.1,

and the problem can be written as:

W w b if 4 =1
maximise ¢, ¢, € RTsuch that (3.1.3)

U warb< - ity =0
If we substitute our ¥ € {0,1} in the condition 3.1.3, a more compact condition is achieved:

o (xm W+ b) >0,

and it is intuitive to see that the separating hyperplane, should lie in the halt-way between two

classes of points, i.e. x and z_ should have same length:
] = 2.
Substitute =, and z_ into the condition 3.1.3, we get:

X+ - wt+h=¢

X_-W+b=—ep,
and the "width of the street’ can be defined as:

width = (xy —x_) w_o_ 2a

Il ffwl
It worths mentioning that ¢; here is just a constant, in other words, a scaling number. Hence

15




without loss of generality, we can fix it as unity:
oy =1

Finally, we have our cost function:

2
width = — (3.14)
[Iw]]
This expression tells us to maximise the margin, it is the same as minimising length of w, i.e. ||w]|.

We [inalize the optimisation problem by considering expressions 3.1.3 and 3.1.4 as follows:
L1 2 . () (i ) : -
min §Hw|| subject to ' (x“J W+ b) >1, i=1,...,N (3.1.5)
w

The problem in 3.1.5 is a convex quadratic optimization with linear constraints, also known
as quadratic programming, and there are a bunch of methods mentioned solving this family of

problems in the former literature.

3.1.2 Soft Margin Classification

In the above part, we considered data points that can be separable in d-dimensional space, how-
ever, when the data points got more noises or even started to overlap hence not lineally separable,
hard margin classifier may not work in the sense of taking those overlaps into account. In a more
realistic setting, the strict separating hyperplane does not exist [13], i.e. the case of imperfect sep-
aration. Therefore, in this part, we are going to extend our previous method to this more realistic

scenario, namely, the Soft Margin Classifier.

Even if the data is linearly separable, some extreme cases happen, and is quite frequent. It some-
times would be better to allow some misclassifications, being trade-off with generalisation and
sensibility of the model itself. For instance, there is an outlier existing in a certain class, and the
margin of the separating hyperplane would be way smaller if the hyperplane fit the data perfectly.
Therefore, it is better to allow this kind of misclassification in terms of robustness of the model

and moreover, avoiding the occurrence of overfitting when classifying test data.

In order to deal with the imperfect separating case, we introduce a penalty term and its corre-
sponding regularising parameter C'. Figure 3.2, 3.3 and 3.4 give geometric interpretation of soft
margin support vector machines for 3 different values of regularising parameter C'. It is intuitive
to see that with smaller (', the corresponding margin is larger, this is to say smaller ' allows more
misclassifications. And by contrast, the number of misclassified points is reduced with larger ',
compromising the smaller margin it gives. We will go in details about why the thing it is mathe-

matically in the later part.

We now give mathematical details of the setup of our soft margin classification problem. To allow

16




Figure 3.3: Sketch of a soft margin support vector machine with regularising parameter C' = 1

Figure 3.4: Sketch of a soft margin support vector machine with regularising parameter C' = 10
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possible violations of condition 3.1.5, Bennett and Mangasarian [16] introduced so-called slack
variables, &;:

& =0, wherei=1,...,N (3.1.6)

and from our previous constraints mentioned in 3.1.5, we have:
Yt (x“l-w—b) >1-¢, i=1,....N (3.1.7)

Obviously, constraint 3.1.7 can be easily satisfied if we choose & large enough, but our target here
is not to obtain the trivial solution with every &; is large(close to 1). Thus, we choose the sum of
each &, i.e. Ei’;lgi to be penalized in the cost function. Combined constraints 3.1.6 and 3.1.7,
the soft margin classification problem is done by solving, for some C' > 0,

N
1 :
mi.r.lux E||W||2 + C'Z& subject to

w. L1, =

YO (xDwrb) =16, i=1,... N
=0, i=1,....N

(3.1.8)

o

Again, as we have done in Section 3.1.1, the same procedure(quadratic programming) is applied
with a new parameter C, which helps us to tune how 'hard’ the model is. This is to say that we
can decide how much the sum of slack variables and our original cost function #||w||* was taken in
account respectively. Now it is intuitive why increasing €' will give smaller margin, the sum of &s,
Z:\;l&. played a more significant role in the decision procedure. Lastly, it worths to note that
when & = 0, the point is correctly classified, when & > 0, the point lies within the margin, and

& > 1 indicates an misclassification.

3.1.3 Multi-Dimensional Support Vector Machines

So far, the goal has been to find a linear hyperplane to separate data. In the above section,
we gave mathematical details about classifying linearly separable(hard-margin) or quasi linearly
separable(soft-margin) data sets on a 2-d plane, however, in reality, data sets in most cases we
deal with are higher dimensional and non-linear as shown in Figure 3.5 (Source: M. Barahona
et al. 2020 [1]) and Figure 3.6 (Source: G.J. James et al. 2013 [2]), and non-linear separating
hyperplane would be more appropriate in these cases. Therefore, it is now valuable to introduce
Multi- Dimensional Support Vector Machines, utilising a well-known Kernel Method, which enables
us to lift our observation data to a higher, possibly infinite dimensional feature space or give

non-linear hyperplane.

3.1.3.1 Kernel method

As mentioned above, the main idea of this kernel method is to enlarge our feature space towards
higher dimensions in order to allow non-linear boundaries applied when separating data. We can fit
this idea neatly into our previous method by thinking all the expressions included 'dot products’,

and we change it to so-called (non-linear) kernel functions harmoniously.

18
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Figure 3.5: Illustration of kernel tricks. a) shows a set of binary samples that are not linear
separable in B?. b) shows how kernel tricks work and the samples can be linearly separated by a
plane in R*.  Source: M. Barahona et al. 2020 [1]
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Figure 3.6: Non-linear kernels applied on non-linear data(Left Panel: Polynomial Kernel & Right
Panel: Radial Kernel)  Source: James et al. (2013) [2]
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First let us define the term dot product. We already know that dot product of two d-vectors a and

b is defined as {a,b) = ZLL a;b;, hence, for two p-dimensional observations z; and z;, the dot

product is given by:

p
{ziyxj) = ZJ.‘,‘{.I_-}{ (3.1.9)

=1

We then give the following proposition first [2].

Proposition 3.1.1. The linear support vector classifier can be represented as:
flo)=Bo+ > oilz,x), (3.1.10)
i=1

where aq,..., 0, and 3y are constants.

Now suppose every time the dot product in 3.1.9 appears in a calculation of the solution for the
linear support vector classifier 3.1.10, we can generalise the dot product to some kernel functions,

L.e. replace the dot product with a function of the form
hlxi, xg) = dlxi) - dlxs), (3.1.11)

where ¢(-) is so-called feature map. We will illustrate the ideas of kernel frick by an example. First
let us consider the following:

Given x = (z,10) € B?

=2
define: ¢(x) = T3 c®*  to be our feature map.

V2 x40

The dot product of the feature map is:
d(x) - ply) = 2iyi + x3ys + 221325190,
and we have observed that:

2 2

(- ¥)" = (191 + T2y2)

2.2 2.2 -
TTY] + T5Y; + 20Ty Yo

= ¢(x) - Ply)

This is in fact the mathematical explanation of what we have already seen in Figure 3.5, trans-
forming 2-dimensional vectors to 3-dimensional ones. Hence the kernel function here is K(z,y) =
{x,y)?, lifting our feature space from d = 2 to D = 3. This is not a great saving, while more
complicated problems will be solved if we have defined a kernel function of dimension D = 500,

say.
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3.1.3.2 Common Kernels

Now we list some families of functions that usually be treated as kernel functions as defined in

[17], together with their basic ideas.

Euclidean Kernel

Euclidean kernel is the most common, i.e. linear kernel, which was used mostly in comparing how

close two observations are to each other via Pearson correlation.

Radial Basis Function(RBF) Kernel
Kz, y)=e 7% 550

Radial basis function(RBF kernel) is one of the most popular kernels in implementing non-linear

classifications. It adds a "bump” around each observation.

Polynomial Kernel

Kz, y)=(1+z-y" deN

Polynomial kernel is the kernel function used in the example illustrated in Figure 3.5, the output
depends on the directions of the input vectors due to the property of dot product, hence the kernel

is directional.

Sigmoid Kernel
K(z,y) =tanh(g(z-y)+r), F,relk

For this family of kernel functions, it became special due to the Gram matrix may not be positively
semi-definite in some cases of 3 and r chosen. However, in those cases of 3 and r chosen appro-
priately, i.e. the Gram matrix is computed positively semi-definite, it takes ideas from common

activation functions of neuron networks.

3.2 The Signature Kernel

Learning sequential data using kernel methods has been rising in interests in recent years, hence
we will be concerned with the setting where X is a subset of unparameterised paths of the form
X 1 — RY where [ = [a,b] is a closed (time) interval with 0 < a < b, it is natural to model
sequential data with this form, where sequential data is nowadays being produced and stored at
an unprecedented rate. In this section, we are going to introduce the learning tool, signature
kernel, which potentially enables us to handle irregularly sampled, multivariate time series. Some

examples of applications will be included as well.
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3.2.1 The Signature

Before defining the signature, which is pathwisely dependent, we will start by two concepts, namely,

p-variation of a path, and formal polynomials power series over V', V a Banach space.

Definition 3.2.1. (p-variation). Let p > 1 be a real number and X : [ty, 7] — R™ be a continuous

path. The p-variation of X on any subinterval [s,t| C [ty, 1] is the following quantity

1/p
| X[, 15.8 == ( sup Z I)it.ﬂ th_}p) ,

DClstl i ep

where the norm is any norm on B™, since they are all equivalent, and the supremnun is taken over
all partitions D of the interval [s,?], i.e. over all increasing sequences of ordered indices such that
D={s=ky<k <...<k =t} And a path X is said to have finite p-variation on [s,f] if 3

M = 0 such that [|X|| M, we denote by CP=v2r ([ty, T],R™) the space of continuous paths

p.[s.t] <

from [to, 7] to B™ which have finite p-variation.

Definition 3.2.2. Let V' be a Banach space. The spaces of formal polynomials and formal power

series over V' are defined, separately, as

@LM and T(( HLM

k=0 k=0

where @ denotes the (classical) tensor product of vector spaces.

Both T°(V') and T((1')) can be equipped with both operations addition + and multiplication & for

two elements A = (ay, a1,...) and B = (by, by,...) in the following way:

A+ B =(ap +by,ar +b1....).

.
A®B=(cy,e1,00....), where V&3¢ = Zai @ by_; forall k>0,
i=0

Along with the natural action of B by AA = (Aap, Aai1,...) and wnity 1 = (1,0,0,...), T((V))
becomes a real, non-commutative algebra with unity, which is called Tensor algebra. With these

two delinitions, we now can define one of the key concepts through this paper, namely, the signature.

Definition 3.2.3. Let I C & be a compact interval, let V" be a Banach space, and let X : I — V
be a continuous path of finite p-variation with p < 2. For any s,t € I such that s < t, the
signature S(X ) € T((V)) of the path X over the subinterval [s,#] is defined as the following

infinite collection of iterated integrals:

S(X) o = (1[ d)tf f u:—)---u:—)dxm,.‘.).
S S<T <l Sty <<t 1y
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Furthermore, we would like to include some more discussion about the properties signature have
and some relevant theorems of signature in the following section, and we are going to explore the

reason why signature is a suitable feature map for data streams.

3.2.2 Properties of Signature

Firstly, we would like to introduce a fundamental theorem called Stone- Weierstrass Theorem,
which is one of the most important theorem in our subsequent derivation of several properties of

signature, it is interpreted as follows.

Theorem 3.2.4. Suppose B[X| separates points, in that for any = # y € X there exists a poly-
nomial P € R[X] such that P(z) # P(y). Then, R[X] is uniformly dense in C'(X), i.e. for any

continuous function f € C(X) and for any € > 0, there exists a polynomial P € R[X] such that

sup |f(z) — P(z)| < e
zeX

This important theorem, or the mathematical structure, motivates the ideas about the approxi-
mation of learnable parameters during the training process and to optimise some loss functionals.
Now we are going to highlight the following key properties of signatures that is relevant to the

application(how signatures are able to be one of the valid feature maps) in this paper.

Invariance to reparameterizations

First, we would like to give a motivated example of this property, let us consider the reparameter-
ization ¢ : [0,1] — [0,1] given by ¢(t) = t? and the path v : [0,1] — R? defined by v = (4%, /)
where 74¥ = cos(10t) and ~f = sin(3t). It is illustrated clearly in Figure 3.7 (source: C. Salvi
(2022) [3]), such that the two contributes (v*,~") of 4 are reparametrized independently and is
very different from one each other, however, as it in the right panel, the shape of the curve ~ has
not been affected at all. It is, in most cases, very hard to construct a such invariant reparam-
eterization, fortunately, signature is equipped with this property, and is stated in the following

lemma.

Lemma 3.2.5. (Reparameterization invariance). Let X € C'" ([ty, T],R™) and let [a,b]
and [e,d] be two subintervals of [tg,T]. Let A : [c.d] — [a,b] be a reparameterization. Then

S(X)ap =S(X 0 XN)q-

With this lemma, we can easily cope with high dimensional sequential data using signature kernels,

such to keep the time parameterization of the path.
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Figure 3.7: The shape of curves under reparameterization  Source: C. Salvi (2022) [3]

Shuffle Identity

We have interpreted how tensor product @ made the Banach space T'((R™)) an algebra, now we
would like to move to another product called shuffle product, denote by w, this product makes the
vector space T((IR™)) an algebra successfully as well, which will turn out to be a fundamental tool
for explaining how signatures are so trinmphant in machine learning applications concerning time

series or sequential data.

Now we give the formal mathematical definition of shuffle product:

Definition 3.2.6. (Shuffle Product). Let i,j € N. Given any two dual basis elements e, @

.@ep andef  ®...@ (S their shuffle product wis defined as follows

(ef, ©...®ef, ) (e;‘_+1 ®...8 e;w) = by ok ® - @ €hkins)

where 2 ' is the subset of the permutations of {ki,... _.k,-_,.j} satisfying o (k1) <
< a(ki) as well as o (kig1) < ... <o (kigy).
The key observation is the following result known as shuffle identity.

Definition 3.2.7. (Shuffle Identity) Let i,j € N be two integers and ef @ ... ® ef and
I e;_‘_ﬂ. be any two dual basis elements. Then, for any path X € C'=vr ([t,, 1], E™),

the following relation holds
(eh, @ ... @ep, S(X)) (e;‘.+1 ®...8 e;.|.+J.,.9(X)) = ((e;.l @...@ep ) (e;‘.+1 ®..8 e;‘.ﬂ.] _.S(X))

The shuffle identity here can be extended by linearity to any two linear functionals £,,L, €
T((R™))": forany X € C* 7" ([ty, T],IR™) one has that (£, S(X)) (L2, S(X)) = (LwLy, S(X)).
Therefore, the shuffle identity allows to construct a set of functionals acting on the range of the

signature that can approximate arbitrarily well continuous functions on compact sets of paths, this
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gives the following property which we are going to introduce called universality.

Universality

Theorem 3.2.8. (Universality). Let K C OV ([ty, T],R"™) be a compact subset of paths and
let C{K,R) denote the algebra (with pointwise multiplication) of continuous, real-valued functions

on K. Consider the following set of functionals acting on the range of the signature of paths in K
Ag={LoS: K - R|LeT(R™)}

Then, Ag 15 dense in C(K,R).

Hence signature kernel is one of such called universal kernel, in other words, all the functions
defined on some compact subsets Z of B™, can be estimated by linear functionals on the signature,
or in plain text, linear combinations of signature. Undoubtedly, there are necessary and suflicient
conditions to be satisfied for a kernel being universal, indeed, these conditions are provided by
Charles A. Micchelli et al. (2006) [18], and intuitively, our signature kernel is one of which
satisfied these conditions. In practice, the universality, or universal approximating property of
linear functionals on the signature allows to learn some functions f : K — R on a dataset K of

time series with following procedure:
e extract signature features from the input data series,
e perform linear regression on such signature features.

Now we have some basic knowledge about the properties of signatures, we are able to deduce
why signature has been our choice in this paper. Firstly, since the signature (Definition 3.2.3) is
invariant to reparameterizations, as mentioned above, it works as a filter to X, removing infinite-
dimensional group of symmetries [3]. Moreover, as the results mentioned in [19], with pointwise
multiplication, linear functionals acting on the range of signature form an algebra and separate
points. Therefore, by the Stone-Weierstrass Theorem, for any compact set €' of continuous paths
of bounded variation, the set of linear functionals on signatures is uniformly dense in C'(X), the set
of continuous real-valued functions from the path X to I, in other words, the universality property
of signatures. With these two properties, signature becomes an ideal feature map for data streams

[20].

3.2.3 PDE Method

We already defined signature in the above part, what we are going to define is our main method,
signature kernel. Similar to the kernels we have introduced before, signature kernel is presented
in the form of dot product as well. In the following parts, we will denote by C*(I,V) the space
of contimously differentiable paths defined over an compact interval I = [s,{] and with values on

Banach space V. Now we give the definition of signature kernel.
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Definition 3.2.9. Let I = [u,u'] and J = [v,?] be two compact intervals, and let z € C'(I, V)

and y € CH(.J, V). The signature kernel kyy I xJ— Ris defined as
by y(s,t) = (S(x)e, S(y)s) -

This is theoretical definition of signature kernel, however, this can not be used practically, hence
we are going to introduce a PDE approach, relating the signature kernel to the solution of a linear

hyperbolic partial differential equation(PDE) [9].

Theorem 3.2.10. Let I = [u,u] and J = [v,0'] be two compact intervals, and let x € C1(1,V)

and y € CYJ, V). The signature kernel ky , is a solution of the following linear, second order,

hyperbolic PDE:

Pk, L
Sao = iy kg k() = hey (o) = 1, (3:2.1)
where Ty = %ﬁi S = JT:'L are the derivatives of © and y at time s and t, respectively.
‘ }):.‘5 a4 g=t

The information in sequential data is often extracted in the form of complex data streams, with
values in non-trivial embient spaces [9]. A clever strategy of training would be to first lift the data
corresponded or underlying ambient space to higher-dimensional, possibly infinite-dimensional,
feature space through some feature maps on the static data(RBF, Sigmoid, etc.), this is the reason
why the kernel here is called static kernel, and then consider the signature kernel of this lifted path
as the final training kit [21]. It is then natural for us to ask a question about the practicability
of this idea: can we compute this signature PDE kernel of this lifted path from the static kernel
associated to the feature map being used. Kirdly and Oberhauser (2019) [21] have proposed an
algorithm to perform the procedure described, which we will deliver the explanation in the sense of
Banach spaces and PDEs in the next part. However, before we study how to compute this kernel
computationally, we would like to introduce a crucial property of signature called factorial decay,

which helps to assure the convergence of some limiting processes [9].

Lemma 3.2.11. For any path X of finite p-variation (p > 1), for any k > 1,

< ||?r||i__j,.,__gj

ves k!

Sty T ‘/ d-rul k) e k) d.ruk
Vak

Now let us start to learn the procedure of how we are able to solve the PDE in Theorem 3.2.10
numerically. We first note that a kernel can be defined with a pair of maps from a set A" to a Banach
space E and its topological dual E*. Denote this pair of maps by ¢ : & — E and ¢ : X — E*, the
kernel then leads to a function £ : X x A — &, which is the natural pair between a Banach space
and its dual:

k(a.b) = (¢la),(b))g forall a,bec X.

E here is assumed to be a Hilbert space as usual, this is to assure that i can be taken to be

the composition e o ¢, where e : ¥ — E* is the canonical isomorphism interpreted in the Riesz
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representation theorem. However, in the general framework which we often consider, the assump-
tion of F being a Hilbert space is unnecessary. In the general case, for two paths = : I — A and
y:J = X, with I = [u,v'],J = [v,0'], can be lifted to paths on £ and E*, respectively, in the
form of following:

Xe=¢(ry), Yi=a(y) forallsel tel]

Now if we make the assumption of continuity and bounded variation on the paths X and Y, then
their signatures are well defined and belong to T'(£). By the results Terry Lyons (2007) presented,
T(E) is again a Banach space with 7V (E)* = TN (E*) for any N > 1 [19], which ensures the

signature kernel starting with a kernel £ on A is well defined:
'l':X.Y(S' t) = (9(9 o), S("s{' o 3})!)]"{5') = (S(X)s_, S(YJ! )T{E‘J -

Now Theorem 3.2.10 can be applied if we, furthermore, assume X and Y belong to class (!, and

we have the following PDE:

82}5}(.}'
dsdt

- (X,,.}';)Ekx_y. kxy(u.) = kxy(nv) = 1. (3.2.2)

The partial differential equation 3.2.2 can be solved numerically, i.e. expressed in terms of the
static kernel and its corresponding underlying paths = and y solely in the following way, if we
approximate the derivatives X,.Y, with first order differences:

Pk XY
dsdt

=((Xe.Yi)p — (X1 Yi)p — (X Yot )p + (Xe1. Yo 1) g) bxy

= (ki (@syp) — 6 (T, ) — K (ws, 1) + 6 (Tom1, 1e-1)) By

Using notations Kirdly and Oberhauser (2016) have used [22], given two differentiable paths o, 7,

the truncated signature kernel at level M, k%, (7, 7) satisfies the equation

EE (0. T) 0y = 1—/ ] (1—"'—f (h:-h;)) dkg - (51,
(g1, t1)e(0,w) % (0,0) S (sar tar)e(0,8ar —1)x (0, tar 1) o,

where d, - (s,1) = k(@,,3,) dsdf and where k is a kernel on the ambient space of the paths. Note
that it is in fact a recursive relation in the sense that the first integrand in the last equation is
itself a truncated signature kernel which truncated at level M — 1, hence we have the following

recursive equation:

®
k2 (0,7 e =1 —f / (0, 7)oy, by dBa - (81.11) . (3.2.3)
(s1,02)E (D)% (0,0) J<M—1

The untruncated signature kernel exists due to the former factorial decaying property (Lemma
3.2.11) of the signature, hence the limiting process in the equation 3.2.3, the term £%__ (0, 7)u,o
converges uniformly. In other words, the untruncated signature kernel is by taking the limit

M — oo in 3.2.3 since if two uniformly convergent sequences are equal at all finite levels M they
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are equal at the limit as well:

kS (0,7) 0 =1—/ / (0, T) a2 080 (81, 11) (3.2.4)
' (81,020 E(0u) % (0,0) J oo

And finally if we differentiate 3.2.4 both sides we obtain our original PDE in theorem 3.2.10.

3.3 Other Classification Methods

Last but not least, knowing whether our method is efficient or not, it is necessary to do some
countrasts. Hence, in this paper, there are some other classical classification methods being included,
including Random Forest classifier, X(GBoost classifier, etc. These are introduced as base methods
or the benchmarks to compare with the results obtained by our main method, i.e. signature
kernels, and we will see the comparison of the results in terms of different performance metrics
in next chapter. Lastly, we are going to compare the results between RBF' kernel and signature

kernel nsing RBF kernel as our static kernel.
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Chapter 4

Implementation and Results

In this chapter, we would like to give a description of the methods mentioned in Chapter 3 before
we going on to the details of the performance metries and the numerical results we have obtained
from different models and interpret their practical meaning in terms of the problem we are working

on, i.e. economic recession prediction.

4.1 Implementation

All the pre-processing of data and implementations of models in the whole project were done so
by Python, with Numpy, Pandas, Scikit — learn, Tensor flow and Sig — kernel (mentioned in
Thomas Cass et al. (2021) [9]) libraries appropriately used. In the whole procedure, we first need
to select appropriate families of models as our final comparing framework, i.e. choosing convincing
feature or combination of features, to train and compare in terms of the correlations between each
data series and their practical meaning to the indicator of economic recession, which coincides the

way we are going to implement during the choosing procedure.

Secondly, trying not to overfit training data has been a crucial element in supervised learning as
always, such that the model generalises well when applied under a realistic scenario. Models possi-
bly fit very well and perform exceptionally up to mark on the data they have been trained on, they,
however, in most cases, perform significantly worse when facing new incoming data, i.e. to make
new predictions. Moreover, it is not enough to refine our model by including this new data point
in the training set, occurrence of overfitting still exists. Therefore, we utilise a function named
traingest plit built in the secikit — learn library, splitting our data into 7:3 ratio, i.e. take 30% of
the data as test set, then shuffle it (although signature is path, here time dependent, we used a
rolling window scheme, hence our training data is in the form of windows, shuffling will not affect
the results) to overcome overfitting and make the model more robust. The detailed procedure
would be firstly splitting whole data set into a training set and a test sef, then performing same

procedure on the training set to obtain a training set and a validation set. The benefits of going
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through this process are: first we have a large set to train on, and we have our validation set to
refine our model, i.e. to tune our hyperparameters, second we have our test set for final evaluations

and results.

Last but not least, since the whole work is a task of supervised learning, we have labels, i.e. our
binary indicator of recession period, and we need to adjust the number of our performance metrics
instead of using accuracy as the only measure due to the sparseness of the label (that means even
if we predicted all 0's the final predicting accuracy is around 85 percent). Hence, some other
measures will be introduced, to cope with the situation, i.e. to mitigate the effects that sparseness

brought.

4.1.1 Model Selection

Before we start to select best-in-class models, we first need to make ourselves clear about some
terminologies, i.e. the concepts of a model, an algorithm, and a classifier. The three concepts can
be difficult to distinguish, in which these three terms are often interchangeably used. Moreover,
a bunch of conventions in the fields of economics and finance that does not coincide with that
used in the fields from which machine learning methods are derived. Now we give our detailed

explanation:

e Model Model stands for a specific feature or some combinations of features, which can
possibly transformed, representing some underlying economic systems, for instance, in linear
regression, we have our specific feature or variable standing for the specification, or during
training some machine learning algorithms, model can be collection of features to which

treated as one into it. Sometimes the name hypothesis is endowed as well.

Algorithm Algorithm is sort of a strategy or the realization of our model or hypothesis and
using given data ohservations to approximate some target functions. In the case of this paper,
the target function is future recession probability or equivalently, the binary label mapping
to a data point. Examples of algorithms for classification would include random forest,
XGBoost, neural networks or any other machine learning methods. In practice, algorithms
often exist in the form of software packages, so that researchers are able to apply models and

data and to create classifiers.

Classifier Classifier is our final result of applying models and data on to an algorithm of
classification. In contrast to the former two relatively abstract concepts, classifiers themselves
are more specific and they are the tangible machines that researchers work on. Also, if we
would like to compare the performance of two models or two algorithms, we must have two

estimated classifiers and the comparison must be made through samples classified by them.

In our paper, we study a bunch of nested families of models, which is what we will do in this

section. Firstly, we denote the values of each feature at month t by Sloper, NFCI;, EBP;, FF;,
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SP500:, ADSy, SPF;, ACM5D;. After this, as we mentioned in Chapter 2, we define our re-
sponse indicator by NBER; 1 41, i.e. takes value 1 if one of the following p months is contained
in NBER-dated recession periods and is 0 otherwise. Finally, we denote SIG() as our signature
kernel algorithm over a combination of features, denote RBF() as support vector machines with
RBF kernel classifier algorithm over a combination of features, denote SV M() as support vector
machines (linear kernel) classifier algorithm over a combination of features, denote RF() as ran-
dom forest binary classifier algorithm over a combination of features, and denote XGB() as an

XGBoost binary classifier algorithm over a combination of features.

First, we choose univariate models in each of the eight features, choosing the best-in-class feature.
In the case of the Slope model, the structure of the batch of the univariate models using different

algorithms would be:

Praignature Kernet (NBERi 11 t1p = 1) = STG(Slopey)
Prapr kernet(NBERi1,04p = 1) = RBF(Slope)

Praupport —vector Machine(NBERi 11,14, = 1) = SV M(Slope,)
Priandom Forest(NBER; 11,11, = 1) = RF(Slope,)

Prxaoost(NBERi 11 145 = 1) = XGB(Slope:)

Secondly, we combine our slope feature with one of the rest seven features as our new bivariate
model, choosing the best-in-class combinations. In the case of Slope and A DS model, the strueture

of the batch of the bivariate models using different algorithms would be:

Prsignature Kernet{ NBER; 14, = 1) = SIG(Slope;, ADS,)
jqj"‘]'l’}.‘f]“‘ Kr:rm:f(‘IVBE'RI-FL.!-{—;) = l) = f{b’f‘(sﬂ.’o}’)ﬁh ADS!)
Prsupport—vector Machine(NBE Ry 144, = 1) = SV M (Slopey, ADS;)

I}?‘Rruuh)m Forest (‘IVBE'RH—L._!-F[) = ]-) = RF(S"!OPetr ADS! )

Prxapoost(NBERiy114p = 1) = XGB(Sloper, ADS;)

And we continue this process recursively, so that we find best-in-class 3-, 4-, 5-, 6-, 7- and 8-
feature models by combining the features occurred best-in-class models in the previous batch and
the remaining features in terms of performances. It worths to mention that the majority of the
models that combine some of the Slope, ADS, EBP, SP500, FF and SPF features have heen studied

previously in the literature.

4.1.2 K-fold Cross Validation

As previously mentioned, overfitting a model to the training data has significantly adverse impact

on the generalisation of the model itself. The occurrence of the model being optimal or performing

31




extremely well on the training data only while performs deficient on a new incoming data point is
what we do not hope to see, hence the following method is implemented. The method we chose
to get rid of this phenomenon is called K-fold Cross Validation. In K-fold cross validation, we
first split the shuffled training data into k folds, i.e. k distinct subsets with identical, or close to
identical, size. The training process is run through % times, leaving out one of the k fold or subset
as our validation set and running training process on the rest & — 1 folds or subsets each time, then
validate on the validation set. To evaluate this model as a whole, we first compute the performance
metric of each of these models and then calculate the arithmetic mean from these k results as the
final result. We give following the graphic interpretation of the k-fold cross validation procedure

(Source: S. Raschka (2018) [23]).
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Figure 4.1: An illustration of the k-fold cross-validation procedure with & =5

In this procedure, the number k, the number of folds split, is itself a hyperparameter, in other
words, it can affect the performance of the model and hence, in our training, different values of k
are included in our grid search and thus to find the most optimal model, where we will introduce
in next part. Normally, k is taken as 5 for computationally ease, and for larger values of k, the
training time would be a lot longer whereas any values of k smaller than 5 would have less data to
train and thus pessimistic bias of performance metric would rise and in the meantime, the increase

in variance arises due to the fact that it is more sensitive to the way of splitting data.
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Another issue worths to mention is about the case when facing imbalanced data, in other words,
there exists bias in the dataset of label towards one class over the other. The conventional means
of splitting data in k-fold cross validation procedure might have some problems becanse the default
setting is to treat data points as balance ones. In our case, the recession period (Class 1) rarely
happens, hence is one of the cases of imbalance, and we are going to implement a modified version

of k-fold cross validation called Stratified KFold existing in scikit-learn library.

4.1.3 Hyperparameter Tuning

The hyperparameters, they stand for the tunable parameters that affect the results, and are what
we mainly work on when tuning the model since these parameters are fixed in the beginning of
training and cannot be learned during the training process. Hence, we must find the optimal values
of these hyperparameters to give a best performing model. We use the standard method called
grid search to find the best combination of hyperparameters. A eross validation is implemented for
each grouping of the hyperparameter space and the best-in-class model is selected based on which
model performs best according to some measures, and in our case, the measure, or the performance

metric, is accuracy of each prediction made.

4.2 Evaluation

4.2.1 Performance Metrics
Confusion Matrix

When it comes to performance metrics, we would like to first give the concept of confusion matriz,
which is an intuitive way of interpreting how the learning algorithms performs during the training
process. Since our task is binary classification, the corresponding confusion matrix is a 2 x 2 matrix
whose rows are the predicted results of the trained models and the columns are the actual classes

of each instance.

Actual Class

Positive Negative Total
. Positive TP rre TP+ FP
Predicted Class
Negative FN TN TN+ FN
Total TP+FN FP+TN N

Table 4.1: A Confusion Matrix

As presented in the table above, the elements in the confusion matrix can be deseribed as follows:

e True Positive (TP) The number of instances correctly predicted as positive by the trained

model.
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e lualse Positive (FP) The number of instances incorrectly predicted as positive by the trained

model, also known as Type I error.

e True Negative (TN) The number of instances correctly predicted as negative by the trained

model.

e lulse Negative (FN) The mmmber of instances incorrectly predicted as negative by the trained

model, also known as Type II error.

The confusion matrix allows us to see exactly where the instance is classified and the existence of
bias towards one class to another. However, when it comes to accuracy, which we will give more
detailed discussion next, is considered as the performance metric in most of the models, one of
mostly happened problem is that the performance of a model purely based on performance can
lead to some "catastrophe” when encountered with imbalanced data. As we mentioned in the very
beginning, our label, or the binary y-variable, is extraordinarily sparse (with majority of zeros),
hence is a typical example of imbalance. This is not to say we are going to dispose of accuracy
in the following work, but instead examining the confusion matrix carefully can be beneficial and

productive in understanding how a model behaves.

Accuracy

Accuracy is one of the most natural performance metrics to consider, and is calculated by the
number of instances correctly classified over the whole sample size. Mathematically, it is calculated

as follows:
TP+TN

Acauracy = S TNt FPTFN

When cope with balanced data, accuracy is, undoubtedly, one of the most sensible and convincing

measures on how a model is performing,.

Precision & Recall

Precision can be understood as the proportion of the data in the positive class which were correctly
classified, here we give the formal definition:

TP

Precision = ———
TP +FP

Fundamentally, high precision refers to the high qualitative ability of one predictive model to ac-
curately predict the positive instances in the positive class, i.e. among those data points that are
classified as positive. In the context of our model we are going to build, a high precision would

mean our predictive model is highly successtul in predicting a recession period.

Another metric that usually goes hand in hand with precision is recall, which is computed similarly
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to precision, and here we give its formal definition:

TP

Recall = TP FN

Essentially, it is the ability of a model explicitly classifying the positive instances as positive. In
terms of our problem, high recall means that our predictive model is able to capture the informa-

tion or signal of recession, which is a promising metric in this sense.

Achieve either a high precision or a high recall is relatively not tough for a trivial model, this is
because even if a model classify all the data points as positive, unsurprisingly, we will achieve a
100% recall with this "retarded” model. However, the model deseribed above is not a model we
want for certain, it is therefore not enough to assess a model based on purely precision or recall,
and it is necessary to combine these two measures as a whole. Thereafter, we are going to introduce

another performance metric called Fy score, which will be looked at further in the following part.

F; Score

As we have discussed in the previous section, we are going to consider both precision and recall in
the meantime, one of the measures to consider is F score. From the documentation of scikit-learn
metrics, the F| score can be interpreted as a harmonic mean of the precision and recall, where
an F) score reaches its best value at 1 and worst score at (0 [24]. Here we give the mathematical
definition of it:

F, Score = 2 x Precision x Recall

Precision + Recall

It is intuitive that the relative contribution of precision and recall to the Fj score are equal by the
definition. Another question may arise, is equal weights sufficiently generalised concerning all the
situations? The answer is definitely not, and can we have a metric that enable us to distribute
different weights on the respective metrics? The answer is fortunately yes. This metric is called

F5 score, which is defined as:

Precision x Recall

Fs Score = (1+ 3%) x —
o (1+5%) (3% % Precision ) + Recall

Different weightings of either precision or recall is sometimes essential depending on what kind of

problems to be solved. In the Fj score, 3 is defined to be the weight attributed to precision, i.e.

it is the scale by which we consider recall J times more important than precision.

4.2.2 Classical Classification Methods

We now present the results of stratified K-fold cross validation across all the the best performing
models trained by signature kernels and RBF kernels respectively, along with their comparison. As
mentioned in the previous section 4.1.2, we made the use of the splitting method of stratified k-fold

in the process of cross validation to get over the problem of imbalance existing in our data, hence we
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are still going to use accuracy in the test set, in other words, the out-of-sample mean accuracy, to
score the models and the algorithms, which is sensible. Following the procedure we have interpreted
in the previous section of model selection, we have made our choices of the following "best-in-class’

nested family models starting from 3-feature models with 6 months of prediction:

# Features Model
3 Slope/ADS/ACM5D
6 Slope/ADS/NFCI/EBP /ACM5D /SP500
7 Slope/ADS/NFCI/EBP/ACM5D/SP500/USREC
8 Slope/ADS/NFCI/EBP/ACM5D /SP500/USREC/FF

Table 4.2: “Best-in-Class” Nested Family Models, where all the subsequent analysis of results are
based on the classifiers trained from these models listed.

After an thorough search, we find there is no such an appropriate global benchmark to be compared
for the time series performance metrics, therefore, for the aiming to make some comparisons, we
have introduced the naive prediction, which is a vector all zeros, i.e. assume there is no future
recessions since we are not experiencing recessions during most of the periods, to see if our tuned
models do have some contributes to the forecasts and performs better. Table 4.3 shows the results
of naive model, it worths to mention that we set I Score as 0 with both precision and recall being
0, this can be understood as the limiting performance of I' Score when precision and recall are

both approaching 0.

Accuracy | Precision | Recall | F Score
Naive Model | 0.851852 0 0 0

Table 4.3: Results of the naive model

Table 4.4 presents the performance scores from the best-in-class models trained by classical algo-
rithms, and we will compare them to the naive model, to see how well our actively tuned models
are performing quantitatively. By the first glance, we are able to conclude that all the models
perform better than the given benchmark concerning all the aspects, which proves some evidence
of feasibility of the choices of the features in the model and the algorithms we use. It is intu-
itive that 7-feature models perform best across the three algorithms, except for SVM, in terms of
I Score, 3-feature model was bested at 72%, but this is not a far lead, though. Hence, we can

conclude that, of our classical methods, the information embedded in 7 features was extracted most.

Another point worths to mention is that the difference between the performances of 3-, 6-, and
T-feature models are not significant across the three methods. This means that in fact, the three
classical methods, do not manage to extract the information embedded in the other three or
four data series efficiently, this can be caused by the simplicity of the methods themselves. And
the results are going far worse when another feature F'F' being added in the model, especially

for random forest, not only the accuracy has decreased to 87%, but the I' Score has dropped
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to 22% with about 50% gap from the 7-feature model. This phenomenon, in some way, provides

evidence of the inefficiency of the classical methods in terms of reading or studying high dimensional

information.
Model Algorithm Accuracy | Precision Recall I Score
Slope/ADS/ACM5D Random Forest 0.888889 0.625 0.625 0.625
Slope/ADS/NI'CI/EBP/ _ _
Random Forest 0.925926 1.0 0.5 0.666667
ACMS5D/SP500
Slope/ADS/NFCI/EBP/
Random Forest 0.935272 1.0 0.583333 | 0.736842
ACM5D/SP500/USREC
Slope/ADS/NI'CI/EBP/ ~
Random Forest 0.870370 1.0 0.125 0.222222
ACMS5D/SP500/USREC/FF
Slope/ADS/ACM5D XGBoost 0.870370 | 0.565217 | 0.541667 | 0.553191
Slope/ADS/NFCI/EBP/
XGBoost 0.907407 | 0.736842 | 0.583333 | 0.651163
ACM5D/SP500
Slope/ADS/NFCI/EBP/
XGBoost 0.925926 0.875 0.583333 0.7
ACMS5D/SP500/USREC
Slope/ADS/NFCI/EBP/ _ _ _ i
XGBoost 0.901235 | 0.785714 | 0.458333 | 0.578947
ACM5D/SP500/USREC/FF
Slope/ADS/ACMS5D SVM(linear kernel) | 0.913580 | 0.692308 0.75 0.72
Slope/ADS/NFCI/EBP/
SVM(linear kernel) | 0.919753 1.0 0.458333 | 0.628571
ACM5D/SP500
Slope/ADS/NFCI/EBP/
SVM(linear kernel) | 0.913580 1.0 0.416667 | 0.588235
ACMS5D/SP500/USREC
Slope/ADS/NFCI/EBP/
SVM(linear kernel) | 0.895062 | 0.818182 0.375 0.514286
ACM5D/SP500/USREC/FF

Table 4.4: Mean out-of-sample results of the "best-in-class’ models using classical algorithims

Last but not least, we found the performances of such classical models is not stable during the
training process, in other words, the variances of the performance metrics are relatively high and
the mean results cannot reveal this shortage. In practice, it is very "dangerous” to use these models
to predict recession, since they will confuse us when we are making decisions. Now we are going to
give a hypothetical setting to interpret how this danger can be caused. Imagine we are investors
and we are investing both bond and equity, or stocks as usual, and we are trying to predict the
economic situation in the following months in order to decide the allocation of cur assets. If we are
employing one of the classical methods, the results or outcomes can be variant and the possibility
of forecasting reversely is not trivial, and such wrong predictions can lead us to some fatal errors,

for instance, we would invest more in growth stocks and less in valuable stocks and bond after
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the outcome of our predictive model showing that the next investing period is not in recession.
However, if the true situation is opposite to what we have predicted, we are going to experience
huge losses and this is what we do not hope to see. Hence the shortages of these classical methods
are obvious and we are going to introduce another two methods and focus on our main method,

signature kernels.

4.2.3 Signature Kernel & RBF Kernel

Following the results obtained from the classical methods, we proceed onto the outcomes by em-
ploying signature kernels based on static kernel of RBF kernel and that of implementing RBF
kernel only. First we note that T-feature model seems performed best across the three classical
algorithms, and we will see if this is the case as well for these two models. Now we are going to

present the mean out-of-sample results of all best-in-class models.

Model Algorithm Accuracy | Precision Recall I Score
Slope/ADS/ACM5D RBF Kernel 0.925287 0.84 0.7 0.763636
Slope/ADS/NFCI/EBP/ )

RBF Kernel 0.942529 0.64 0.941176 | 0.761905
ACMSD/SP500
Slope/ADS/NFCI/EBP/ ) ~

RBF Kernel 0.919540 0.68 0.739130 | 0.708333
ACMS5D/SP500/USREC
Slope/ADS/NFCI/EBP/ )

RBF Kernel 0.925287 0.48 1.000000 | 0.648649
ACM35D/SP500/USREC/FF
Slope/ADS/ACM5D Signature Kernel | 0.931034 0.52 1.0 0.684211
Slope/ADS/NFCI/EBP/ )

Signature Kernel | 0.925287 0.56 0.875000 | 0.682927
ACMAD/SP500
Slope/ADS/NFCI/EBP/ . )

Signature Kernel | 0.948276 0.68 0.944444 | 0.790698
ACMASD/SP500/USREC
Slope/ADS/NFCI/EBP/ )

Signature Kernel | 0.948276 0.68 0.944444 | 0.790698
ACMS5D/SP500/USREC/FF

Table 4.5: Mean out-of-sample results of the 'best-in-class’ models nsing RBF kernel and signature
kernel

The first obvious point to draw out of Table 4.5 is that these two algorithms, in general, perform
a lot better than the classical methods we have mentioned in the previous section in terms of every
performance metric. Even the lowest accuracy of signature kernel has reached more than 92.5%,
and this is almost the same as the best performed model across all the classical algorithms, RBE

kernel works better than the previous methods as well, not as significant as signature kernel, though.
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Now we move to the comparison between the two methods explained in this section. Immedi-
ately we can conclude that in terms of accuracy, signature kernel is better performing, across most
choices of feature set(only for G-feature model, the out-of-sample accuracy trained by RBF kernel is
about 1.7% higher than that of signature kernel). This means we are able to identify the length of
recession period more accurately using signature kernels and in practice, this means we are enabled
to decide whether to buy or sell different assets more precisely and hence make more profits. As for
the rest 3 metrics, especially F score, we can see that for signature kernel models, the performance
is getting better along with more of the features, this means signature kernel models succeeded in
identifying and extracting the information embedded in new relevant data series. While for RBF
kernels, as the number of features increases, the out-of-sample performances of which become worse
and worse, however, the in-sample performance of RBF kernels, as shown in Table 4.6, tend to be
perfect as the number of features increases, in contrary to the out-of-sample performance, these
such "brilliant’ results are pointing to the problem of overfitting existing in this method. Moreover,
if we move our eyes onto the precision and recall, we can note that in terms of recall, signature
kernels are bested in most of the cases(except for the 6-feature model, and this is the case for every
metric here, so basically signature kernel does not perform well in this case), while as for precision,
the situation is reversed. This means signature kernels are more conservative than RBE kernels
while the capability of reading and capturing the signal of recession is stronger, and in practice,
we definitely prefer the models being more conservative and faultless since almost every investor

is adverse to risk or variance.

Model Algorithm | Accuracy | Precision | Recall I Score
Slope/ADS/ACM5D RBF Kernel | 0.963325 | 0.904762 | 0.915663 | 0.91018
Slope/ADS/NFCI/EBP/
pe/ ! ! / RBF Kernel 1.0 1.0 1.0 1.0
ACMSD/SP500
Slope/ADS/NFCI/EBP/
ope/ ! ! / RBF Kernel 1.0 1.0 1.0 1.0

ACMS5D/SP500/USREC

Slope/ADS/NFCI/EBP/
ACM5D/SP500/USREC/FF

RBF Kernel | 0.99511 0.988095 | 0.988095 | 0.988095

Table 4.6: Mean in-sample results of the "best-in-class’ models using RBI' kernel

We have also plotted the probability curves of predictions made by both signature kernels and
RBF kernels, we will show the cases of 6-, 7- and 8-feature models in Figure 4.2, 4.3 and 4.4,
where the light grey shaded areas are the NBER-dated recession periods and the light blue shaded
areas are the months of prediction before the dated recessions. It is clear that in the context of
6-feature model, both methods failed to predict the second period of recession(which is the great
recession caused by COVID-19), while for 7- and 8-feature setting, signature kernels did predict

the recession, showing that signature kernels are robust encountered with higher dimensional data
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while RBF kernels predicted snccessfully only for 7-feature setting, this coineides with the case
of best performing with seven features as we have concluded in the previous section for classical
methods. For other months of prediction period, we have also plotted the cases, and these figures

are presented in the appendix.

Recession probability test set, month = 6
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Figure 4.2: Probability curves predicted by RBF kernels and signature kernels(6-feature model)
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Figure 4.3: Probability curves predicted by RBF kernels and signature kernels(6-feature model)
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Figure 4.4: Probability curves predicted by RBF kernels and signature kernels(6-feature model)
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A closer look at the plots reveals that in most cases, there are more peaks or so called noises
existing in the periods of non-recession in the signature model with seven and eight features, with
probability less than 50%, this means signature model is telling the investor to keep an eye on the

potential recession in the future and prepare for it. In reality, with regard to the second recession
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period, it is the great recession attributable to COVID-19, signature model is telling the possibility
of occurrence of recession at the moment of start of the global pandemic. However, when it comes
to RBEF models, conditioned on seven and eight features as well, RBF models either give wrong
signals of recession before and after the actual periods of recession(the second recession period in
the test set) or even failed to capture the signal of the recession.

Lastly, it is interesting to mention the forecasts made by our signature kernel model, using the

most recent data. We found the results are telling that, in the next period of prediction, we are
in a relatively stable financial condition. The results predicted above are, in fact, fairly coincident

with what we roughly see the overall trend of US economy.
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Chapter 5

Conclusion

In this thesis, we have coped with the problem of predicting economic recession periods by employ-
ing signature kernels, which is the main method in this paper, at the same time as RBF kernel,
support vector machine, XGBoost and random forest to be compared with reference to a set of
relevant performance metrics. It is evident that signature kernel with static kernel set as RBF
kernel performed consistently better than RBF kernel and all the other classical methods, achiev-
ing the highest mean out-of-sample accuracy of 95% with seven and eight feature set which was
significantly better than the results of both RBF kernel and classical algorithms. Of the other
methods, RBF kernel with the set of six features performed the best, with an accuracy achieving
at 04%, beat all of the models trained by classical algorithms, this proved that, in some way, our
choice of static kernel was appropriate as well. Owverall, we have summed up several factors that
can potentially explain the reason why the classical algorithms are performing worse than our

signature kernels with static kernel set as RBF kernel, or even RBF kernels only:

e The model structures are too simple to capture the complicated market information and
potential signals rooted in macroeconomic indexes and thus predict the trends of the whole

ECONonYy.

e The grid search in the hyperparameter space of classical algorithms is too shallow, hence

difficult to make precise decisions.

The dimension of data is relatively high and is sequential, while the classical algorithms are

not pathwise dependent, therefore it is very tough for them to get the following forecasts.

On the other hand, since signature depends on the path of the data, it is natural that signature
kernel inherited this property(since signature kernel is simply the inner product of two signatures),
thus it is ideal for sequential data problems. The results showed above, indeed, did not disappoint
us with surprisingly high accuracy and F score. In particular, we found modified NBER-dated
recession data, i.e. the labels we are going to predict, provided deep insight into the movements
of itself, contributing remarkably to the overall results. Additionally, on the subject of 8-feature

model, all the methods have given worse results than those of T-feature models, except for signature
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kernel, kept the outcomes at the same level, which means signature kernel is more robust than the
others, where the other methods tend to overfit as the dimension and complexity of data growing

up.

Upon reflection, there are four directions [ would like to propose for further research and studies.
The first direction comes to my mind is to seek a more efficient, intelligent grid search method
to find the optimum hyperparameters since during the coding work, it took a lot of time looping
every instance and computationally expensive. In a great number of machine learning problems,
Bayesian optimisation has been chosen as the optimisation method due to its effectiveness, and
thus it is an ideal starting point for a more efficient global optimisation method. Secondly, the
dimension of feature set is relatively low(models with the highest dimension is 8), and some other
macroeconomic data series, such as GDP growth rate, unemployment rate, inflation rate, etc.
should be included in our search. Thirdly, there are some further investigation of comparing
the methods other than simply splitting the dataset with some ratio and giving the performance
metrics. To make the comparison more statistically significant, we can consider the ideas of nested
analysis when training the dataset. In other words, we first employ the methods and train the
models in the period of 1973(where the data series start from) to 2007, say, and set the test data
as the period from 2007 to 2017, and we have only one recession period during this time. After
training this, we have an accuracy, then we retrain the models using data from 1973 to 2017, with
data from 2017 to 2022 to be tested, that implies the training set which aims to test the great
recession aroused by COVID-19 will take 2009 recession into account. Last but not least, there is a
hyperparameter called dyadic order during training signature kernels, which can be understood as
how close the numerical results calculated from the hyperbolic PDE and the real signature kernel
are, a higher dyadic order means they are closer. Due to time constraints, we have only tested the
results with dyadic order zero and one. Given more time, it would be definitely beneficial to test
the results with higher dyadic order which will improve the present results with high probability.

These would be the next step in improving the current research proposed.
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Appendix A

Plots of other months of

prediction

Recession probability test set, month = 3
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Figure A.1: Probability curves predicted by RBF kernels and signature kernels(3-feature model
with 3 months of prediction)
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Figure A.2: Probability curves predicted by RBF kernels and signature kernels(3-feature model
with 9 months of prediction)
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Recession probability test set, month = 12
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Figure A.3: Probability curves predicted by RBF kernels and signature kernels(3-feature model
with 12 months of prediction)
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Figure A.4: Probability curves predicted by RBF kernels and signature kernels(6-feature model
with 3 months of prediction)
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Figure A.5: Probability curves predicted by RBF kernels and signature kernels(6-feature model
with 9 months of prediction)
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Figure A.6: Probability curves predicted by RBF kernels and signature kernels(6-feature model
with 12 months of prediction)
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Figure A.7: Probability curves predicted by RBF kernels and signature kernels(7-feature model

with 3 months of prediction)
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Figure A.8: Probability curves predicted by RBF kernels and signature kernels(7-feature model

with 9 months of prediction)
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Figure A.9: Probability curves predicted by RBF kernels and signature kernels(7-feature model

with 12 months of prediction)
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Figure A.10: Probability curves predicted by RBE kernels and signature kernels(8-feature model

with 3 months of prediction)
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Recession probability test set, month = 9

Figure A.11: Probability curves predicted by RBF kernels and signature kernels(8-feature model
with 9 months of prediction)
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Figure A.12: Probability curves predicted by RBE kernels and signature kernels(8-feature model
with 12 months of prediction)
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