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Abstract

Credit risk modelling is a field with access to a large amount of diverse data where machine
learning methods, a powerful tool in computing, can be deployed to add great analytical value. In
this paper, we assessed the benchmark algorithm Logistic Regression and different machine learning
algorithms, including Decision Tree, Random Forest, Extreme Gradient Boosting (XGBoost), K-
nearest Neighbourhood (KNN), Support Vector Machine (SVM), and Artificial Neural Network
(ANN) on the performance of Probability of Default (PD) prediction for home loans. The overall
best model is ANN, reaching an AUC score of 0.7863, followed by SVM [AUC = 0.775) and Random
Forest (AUC = 0.7737). The benchmark model logistic regression also has a high statistic value
with an AUC score of 0.7641. These results indicate that machine learning techniques can indeed
improve the performance of PD prediction, but meanwhile, the traditional model is proved to be
a reliable method, and it explains why logistic regression has been applied extensively in previous
literature. Moreover, this study compares the model performance trained with several features
selected through feature selection as well as trained with all the features. The models achieve
similar results using the two different training sets, while the former has a lower computational
cost. It indicates that feature selection is important when having a high-dimensional dataset,
because it saves computational power while incorporating the most useful information from the
dataset.
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Introduction

A definition of credit risk is provided by the Basel Committee on Banking Supervision:” A counter-
party fails to meet its obligations according to the agreed terms(BCBS, 2000). A classic example
is a borrower’s failure to repay a loan. Beyond that, credit risk is also a significant risk factor to
be considered in government lending, corporate debt instruments, retail credit products, and all
financial transactions. In the past 20 years, a series of financial crises have manifested the threat of
credit risk and the significance of managing it, such as the Argentine default (2001), the subprime
mortgage crisis triggering Lehman Brothers’ collapse (2007-2010), the European sovereign debt
crisis (2010-2012) and the bankruptcies of small and medium-sized companies following the recent
pandemic (2020) [1]

The regulators have taken a series of actions to cope with these challenges. New absolute measures
of credit risk, Probability of Default (PD), Loss Given Default (LGD), and Exposure at Default
(EAD) were introduced in Basel II by the Basel Committee along with the new internal rating
based approaches (IRB) in 2006. But soon, the global financial erisis in 2007 and 2008 challenged
the three main credit risk components. The regulators were forced to pivot and consider the sys-
temic conditions and overall portfolio default rates and introduced stress tests. After IAS 39 which
performed an easier modelling task of incurred loss, IFRS 9 was introduced as an expected loss
approach to model the loan staging that might respond in a crisis. [2]

In the first chapter of this paper, we define the credit risk, demonstrate the motivations for studying
it in the current economic environment, and assess the credit risk measurement under the IFRS
9 regulation and the IRB regulation. In the second chapter, we present a literature review of
the studies conducted on credit risk using machine learning. Then, the third chapter of this
paper describes the theoretical implications of machine learning models, feature selection methods,
and performance measures. In the fourth chapter, we describe the data source and the data
preprocessing process for conducting a numerical studies on PD prediction. In the fifth chapter,
we evaluate the models and discuss the results. Finally, the last chapter concludes our studies,
points ont the main contributions of our work, states the limitations, and proposes some future
work that can be conducted in further studies.




Chapter 1

Credit Risk and the Background

1.1 The Importance of Credit Risk Modelling
1.1.1 The Definition of Credit Risk

A definition of credit risk is provided by the Basel Committee on Banking Supervision:” A counter-
party fails to meet its obligations according to the agreed terms(BCBS, 2000)." Therefore, credit
institutions that offer loans to their clients have to take into account the credit risk when the inter-
est rate on a loan is caleulated. The subprimes crisis has shown that the implemented regulation
failed in measuring credit risk, because many defaults that occurred were from a mismanagement
of the accounting of financial instruments and a majority of those were related to counterparties
that were supposed to be safe and performing. To measure the credit risk, several important
risk measures were introduced, including Probability of Default (PD), Loss Given Default (LGD),
Exposure at Default (EAD), and Significant Increase in Credit Risk (SICR) by the regulating
institutions.

1.1.2 The Regulation of Credit Risk after the Financial Crisis

The global financial crisis of 2007 and 2008 showed that Basel II underestimated the risks involved
in current banking practices and that the financial system was overleveraged and undercapitalized,
despite Basel 11's requirements. Therefore, Basel 111 was introduced with a set of reforms designed
to mitigate risk within the international banking sector by requiring banks to maintain specific
leverage ratios and keep certain levels of reserve capital on hand. Meanwhile, the politician noticed
that the financial crises do not only concern the financial markets but also have a significant impact
on the global economic situation. During the G20 of 2009, the international leaders have pushed the
international financial institutions to develop new regulations incorporating the current economic
and financial situations. The resulting new financial instrument accounting is the IFRS9 norm
developed by the International Accounting Standards Board (IASB). [3]

1.2 The Regulatory Standards for Credit Risk Measure
1.2.1 Internal Rating-Based Model (IRB)

The IRB approach was introduced by Basel Committee on Banking Supervision. The main idea is
that under the Basel II guidelines, banks are allowed to use their own estimated risk parameters
for the purpose of calculating regulatory capital, subject to supervisory approval. Also, only banks
meeting certain minimum conditions, disclosure requirements and approval from their national
supervisor are allowed to use this approach in estimating capital for various exposures. There are
two broad approaches that a bank can follow [4] :

e Foundational IRB approach: banks calculate their own PD parameter while the other risk
parameters are provided by the bank’s national supervisor

¢ Advanced IRB approach: banks calculate their own risk parameters, PD, EAD, and LGD,
subject to meeting some minimum guidelines




In Basel 1I, the three pillars of sound regulation are described, the first of which is minimum
capital requirements (Basel, 2005). The banks may choose for themselves which method to follow
to calculate minimum capital requirements, so-called regulatory capital. In the standardized ap-
proach, a fixed percentage of outstanding loans is set aside. This percentage varies for different
asset classes. It may be seen as the most straightforward and most primitive approach, but it may
be very expensive for the banks in that they hold much capital when it is not needed, and the
opposite. In the Internal Ratings Based (IRB) approach, the bank chooses the percentage of total
exposure in each asset class to set aside. Expected and unexpected losses are to be calculated,
where the second is of much greater importance. Indeed, regulatory capital is only concerned with
unexpected losses. As part of the methodology to caleulate unexpected losses, PD models are
built. The implication is that when reading this thesis, one should note that the models described
are not used by the firm to score customers prior to issuing a loan. The models are used by the
firm to set aside enough regulatory capital.

1.2.2 International Financial Reporting Standard 9 (IFRS 9) Model

IFRS 9 is an International Financial Reporting Standard (IFRS) published by the International
Accounting Standards Board (IASB). It contains three main topics: classification and measurement
of financial instruments, impairment of financial assets and hedge accounting. The complete version
of the norm IFRS 9 was published in July 2014, and it came into force on 1st January 2018, replacing
the earlier IFRS for financial instruments IAS 39. [5] The main changes regard the classification
and the measurement of financial assets and do not affect financial liabilities. Based on the official
document of the IASB, we summarize the main points from IFRS 9 that are related to the work:

e Stage 1 comprises instruments that have not suffered any significant deterioration of credit
quality since initial recognition (performing assets). To measure the expected loss (EL]J,
banks have to calculate the 12-month expected credit loss (ECL).

e Stage 2 comprises instruments that have suffered significant deterioration since initial recog-
nition (under-performing assets). This is the main change of the new IFRS 9 norm. The
corresponding EL is a Lifetime ECL which takes into account a deterioration in the credit
quality of the asset. The Incurred But Not Reported (IBNR) assets are subject to " a signil-
icant increase in credit risk since initial recognition,” according to the new norm. However,
no actual information gives a material indication about this increase.

e Stage 3 concerns all instruments where a delault has occurred (Non-performing assets). In
this case, the lifetime ECL is the measurement that has to be implemented.

In all stages, to compute the 12-month or lifetime ECL, PD has to be modelled. The standard re-
quires the modelling to include "historical information as well as Forward-Looking macroeconomic
information.”

1.2.3 The Comparison between IRB and IFRS 9

IRB is the regulatory capital based on risk-weighted assets and leverage ratios. It sets the limit on
the total size of the business for a bank. The regulatory capital covers both unexpected losses and
expected losses which have been recognized by loan loss provisioning. On the other hand, IFRS 9
is a provision which is based on the expected loss, and so the purpose is to absorb expected losses,
required to be the best estimate of loss that is not conservative.

The table summarizes the major differences between the two approaches: [6]




Aspect

Internal Ratings-Based Model

| IFRS 9 Model

Default Definition

Specific definition based on a
combination of days past due and
unlikely to pay.

Consistent with Credit Risk
Management practice plus rebuttable
presumption that default does not
oceur later than 90 days past due.

Lifetime v.s.
12-month Horizon

Credit Rating System and associated
PDs are based on a 12-month horizon

Stage 1 Assets allowances are based on
a 12-month horizon. Stage 2 and stage
3 allowances are based on lifetime
expected losses.

Point-in-time (PIT)
Vs,

Through-the-cycle
(TTC)

Models are generally developed using a
hybrid approach (considering both
cyelical and non-cyclical variables)
which determines the ratings, which
are then calibrated to a PD which may
be somewhere between PI'T and TTC.

Expected losses should reflect current
conditions. This may require a PIT
adjustment over historically based
estimates.

Quantitative Floors

The regulatory PD has a floor at
0.03% for all exposures except
sovereign counterparties.

No floor on the PD.

LGD Estimates

Conservative estimate (Downturn

LGD).

Unbiased, PIT estimate.

Frequency of
Estimates

Annual

Continuous basis (at least, every time
Financial Statements are prepared).

Auditing of Figures

Bank supervisors.

Auditors and market supervisors.

Table 1.1: Differences between IRB Model and 1FRS9 Model

1.3 Non-performing Loans

1.3.1

Definition of Non-performing Loans

A non-performing loan (NPL) is defined as a loan that is in default due to the inability of the

borrower to make the scheduled payments for a specified period.

The specified period wvaries

depending on the industry and the type of loan. In general, the period is 90 days or 180 days. In
order to evaluate risk exposures, several international financial authorities offer specific gnidelines
for determining non-performing loans. For example, the European Central Bank (ECDB) specifies
multiple criteria for defining an NPL, that loans are non-performing if they are [7] :

e 90 days past due, without the borrower paying the agreed installments or interest

e impaired with respect to the accounting specifics for U.S. GAAP and IFRS banks

e in defanlt according to the Capital Requirements Regulation

In this study, the first criterion is adopted that when the payment due date exceeds 90 days, the
loan is defined as default.

1.3.2 Definition of Probability of Default

The Probability of Default (PD) is the likelihood that a borrower will fail to pay back a debt. It
is estimated using historical data and statistical techniques. For individuals, PD can be reflected
in a Fair Isaac Corporation (FICO) score, while the PD of a business tends to be reflected in
credit ratings. Ewvaluating PD has important implications. For example, when the estimated PD is
higher, a higher interest rate needs to be charged from the borrower to compensate for the risk the
lender takes. Besides, calculating PD is necessary for default prediction. When the PD exceeds
a certain threshold, then the loan is labelled as default. In this study, the optimal threshold is
calculated for each model.




Chapter 2

Literature Review of Credit Risk
Modelling

2.1 Probability Default and Recovery Rate Estimation and
Prediction

Since the financial crisis, NPLs have been the focus of European regulators for years, as many banks
still face difficulties in disposing of those materialized on their balance sheets during the crisis. [1]
In order to predict NPLs in advance, many studies have been focused on PD prediction. According
to Guidance to Banks on Non-performing Loans from ECB (8] , once NPLs have occurred, the
regulators tend to recommend banks to pool the NPLs and sell them to specialized investors, such
as debt collection agencies. Omne of the most important variables governing the price of NPLs
portfolios is the recovery rate, that is the percentage of exposure that can he recovered from each
borrower through the debt collection process. The relationship between PD and RR have been in-
vestigated for decades. Table 2.1 summarized by Altman, Resti, and Sironi [9] are presented below.

In this thesis, the reduced-form models are assumed that RR is independent of PD. Also, PD is
the main focus in the analysis and RR will not be further discussed due to data availability.

10




Model Type

| Related Studies

| Model Explanation

| Relationship between RR and PD |

First generation
structural-form
models

Merton (1974), Black
and Cox (1976), Geske
(1977), Vasicek
(1984), Crouhy and
Galai (1994), Mason
and Rosenfeld (1984).

PD and RR are a
function of the
structural
characteristics of the
firm. RR is therefore
an endogenous
variable.

PD and RR are inversely related

Second generation
structural-form
models

Kim, Ramaswamy e
Sundaresan (1993),
Nielsen, Saa-Requejo,
Santa Clara (1993),
Hull and White
(1995), Longstaff and
Schwartz (1995).

RR is exogenous and
independent from the
firm’s asset value.

RR is generally defined as a fixed ratio
of the outstanding debt value and is
therefore independent from PD.

Reduced-form
models

Litterman and [ben
(1991), Madan and
Unal (1995), Jarrow
and Turnbull (1995),
Jarrow, Lando and
Turnbull (1997),
Lando (1998), Duffie
and Singleton (1999),
Duflie (1998) and
Duffee (1999).

Reduced-form models
assuIme an exogenous
RR that is either a
constant or a
stochastic variable
independent from PD.

Reduced-form models introduce
separate assumptions on the dynamic
of PD and RR, which are modeled
independently from the structural
features of the firm.

Latest
contributions on
the PD-RR
relationship

Frye (2000a and
2000b), Jarrow (2001),
Carey and Gordy
(2003), Altman,
Brady, Resti and
Sironi (2001 and
2004).

Both PD and RR are
stochastic variables
which depend on a
common systematic
risk factor (the state
of the economy).

PD and RR are negatively correlated.
In the “macroeconomic approach” this
derives from the common dependence
on one single systematic factor. In the
“microeconomic approach” it derives
from the supply and demand of

defaulted securities.

Table 2.1: The Treatment of PD and RR within Different Credit Risk Models

2.2 The Evolution of Modelling Techniques

One of the earliest models is the linear discriminant analysis (LDA) model, and Wiginton (1980)
first applied a logistic regression (LR) model to evaluate credit risk and found that this model had
high classification accuracy and strong practicability. Subsequently, logistic regression analyses
became a standard method used to evaluate credit risk in many studies such as Van Gestel, Tony,
Bart, Garcia, Dijcke (2003), Avery, et al. (2004), and Huang, Chen, Wang (2007). [10]

These models however, suffer from their apparent inability to capture non-linear dynamics, which

are prevalent in financial ratio data pointed out by Petr and Gurny (2013). [11] Therefore, machine
learning methods are considered to overcome the limitations of standard models such as logit and

probit models, as they can detect non-linear interactions between input variables presented in the
studies such as Van Gestel et al. (2003), Khandani et al. (2010), Crook, Edelman, Thomas (2007),
Brown Mues (2012), and Kruppa et al. (2013). [10]

However, the researchers did not reach a universal conclusion on which machine learning method
is decisively better than the others, while it largely depends on the problem and the datasets. For
example, Huang et al. (2004) studied corporate credit rating models, suggesting support vector
machines (SVM) achieves better explanatory power compared to the benchmark artificial neural
network (ANN). [11] On the other hand, Yeh and Lien (2009) applied different methods such as
k-nearest neighbors (KNN), logistic regression, discriminant analysis, Naive Bayes, ANN and clas-
sification trees on a data set of customers’ credit default in Taiwan and found ANN outperforms

11




other techniques for obtaining reliable estimates of default probability. [12] Moreover, Arora and
Kaur (2020) showed that Random Forest (RIF') is superior to SVM and KNN in predicting the
probability of borrower default. [10] Similarly, Anastasios et al. (2018) compared Extreme Gradi-
ent Boosting (X Boost) against other machine learning methods and concluded it achieves better
performance in defanlt classification.

Motivated by all the aforementioned research endeavours, we revisit the issue of credit risk mod-
elling. Among all these techniques, we choose LR, SVM, KNN, RF, ANN, and XGBoost for our
modelling tasks, which have been proven to be computationally fast, ease to implement and show
good performance.

2.3 Approaches for Feature Selection and Extraction

With the rapid increase in data dimensionality, selecting necessary information [rom the data to
process becomes crucial, as it can reduce the overfitting risk, mitigate the curse of dimensionality,
increase computational efficiency, and decrease memory requirements, as proven in the studies by
Khadlid et al. (2014) and Zhaowen Wang, et al. (2016). The feature selection is to choose features
from the original datasets based on the feature importance. It selects the top ones by ranking their
importance and disregards the rest. On the other hand, feature extraction creates a whole new set
of features on top of the original ones, mapping higher dimensional space into a lower-dimensional
coordinate. [13]

One of the most popular approaches for feature extraction is Principal Component Analysis (PCA),
invented by Pearson (1901) and Hotelling (1933). The main idea is to project the original high-
dimensional feature space in the direction of the greatest variance according to coordinate ranking,
so that the most crucial information is extracted while the data size is compressed. Since then,
some variants of PCA have been developed. For example, Sd* Aspremont et al. proposed sparse
principal component analysis (SPCA) that modifies components with zero loadings to improve the
sparsity of the financial asset trading data. Another popular feature extraction method is inde-
pendent component analysis (ICA). It undertakes a linear transfer of the original feature space to
a new coordinate system, making the components of the new feature space mutually independent.
Hywvarinen A. et al. (2000) concluded that ICA could efficiently capture the essential structure of
non-Gaussian data in many applications. Moreover, discriminant analysis (DA) is known for the
ability to find boundaries around clusters of classes and projects data points into a new feature
space to maximize class separability. The study by Yang J. (2003) pointed out that the combina-
tion of PCA and DA achieves better results than employing PCA or DA alone. [13]

There are three main methods for feature selection: filtered methods, wrapper methods, and
embedded methods. Filtered methods select variables regardless of the model. They are based
only on general features like the correlation with the variable to predict. Filter methods suppress
the least interesting variables and the other variables will be used for classification or regression
models. Phuong (2005) suggests these methods are particularly eflective in computation time
and robust to overfitting. Wrapper methods evaluate subsets of variables which allows, unlike
filter approaches, to detect the possible interactions amongst variables, such as Recursive Feature
Elimination used by Zongrni Dai (2021) studying bank credit rating prediction. [14] Embedded
methods have been recently proposed that try to combine the advantages of both previous methods.
A learning algorithm takes advantage of its own variable selection process and performs feature
selection and classification simultaneously, such as Random Forest used in LGD estimation by
Elina Velka (2020).

2.4 Techniques for Imbalanced Datasets

Apart from selecting algorithms, a notable challenge for credit risk modelling is the imbalanced
datasets. In general, the loan is granted after a careful evaluation of the client, so the probability
of default is usunally low. This phenomenon can be reflected in the datasets by comparing the ratio
of the target labels. The number of "No default” labels largely exceeds the number of "default”
labels. Thus, some researches regarding such imbalanced datasets have been conducted. Brown
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and Mues (2012) applied different classifiers to credit scoring data, and they found that ensemble
methods such as XGBoost and RI' achieve relatively good performances when encountering severe
class imbalances. They also discovered the traditional methods such as LDA and LR can compete
with the more complex methods, but SVM performs poorly with imbalanced data. [12]

Common techniques to handle imbalanced data include sampling the training datasets, generat-
ing synthetic data, and cost-sensitive training. Yap Bee Wah et al. (2016) applied oversampling
and undersampling to the imbalanced datasets with the majority class occupying 95.8% while the
minority class only consists of 4.2%. The idea of oversampling is to duplicate minority class obser-
vations until the number of observations balances the majority class. In contrast, downsampling
is to reduce the majority class observation to balance the minority class. The aunthors concluded
that the models perform significantly better on the resampled datasets. [15]

Anna Stelzer (2019) adopted cost-sensitive learning methods. It makes use of a cost matrix which
contains a class misjudged penalizing coeflicient in order to raise the misjudgement cost weight of
the defaulted samples. In this case, the loss is greater when misclassifying the minority class. So
it becomes an optimization problem to minimize the cost of misclassification. The usefulness of
this technique is also supported by the study of Hand and Vinviotti (2003). [12]

Choosing proper evaluation metrics is another important decision for imbalanced datasets. In
traditional classification problems, accuracy is used, which is simply the percentage of correct
predictions. However, in the presence of imbalance, the algorithm can achieve high accuracy by
simply predicting every sample to be the majority class, which is not meaningful. Therefore, it
is essential to use metrics that can provide insights into the model performance. Lessman et al.
(2015) used three metries: accuracy, Area under Receiver Operating Characteristies (ROC) Curve
(AUC), and Brier Score to evaluate the model performance. [12] They found that the advanced
models achieve a better score on AUC and Brier Score compared to the traditional linear models,
while they do not exhibit significant differences when comparing accuracy scores. Thus, AUC and
Brier Score provide a more informative evaluation in terms of model selection.

2.5 The Benefits and Challenges of Machine Learning Ap-
proaches

In this era, financial databases are increasing rapidly with large datasets, which require more robust
and efficient data mining processes and financial statistical modelling to support more informed
decision-making. Conventional econometric methods fail to efficiently capture the information in
the full spectrum of the datasets, as big financial datasets are usually characterized by increased
noise, heavy-tailed distributions, nonlinear patterns and temporal dependencies, which pose sig-
nificant statistical challenges, since conventional statistical methods are based on the assumption
that observations follow a normal curve. [10]

Machine learning techniques are known for the superior capability of handling large datasets,
which can review large volumes of data and discover specific trends and patterns that would not
be apparent to humans. They can also be used to reduce dimensionality and increase accuracy in
predicting the future behaviour of corporate loans to facilitate a more effective micro and macro
supervision of credit risk for financial institutions. Also, machine learning is algorithm-based and
requires minimum human intervention, so it greatly saves labour resources and makes the outputs
more ohjective.

Despite the numerous advantages, some challenges still exist. First, machine learning algorithms
require massive datasets to train on, but due to confidentiality, it may become difficult to receive
enough training data to produce an unbiased model. Also, machine learning algorithms are often
criticized for the lack of transparency which makes them controversial, particularly in the financial
industry, because regulators have strict requirements concerning the interpretability of the credit
risk models. This creates a burden on the financial institutions to provide evidence of model in-
terpretability. To overcome this, it can be considered to use some machine learning models with
high interpretability such as tree models. [10]
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Another challenge is the tendency to overfit. This often occurs when the model captures exces-
sive information in the data, making it performs exceptionally well on the training data while
under-performs on other datasets. Hopefully, many approaches to deal with overfitting have been
developed, such as data splitting, early-stopping, drop-out and so on. Overall, the advantages
of machine learning models outweigh these drawbacks and make them promising in credit risk
modelling.
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Chapter 3

Methods

3.1 Mathematical Formulation

The prediction problem of whether a loan will default is modelled using a binary variable Y as

y — { 1, default

0, no default

and a feature vector X = (X;,...,X,,) where m is the number of features plus a error term = to
capture idiosyncratic error in the data.

So the mathematical formula can be written as:
Y = f(X)+= (3.1.1)

The function f (X)) represents the defanlt probability of the loan.

FX)=E(Y |X=z2)=Pr(Y =1| X = 1) (3.1.2)
The g{mlﬁiﬁ then to find a good estimate of f({X), denoted by _f(X]. For any f(X]_. the loss

L{f(z), f(X)}is computed. In thisstudy, cross-entropy is used as it is a standard loss measurement
for the binary classification problems, written as

L=—(ylnp+(1—y)n(l—p)) (3.1.3)

where y is the true label and p is the predicted probability. Thus, the learning problem becomes an
(/Jl?t.imizing problem which is to minimize L{f(z), f(X)} by finding the optimal f(X) denoted as
f*(X). One thing to be noted is that when using machine learning, f(X) is only a mathematical
expression, but may not have an exact formula to give rise to the expression, becanse machine
learning models do not make assumptions about the model structure and parameters. This is
a root difference between traditional mathematical models and machine learning models. Thus,
when predicting default probabilities, the study will focus on evaluations of different metrics rather

than giving detailed explanations of the process that happened inside the models.

3.2 Statistical and Machine Learning Models

3.2.1 Logistic Regression Model

Logistic regression is commonly used in many studies for classification problems and is the only
statistical model used in this study to serve as a benchmark for the machine learning models. It
uses a logit-link function to estimate the relationship between features and labels:

logit (p:) = log (1 pr ) =f+HmX1+...+8mXm (3.2.1)

1
p=ply:=1|xz) = ) m
1+ exp (— (ﬁju +Xim fjj"-'j))

15




where p; is the probability of default, 7 are the regression coeflicients, and m is the total number
of features.

From Figure 3.1 [16], it can be seen that the output is bounded between 0 and 1 which satisfies
the range of the probability. Here, ¢(z) is equivalent to p; and z is equivalent to By + 3272, 8;7;.

10 ST
(z) = !
$(2) = 1+e~2
/
0.5
0.0 el
8 6 4 2 0 2 4 6 8

Figure 3.1: Logistic Regression

This can be derived by considering the equivalent formulation of a latent variable model. For each
sample 1, there is a continuous latent variable y} that is distributed as

y=0+08-X +¢ (3.2.3)

i

where €; ~ Logistic(0,1) that the random error variable has a standard logistic distribution. Then
i can be viewed as an indicator for whether this latent variable is positive:

(3.2.4)

L1 ity >0ie —a<f+8-X
i 0 otherwise

Then using the fact that the cumulative distribution function of the standard logistic distribution
is the inverse of the logit function,

Priz; <xz)= logit._l(a.‘) (3.2.5)

so the following derivation is obtained:

Priy,=1|X;)=Pr(y >0]|X,)
=Pr(f+8 X, +eg>0)
=Pr(g>-G—-03-X;
( o B-X;) (3.2.6)
=Pris <+ 8 X))

=logit ™! (3 + 8- X,)

=
Unlike Linear Regression, the coefficients of Logistic Regression cannot be derived by an analytical
approach. Instead, it starts with random parameters and nses an iterative process to maximize the

likelihood function. It determines the model parameters [, and 3 = /3, ... 3, through minimizing
the negative log-likelihood function:
min | = — yiln(pi) + (1 — ) In(1 — p; 3.2.7
Jiny ;“ (pe) + (1 = yi) In(1 = p1)) (3.27)

For modelling PD, Logistic Regression does not require the researcher to decide on hyperparameters
before estimating the model. Thus, it is easy to implement and reproduce. [17]
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3.2.2 Decision Trees

Decision Trees (DT) is a non-parametric supervised learning method that can perform both clas-
sification and regression. The mechanism behind tree-based algorithm is simpler than other ML
methods. DT split the data into partitions with operations at each branch. Each branch consists
of a root node at the top and two child nodes underneath. The inputs of DT include the width
and the depth. The width determines the number of leaves at the bottom of the tree which are
mostly pure and the depth is the number of levels of the tree.

There are several splitting rules that can be applied to split the dataset. A common approach is
to measure information gain (IG) of the split, formulated as

IG (parent, children(left, right)) = E(parent) —[w(left) x E(le ft)+w(right) x E(right)] (3.2.8)

where w is the weight of the sample in a split and E represents the entropy calculated as

N
E==Y p;log,p; (3.2.9)

where p; is the probability of randomly picking an element of class ¢. In this study, N = 2 as there
are only two classes: default and no default. As can be seen, IG measures the difference between
the entropy of the parent and the weighted sum of the entropy of the children, the higher the IG,
the better the split.

An alternative measure is the Gini impurity index, ranging from 0 to 0.5, and is written as:

N
Gini(t) =1 — Zp(f | )2 (3.2.10)

i=1

where N represents the number of classes in the label and the p represents the ratio of classes at
the i node. Same as before, in this study, N = 2. In this study, it can be expressed as

Gini(X) =1—[ply = 0] X)* +ply = 1| X)¥ (3.2.11)
» Gini
054+
© 0.5 ' Probability

GINI IMPURITY

Figure 3.2: The Gini Index
Then the decision tree undergoes a pruning process to establish individual decision trees. The lower
the Gini impurity is, the purer so the better the split is. Finally, it outputs a decision y =0 or 1

based on the final split result.

Figure 3.3 gives a simple example of the pruning process:
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Bankruptcy Flag = Yes

Gini=0.48
Samples = 150
Default = 1
v ™
e ™
s’/ \\
Gini=0 PD_segment = Low Risk
Samples =5 Gini = 0.245
Default = 1 Samples = 145
Default = 0
7 N
.
N \\‘
Gini=0 Gini=0
Samples = 140 Samples =5
Default = 0 Default = 1

Figure 3.3: A simple example of a decision tree

The DT algorithm has the advantage that the model is intuitive and easy to interpret, but it has
the limitation that the over-fitting problem is likely to occur in the process of dividing the feature
space or producing branches. The prediction accuracy is reduced as a result.

3.2.3 Random Forest

Random Forest (RF) is an extended version of decision trees by utilizing an ensemble learning
technique. It is composed of multiple decision trees, and there is no correlation among different
decision trees. Bach decision tree DT} makes its own classification independently, and the results
of the random forest are given by the votes of multiple decision trees (e.g. n trees), formulated as

fla) = arggmngwm) =) (3.2.12)

In a random forest model, the features of X are randomly subsetted and classification trees are
drawn for every sample. The algorithm can be seen as an extension of the bagging methodology
since it takes advantage of bagging as well as feature randomness to construct an uncorrelated
ensemble of decision trees.

The structure of a random forest is shown in Figure 3.4 [18].
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Figure 3.4: Random Forest

The "randomness” of Random Forest comes from the feature selection process, because not all
features are used during the training process, but the variables are chosen in each node by random
instead of using discriminatory power. This "randomness” feature reduces the calculation cost
while performing better. [10]

The random forest algorithm overcomes the main challenge faced by a single decision tree, which
reduces the risk of overfitting by increasing the number of trees in a forest, making it more accurate
in generalization. The algorithm is very stable that a new data point introduced in the dataset
would not impact the overall model much. One drawback of random forest models is the complexity.
Since it i3 more complex than a single decision tree, it requires more datasets and takes more time
to train than other comparable models.

3.2.4 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is another ensemble decision tree algorithm based on the
gradient boosting methodology. Gradient boosting seeks to approximate a function of weights
on weaker classifiers to minimize the loss function. The algorithm starts with arbitrary weights
and trains the model sequentially. For example, a decision tree is a typical weak classifier. Each
decision tree is created using a greedy search procedure to select split points that best minimize an
objective function. This can result in trees that use the same attributes and even the same split
points again and again. New decision trees are added to the model to correct the residual error
of the existing model. On the top of the classic gradient boosting tree, extreme gradient boosting
adds a penalty term to the cost function. The objective function is formulated as

L(6) =) 1w +Y_Q(f) (3.2.13)
i i

where the regularization term Q(f) = ~T + %)\H‘H}HZ The term w adds a penalty to the model
complexity while the other regularization parameters smooth the final trained weights to avoid
overfitting.

Let y:!’] =gt + fi be the i*" predicted instance at time t. The additive training process can be

i

formulated as .
LD =30 (i + o i) +2() (3:214)
i=1

where 1 is the total number of trees.
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The f; obtained from the new decision tree is greedily added with the function in order to optimize
the objective in Equation 3.2.14. Finally, the objective function is optimized using a second-order
approximation to find the optimal weights and leaf sizes in the model. [17]

The structure of an extreme boosting tree is shown in Figure 3.5. Different from the random forest
where the result of each decision tree is independent, in XGBoost, the result of the subsequent tree
depends on the result of the previous tree.

Dataset x
Tree 1 Tree 2 Tree n-1 Tree n
. - . [
- ‘. - ‘I _. “ - ‘.

¥ v & ¥ v & ¥ v ¥ ¥ v &
A \

e sd s & Bd s s sd b & ded s & edls ¢ sd s & udle

¥ s
i=1

Figure 3.5: Extreme Gradient Boosting Tree

The advantages of XGBoost include computational efficiency and handling missing data. The
efficiency is demonstrated in two aspects. First, XGBoost is based on an approximate greedy
algorithm which uses weighted quantiles when looking for the best node split instead of evaluating
every possible split. Second, XGBoost supports parallel learning by splitting up the data into
smaller datasets to run processes in parallel. Moreover, when encountering missing data, XGBoost
calculates Information Gain by putting observations with missing values into the left leaf and right
leaf respectively and then chooses the scenario which produces the higher Gain. A major drawback
of XGBoost is that it is sensitive to the ountliers, since every classifier is forced to fix the errors in
the predecessor learners before proceeding to the next step.

3.2.5 K-nearest Neighbour

The K-nearest Neighbour (KNN) algorithm is a supervised classifier to find the nearest neighbour
for new observations. The observation z is mapped to k observations in a training set that are
closest in input features to x from Y. The prediction for = then simply becomes the average of
these k observations. .

Y(z) = E Z v (3.2.15)

#iENk(zx)

where Np denotes the k closest neighbours of = with respect to the Euclidean distance in the
p-dimensional space. For instance, if k = 3, when the loan z; from the test set is mapped to the
k closest loans in the training set, the corresponding labels of the three closets loans are (1,0,0),
then the prediction of x; takes the average of the three labels which is 2. The most important
hyperparameter of KNN is the number of neighbours k. It can be chosen by grid search which
optimally discriminates between the classes.
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Figure 3.6 is a visual representation of the example.

Feature 1 . Default = 0

O Default = 1
@ . K=3 jﬁ( Loan X;

Feature 2

Figure 3.6: K-nearest Neighbour with K = 3

A major characteristic that differentiates KNN from other supervised learning algorithms is that
it is a lazy learner which performs instance-based learning, meaning there is no training period.
It does not derive any discriminative function from the training data. The algorithm stores the
training dataset and learns from it only at the time of making predictions for the test data. Owe
to this characteristic, new data can be added seamlessly, which will not impact the algorithm accu-
racy. Another advantage is that it is easy to implement, because it only requires two parameters,
the number of neighbours k and the distance function, such as Euclidean or Manhattan, etc.

However, KNN has several disadvantages that need to be noted. First, KNN does not work well
with large datasets and high dimensions. When the sample number is large, the cost of calculating
the distance between the new point and the existing point is expensive. Similarly, if the dimension is
high, it makes the algorithm diflicult to calculate the distance in each dimension. Also, since KNN
makes predictions based on the absolute value of distance, feature scaling becomes an essential
step in data preprocessing. Finally, KNN is sensitive to noise in the dataset, so it requires the
outliers to be removed and missing values to be imputed. [19]

3.2.6 Support Vector Machines

Support Vector Machines (SVM) classify samples by finding a hyperplane in the feature space to
divide the samples that maximizes the minimum interval between two different samples. In the
case of two classes, there are many possible hyperplanes that can be chosen. The objective is to
find a hyperplane that has the maximum margin, which is the maximum distance between data
points of both classes. The reason for maximizing the margin is that it enhances the confidence
level for classifying future data. A common loss function used to maximize the margin is hinge
loss, defined as

0, if y- fz) >1
clz,y, flz)) = {1 e f@) ;1::: fla) 2 (3.2.16)
cla,y f(2) = (1 —y - fla)* (3.2.17)

The loss is 0 if the sign of the predicted value equals the actual value; otherwise, the loss is given by
the difference between 1 and the dot product of predicted and true values. Often, a regularization
parameter is added to the objective function to reduce overfitting, written as

n

e(x,y, f(x)) = min Mlwl? + 7 (1 = ya (i, w))* (3.2.18)

i=1

To find the optimal weights w, one can take the partial derivative with respect to w and update
w by gradient descent.

The original maximum-margin hyperplane algorithm constructs a linear classifier, but later the
ability to be a non-linear classifier makes SVM a more powerful tool. The resulting algorithm is
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similar but simply replaces the dot product of predicted and true values with a non-linear kernel
function. [20] The kernel function transforms the original non-linear feature space into a linear
feature space, so that the original SVM algorithm can be applied. Let the transformed data points
be ¢ (x;) and a kernel function k satisfy

k(xi,x) = p(xi) o (x5). (3.2.19)

The classification vector w in the transformed space satisfies
w:Zmzﬁw(fo (3.2.20)

where the ¢; are obtained by solving the optimization problem

maximize f (e ... Zl"x——ZZ%f‘x o () - (x;)) yjc;

e (3.2.21)

n mn

—Z(‘I — —ZZ%P:}“ Xiy xJ Yicj

i=1 j=1

subject to 3.7 ey = 0, and 0 < ¢; < T for all . The coeflicients ¢; can be solved using
quadratic programming 'md some index i can be found such that 0 < ¢; < (2nA) 7!, so that o (x;)

lies on the boundary of the margin in the transformed space, and then solve

Z"’J‘)‘JQ X))@ (x) | —w

b=w"p(xi)—yi
(3.2.22)

D ek (xpx) | — v

Finally,
z 1+ sgn (w'p(z) — b) = sgn ({Z ciyik (Xi, 2) ] — b) . (3.2.23)

Figure 3.7 [21] shows the hyperplane in 2D and 3D feature spaces.

A hyperplanein R?isaline A hyperplane in R3 is a plane

+ R2 means 2 features Maximize the distance
+  R3¥means 3 features
+ High-dimensional feature space is hard

to visualize, but the idea is the same.

Figure 3.7: Support Vector Machine in two and three dimensional spaces
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The advantages of SVM include the good performance for data with a clear margin of separation,
the ability of scaling high dimensional data, good generalization ability with lower overfitting risk,
and the capability of handling non-linear data with different kernel functions. On the other hand, a
good choice of kernel function is challenging which depends on the data attributes.[22] The training
time is quite long for large datasets. Moreover, the final model cannot be visualized which makes it
difficult to understand and interpret the results and calibrate the model. This is a major drawback
for financial data, since the regulators require model interpretations for modelling problems.

3.2.7 Artificial Neural Networks

An Artificial Neural Network (ANN) is a series of algorithms that endeavours to recognize un-
derlying relationships in a set of data through a process that mimics the way the human brain
operates. [23] It has an input layer, one or multiple hidden layers, and an output layer. The nodes
are connected between each layer by certain weights and thresholds. If the output value of a node
exceeds the threshold, then it is activated so that its value can be passed to the next layer.

The leftmost layer is the input layer with a set of neurons z;, z;, ...z, which are n input features.
In the hidden layer, every neuron transforms the values of the layer to the left by a weighted lin-
ear summation shown in Equation 3.2.7 and subsequently inputted into an activation function o.
Lastly, the output receives the values and transforms them into a final prediction. The weights of
the network are updated in an iterative manner by backpropagation and a pre-defined cost function.

To give a more formal definition, let I (the dimension of input features), O (the dimension of
output values), r (the number of layers besides the input layer in the network) € M. A function
I: R’ = R is a feedforward neural network (FNN) with r — 1 € {0,1,...} hidden layers, where
there are d; € I units in the i-th hidden layer for any i = 1,...,r — 1, and activation functions
o RE S RY =1, r, where d, := O, if

f=0,0Z,0---0a10Z, (3.2.24)

where Z; : RY-1 = R% for any i = 1,...,7, is an affine function
Zi(x):=Wz+b., zeR™, (3.2.25)
parameterised by weight matrix W' = [H:A] i e R : and bias vector b’ =

_____ dike=1,...,d;_,
(bi.... by ) € R% with dy := 1.

A single layer neural network is shown in Figure 5.10 [24].
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A simple neural network

input hidden output
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Figure 3.8: Artificial neural networks

In this study, since it is a binary classification problem, cross-entropy introduced in Section 3.1 is
chosen to be the loss function and the sigmoid function shown in Figure 3.9 [25] is selected to be
the activation function for the output layer as it can squeeze the value between 0 and 1 which is
a proper interval [or probability. The rectified linear Unit (ReLU) function shown in Figure 3.9
[25] is chosen to be the activation function in the hidden layer, because it performs better gradi-
ent propagation as there are fewer vanishing gradient problems compared to sigmoidal activation
functions that saturate in both directions. Also, it is efficient in computation since it only requires
comparison, addition and multiplication.

w0 sigmoid 0 RelLU
| R(z) =max(0, z)
B}
6}
4}
-10 k. 1] 3 1

Figure 3.9: Activation Functions

ANNs have gained popularity over the decades due to various advantages. First, they can learn
and model non-linear and complex relationships, that are difficult to discover at the first sight.
Second, ANNs are good at generalization that after suflicient training, they can predict unseen
data well. Third, they do not impose any restrictions on the put variables, unlike other statistical
techniques. Many studies have shown that ANNs can better model heteroskedasticity, that is data
with high volatility and non-constant variance, given its ability to learn hidden relationships in the
data without imposing any fixed relationships in the data. [26]
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Several disadvantages still exist. The biggest concern of ANN in the financial industry is the
interpretability of the model. Since the procedure is done through "a black box”, it is difficult to
explain how the result is achieved and there is no way to visualize the model. Besides, the model
requires a large amount datasets to train in order to well generalize the problem. There is no
definite rule for choosing hyperparameters, so it requires significant trials and error.

3.3 Feature Transformation and Selection Methods

3.3.1 Weight of Evidence

Weight of Evidence (WoL) is a typical feature transformation method combined with logistic
regression to reduce overfitting. WoE is used to assess the relative risk of the attributes within a
feature, telling the predictive power of a single feature concerning its independent feature. The
formula of WoE for each attribute in a feature can be written as
2
WoEattribute = In Fuon-evets
-H: vents

(3.3.1)

—n Nattribute non-events /i\‘ltuta] non-events

Nattribute events /‘J'\"'Lut;\] events
where
® Phon-events 18 the percentage of non-event observations that exhibit the attribute
® Piyvents is the percentage of event observations that exhibit the attribute
¢ N.ottribute non-events 18 the mimber of non-event observations that exhibit the attribute
® Nigtal non-events 18 the total number of non-event observations
® Nattribute ovents 18 the number of event observations that exhibit the attribute
® Niotal events 18 the total number of event observations

A higher WoE indicates the attribute is more useful to separate events and non-events. Wok
can transform both continuous and categorical variables. For continmous variables, we create bins
based on certain intervals and WoE is calculated for each bin. A typical rule is that each bin should
have at least 5% of the observations. For categorical variables, WoE can be directly calculated for
each category. Then the original values in the dataset can be replaced by the values of WoE. WoE
transformation is widely applied due to several benefits. First, it makes it possible to capture non-
linear relationships between the predictors and the dependent variable. It also explicitly handles
the outliers and missing values by either grouping them in an existing bin or creating a new bin.
[3] Moreover, it handles categorical variables without the need of creating dummy variables.

3.3.2 Information Value

Information Value (IV), as one of the most useful techniques for feature selection in a predictive
model, is calculated based on Wolt:

m

IV = (Paon-cvents — Pevents) X WoE;
f:l ) , (3.3.2)
_ N attribute non-events N, tribute events ) % WokE.

J'\'t.ur.;\] non-eve J'\"l,ut;\] events

i=1

where WokE; is the WoE for the it" attribute in the feature and m is the total number of attributes
in the feature. According to Siddiqi (2006) [27] , the IV Statistic in credit scoring follows the rule
of thumb:
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Varaible

IV . . Not
Predictiveness ores

< than 0.02 Not }mr‘rful for Unable to separate defanlt and no
prediction default based on the feature

0.02-0.1 Weak predictive power the feature has a weak relationship to

the defanlt/no defanlt odds ratio
the feature has a medium strength

Medimmn predictive

0.1-0.3 ower relationship to the default/no default
powe odds ratio
0.3-0.5 Strong predictive the feature has a strong relationship to
Bt power the defaunlt/no default odds ratio
Suspicious predictive the feature has a suspicions
> 0.5 Susp S precact relationship to the default/no defanlt

ower .
p odds ratio and needs to double-check

Table 3.1: IV Metric Chart

The advantages of IV are that it is easy to be calculated and interpreted. Meanwhile, it is important
to note that IV increases with the number of bins or categories, so a high IV associated with a
large number of bins requires a second check. Besides, IV works well for logistic regression as
conditional log odds are highly related to the calculation of Woll, but it is not necessary for
other classification models such as random forest and SVM, because these algorithms have a good
capability of detecting non-linear relationship.

3.3.3 Stepwise Regression

Stepwise regression is the step-by-step iterative construction of a regression model that involves
the selection of independent variables to be used in a final model. It involves adding or removing
potential explanatory variables in succession and testing for statistical significance after each it-
cration. (28] The underlying mechanism is that through a series of tests (e.g. F-tests, t-tests) to
find a set of independent variables that are statistically significant to predict the dependent variable.

There are three main approaches: [29]

1. Forward selection begins with no explanatory variables, tests each variable, and then adds
rariables one by one, based on the statistical significance, until there are no remaining sta-
tistically significant variables.

2. Backward elimination starts with all possible explanatory variables and discards them one at
atime. Then it tests to see if the removed variable is statistically significant. The elimination
stops when each variable remaining in the equation is statistically significant. One challenge
is that it does not work when the number of candidate variables exceeds the number of
observations.

3. Bidirectional stepwise procedure is a combination of forward selection and backward elim-
ination. The procedure starts with no variables and adds variables using a pre-specified
criterion. Then at every step, the procedure also considers the statistical consequences of
dropping variables that were previously included. So, a variable might be added in Step 2,
dropped in Step 5, and added again in Step 9.

Stepwise regression is eflicient to choose a relatively small number of explanatory variables from
a vast array of possibilities. However, a limitation of the approach pointed out by many studies
is that it may create a false confidence interval in the final model when standard statistical tests
assume a single test of a pre-specified model and are not appropriate when a sequence of steps is
used to choose the explanatory variables. [29]

3.3.4 Random Forest with Recursive Feature Elimination

Aside from being a classifier, random forest is also widely applied as a feature selection tool. Each
tree of the random forest performs random extraction of ohservations and features and then cal-
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culates the importance of a feature according to its ability to increase the pureness of the leaves.
The higher the increment in leaf purity, the higher the importance of the feature. The final output
is the average of all the trees in the forest. The pureness is measured through either the Gini
impurity or the information gain/entropy introduced in Section 3.2.2.

The feature importance is based on the impurity reduction achieved by splitting on the features,
that is how much this feature contributes to decrease the Gini impurity in a classification problem.
For a given binary node m with left and right child nodes, the impurity reduction called Gain,, is
calculated as

Gain ,, = impurity ,, — ( weight ;. - impurity . + weight vight  IMPUITEY e ) (3.3.3)

m

The weights is defined as the share of the parents examples in a child node, formulated as
u"e?j.th]{:fl = JI\r]{.'ft. )/Jl\rm (334)

where NV is the number of examples in a node or leaf. To derive the total impurity reduction of a
given feature f in the tree {, Gain,, needs to be smmmed across all nodes m M_}!J_. which perform
a split on that feature f and divide it by the total impurity reduction number of all nodes of that
tree:

3 oy Gaing,

Importance!}) = oo - (3.3.5)
' Zf Znu’:ﬂl[?} Guain,

With this normalization, the feature importances can sum up to 1. Finally, the total importance
of a feature f is calculated across all trees t in the random forest with a total number of trees T :

T
! (t)
Importance ; = T Z Importance K

t=1

Once the feature importance is obtained, feature selection can be performed with a procedure called
Recursive Feature Elimination. The concept behind it is to first fit the model with all features
except the least relevant feature and calculate the performance metric. Then the model is fitted
again after removing the second least important feature and the performance metric is calculated
again. The procedure is repeated until there is no feature left. The set of features that maximizes
the performance metric is the set of features to be selected. The entire procedure needs to work
with the same values for the hyperparameters.

Selecting features by nsing tree-derived feature importance is straightforward, fast and generally
accurate way for machine learning. A drawback of this approach is rooted in multicollinearity. If
there are highly correlated predictors in a training set that are useful for predicting the outcome,
then which predictor is chosen for partitioning the samples is essentially a random selection. When
there is a set of highly redundant and useful predictors in the splits across the ensemble of trees, the
predictive performance of the ensemble of trees is unaffected by highly correlated, useful features.
However, the redundancy of the features dilutes the importance scores. [30]

3.4 Performance Measures

3.4.1 Mean Squared Logarithmic Error

Mean squared logarithmic error (MSLE) can be interpreted as a measure of the ratio between
the true and predicted values. It is a variation of Mean Squared Error (MSE). The loss is the
mean over the seen data of the squared differences between the log-transformed true and predicted
values, written as:
N
Lly,5) = LZ(log(yi +1) —log (5 + 1))’ (3.4.1)
N=
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where 3 is the predicted value. This loss can be interpreted as a measure of the ratio between the
true and predicted values, since:

log (y;i +1) —log (% +1) = log (:j%) (3.4.2)

Thereason ' 1 7 is added to both y and y is for mathematical convenience since log(0) is not defined
but both v or ¢ can be 0.

One characteristic of MSLE is its robustness to the effect of the outliers. When using MSE, the
presence of outliers can explode the error term to a large magnitude, but in the case of MSLE, the
outliers are drastically scaled down by the logarithmic term. Another characteristic inherent in
MSLE is the biased penalty. It incurs a larger penalty for the underestimation of the actual variable
than the overestimation. This is especially useful for business cases where the underestimation of
the target variable is not acceptable, but overestimation can be tolerated. In default flag prediction,
it is more important to detect the presence of defanlt. If the default probability is underestimated,
then the potential default cannot be captured, which can lead to a huge loss.

3.4.2 Averaged Log Loss

Log-loss, sometimes called cross-entropy, indicates how close the prediction probability is to the
corresponding actual/true value which is 0 or 1 in case of binary classification. The more the
predicted probability diverges from the actual value, the higher the log-loss value is. To calculate
the averaged log loss, it simply takes the average of the log loss of individual samples shown in
Equation 3.1.3, formmlated as

N
L=—% yiln(p:) + (1 — ) In(1 — pi) (3.4.3)

1
i=1

where y; is the actual target, p; is the predicted probability, N is the number of samples. The
benefit of using averaged log loss is that it penalizes more when the prediction deviates more from
the actual target.

Figure 3.10: Averaged Log Loss

In the graph [31] , the y-axis represents loss and the x-axis represents predicted probability. The red
line shows the loss behaviour for the class with label 1. When the predicted probability approaches
1, the loss approaches 0; on the other hand, when the predicted probability approaches 0, the loss
approaches infinity. Similarly, the black line shows the behaviour for the class with the label 0. If
the loss is small when the prediction is close to 0 and becomes larger and larger when the prediction
approaches 1.
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3.4.3 Accuracy

Accuracy is the most popular metric for classification problems to evaluate the model performance.

It is formulated as
Number of Correct Predictions

Total Number of Samples

Accuracy = (3.4.4)
A higher accuracy is achieved when the model makes more correct predictions. The accuracy
ranges from 0 to 1, which corresponds to zero correct prediction and perfect predictions. Besides,
the accuracy is often expressed with percentages, multiplying the accuracy with 100.

Despite its popularity, there are some major drawbacks. First, accuracy is not capable of utilizing
the output of probability but only based on the class label. For example, two models can achieve
the same accuracy, whereas one has low confidence and the other has high confidence. In this case,
accuracy cannot differentiate which model has a better performance. Moreover, when encountering
imbalanced datasets, it is easy to achieve high accuracy by simply making all predictions to be the
majority class. However, the classifier is in fact meaningless and there is no way to tell by only
looking at the accuracy.

3.4.4 Brier Score

The Brier Score is a strictly proper score function that measures the accuracy of probabilistic
predictions. For unidimensional predictions, it is strictly equivalent to the mean squared error as
applied to predicted probabilities. The formula according to Brier (1950) is that

n

. 1 ; -
Brier Score = ;Z[p, —y)? (3.4.5)
T
where p; is the estimated probability, y; is the actual target, and n is the number of observations
in the dataset.

The benefit of the Brier Score is that the concept is easy to understand and implement. It provides a
way to assess the predictive performance of different models where a lower score indicates a superior
performance of the model when the other metrics such as accuracy are the same. [17] For example,
for a non-default sample with the true label to be 0, when the threshold for default is at 0.5, a
model predicts the PD to be 0.4 whereas another model predicts the PD to be 0.2. Although both
models make correct predictions, the latter model performs better in terms of Brier Score, because
the predicted PD, 0.2, is closer to 0, compared to 0.4.

3.4.5 Confusion Matrix

Confusion matrix is used to measure the performance of the classification model, becanse checking
the model performance by accuracy is misleading when having imbalanced data. The matrix is a
table with four components. (32

29




Predicted Class

_g True Positive False Negative
E (TP) (FN)
a
8
o rYrrrr
e
] False Positive True Negative
} E ] (FP) (TN)

Figure 3.11: Confusion Matrix

where

Predicted Values: the returned values predicted by the model
Actual Values: the true label provided by the dataset

True Positive (TP): the values that are actually positive and predicted as positive. In this
study, it is the default samples predicted as defanlt.

False Positive (FP): the values that are actually negative and predicted as positive. In this
study, it is the no default samples predicted as default.

False Negative (FN): the values that are actually positive but predicted as negative. In this
study, it is the default samples predicted as no defanlt.

True Negative (TN): the values that are actually negative and predicted as negative. In this
study, it is the no default samples predicted as no default.

The confusion matrix can also be represented in the rate form for better interpretability:

1.

True Positive Rate (TPR)/ Sensitivity/Recall

TP
TP+ FN
This indicates what proportion of the positive class got correctly classified. In this study,
it indicates the percentage of default samples that are correctly classified. A higher TPR is
desired.

Sensitivity =

. False Negative Rate (FNR)

FN
TP+FN
This calculates what proportion of the positive class got incorrectly classified by the classifier.
A lower FNR is desired.

FNR = 1 — Sensitivity

. True Negative Rate ([TNR)/ Specificity

TN
TN+ FP
Specificity indicates what proportion of the negative class got correctly classified. In this
study, it indicates the percentage of no-defanlt samples that are correctly classified. A higher

TNR is desired.

Speci ficity =

30




4. False Positive Rate (FPR)

FPR = _r 1 — Speci ficily
= SN FP - Speci ficity
This calculates what proportion of the negative class got incorrectly classified by the classifier.
A lower FPR is desired.

3.4.6 Area under Receiver Operating Characteristics Curve

The Receiver Operator Characteristic (ROC) curve is an evaluation metric for binary classification
problems. It is a probability curve that plots the True Positive Rate (TPR) against the False
Positive Rate (FPR) at varions threshold values. Here, TPR and FPR come from the concept of
confusion matrix described in the previous Section 3.4.5

Perfect
Oc{lassifier ROC curve

True positive rate

. 1.0
False positive rate

Figure 3.12: ROC Curve

Figure 3.12 [33] displays several ROC curves. The blue curve represents the best classifier followed
by the green and orange curves. The red dashed line is a random classifier, meaning there is a
fitty-to-fifty chance of predicting 0 and 1. Thus, only curves above the dashed line have an ade-
quate classifying ability.

In general, an adequate model should output high sensitivity and specificity with low FNR and
FPR. Another important concept when discussing AUC is the probability threshold. A standard
threshold is 0.5, meaning if the probability is greater than 0.5, then the sample is classified as
positive and classified as negative otherwise. But one can also set the threshold manually, because
different thresholds may change the sensitivity and specificity of the model. The threshold giving
the best result is chosen to be the optimal threshold.

The Area Under the Curve (AUC) is the measure of the ability of a classifier to distinguish
between classes and is used as a summary of the ROC curve. The higher the AUC, the better the
performance of the model at distingnishing between the positive and negative classes. In a ROC
curve, a higher X-axis value indicates a higher number of False positives than True negatives, while
a higher Y-axis value indicates a higher number of True positives than False negatives. So, the
choice of the threshold depends on the ability to balance False positives and False negatives. The
table summarizes the interpretation of AUC. [34]
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Model Performance | Explanation

make completely wrong predictions

0 Poor which predict all Negatives as
Positives and all Positives as Negatives
make weak predictions which predict
most samples incorrectly and when
AUC equals to 0.5, it makes random
guess

there is a high chance that the
classifier will be able to distinguish the
positive class values from the negative
class values

perfectly distingnish between all the

1 Perfect Positive and the Negative class points
correctly

0-0.5 Inadequate

0.5 - 1.0 Adequate

Table 3.2: AUC Metric Chart

ROC curve can be visualized to see the tradeofl between sensitivity and specificity for all possi-
ble thresholds rather than simply using the defanlt setting. Also, AUC is extremely useful for
imbalanced datasets. [t overcomes the weakness of accuracy by balancing the class sizes when
computing the score.




Chapter 4

Data Description

4.1 Data Source and Anonymity

The dataset has been collected from a financial services firm. It was provided by the firm by
extracting the information from the firm’s data warehouse. There are 25530 observations, which
consist of various information for home loans for six months from 2018 to 2019. For confidential
reasons, the financial services firm shall remain nameless throughout the thesis and will be referred
to as "the firm” henceforth.

4.2 Candidate Variables

There are 51 candidate variables which are previously identified through studies of the quantitative
solution team of the firm. The variables are related to risk analytics that the firm has deemed
potentially important for the loan evaluations. The full list of variables is summarized in the table
that can be found in Appendix A.1. Among all these variables, 24 variables are removed as they
have either no impact on PD modelling or are not applicable to PD modelling, listed in Appendix

Al

4.3 Target

The goal of this study is to predict the defanlt flag of 2019. For each loan, there are five months of
data available during 2019, from August to December. The target is determined by choosing the
maximum default flag during these five months. In other words, if the loan defaults during any of
these months, then the default flag is set to 1; otherwise, the default flag is set to (.

4.4 Data Preprocessing

To predict the defanlt flag of 2019, only performing loans of 2018 are considered, so the loans with
the defaunlt flags of 2018 which equal " Yes” are dropped. Then the 2018 December data is inner
joined with 2019 December data based on the unigue Asset ID. With the merged data frame, three
new variables are created, called "Month in Book”, "Maturity”, and "Month Maturity Change”,
which represent the difference between "Effective Date” and "Origination Date”, the difference
between ”Contractual Maturity” and "Origination Date”, and the difference between ”Effective
Date” and "Latest Maturity Changed Date” respectively. Then, the origination value is adjusted
by monthly compounding with inflation rates of the UK from 1997 to 2018 to calculate the present
alue as of December 2018. Finally, 24 variables that are not used are dropped, left with 30 used
ariables. The list of 30 used variables is available in Appendix A.1.

Among the variables, there is a mixture of contimious variables and categorical variables. In order
to have numerical values to be the input of the models, all the variables undergo a weight of
evidence transformation introduced in Section 3.3.1. The table summarizes the statistics of the
dataset:




| Number of Samples | Number of No Default | Number of Default | Default Rate |
| 23413 | 22542 | 871 | 3.72% |

Table 4.1: The statistics of dataset

Figure 4.1 demonstrates the entire process of data preprocessing which also includes the feature
selection that will be introdueced in the following section.

2018 Dataset 2019 Dataset
54 Variables | "=='C | Laber

Default Flag

H Drop 24 variables

Dataset
30 Variables
Label: Default Flag

ﬂ Compute IV

Dataset
8 Variables (IV = 0.10)
Label: Default Flag

Dataset
5 Variables
Label: Default Flag

Figure 4.1: Data preprocessing flowchart

« Stepwise Regression
* Recursive Elimination
with RF
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Chapter 5

Results and Discussion

5.1 Feature Selection

In order to avoid overfitting and save computational cost, it is important to only incorporate nec-
essary features in the model. The feature selection process consists of two parts. First, all variables
are included in a univariate analysis to find variables with high discriminatory power, using the
Information Value (IV) introduced in Section 3.3.2 as the criteria. This provides a quick way to
filter our variables that do not have explanatory power. The cutoff of IV is set to be 0.10, meaning
a variable with an IV lower than 0.10 will not be included for further analysis, because it suggests
this variable has weak or no predictive power explained in Section 3.3.2. The results are shown in
the plots below. After the first round selection, it is left with 8 variables.

The variables are sorted based on IV:

Index Variable \'

1 PaymentMethod 0.927379
2  CurrentPoollD 0.555402
3 PD_Segment 0.504481
4 ProductGrade 0.473292
5  AssetSegment 0.456299
[:] month_in_book 0.371195|
7  PropertyType 0.254173
8 CSOFlag 0.182347|
9  AMCGroupEntity 0.0797
10  PropertyRegion 0.0337
11  LGD_Segment 0.0273
12  Bankruptcy_Flag 0.0215
13  PropertyType2 0.0204
14 EIR 0.0194
15 Capitalisation 0.0143
16  Collateral_Value_AccountiD_Level 0.0135
17 Collateral_Value 0.0124
18 DWPPayer 0.0114
19 PropertyRegion2 0.0092
20 BalanceAtTerm 0.0071
21 AdvanceAmount 0.0065
22 maturity 0.0058
23  Originalvaluation 0.0045
24  TemplOSwitch 0.0041
25  Outstanding_Balance 0.0019
26 IndividualVoluntaryArrangementFlay  0.0019
27  Repayment_Type 0.0016
28 | TermExtension 0.0001
29 Possession 0.0000
30 month_maturity_change 0.0000,

Figure 5.1: Sorted variables based on Information Value

The second part is to choose the variables that can exert significant impacts on model results. By
applying Stepwise Regression, it can be seen from Figure 5.2, the optimal result is obtained when
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five variables are incorporated in the model, as the AUC score reaches the highest point. The best
combination is "CSO Flag’, 'PD Segment’, 'Payment Method’, 'Current Pool 1D, and "Month in
Book’. Meanwhile, the selection methods also indicate that the rest variables do not improve the
model performance on the prediction results.

Sequential Forward Selection with 95% CI

o082

080

o078

076

Performance

074

072

o070 T T T T
1 2 3 4 5 6 7 B

Number of Features

Figure 5.2: Feature Importance by Stepwise Regression

The selection method Recursive Feature Elimination with Random Forest is also performed based
on the calculation deseribed in Section 3.3.4. Figure 5.3 shows the importance value of all the
features. Then, the features need to be eliminated recursively. First, the least important feature,
'Property Type’, is removed and we calculate the AUC score followed by fitting the model. Then,
the model is fitted and the AUC score is calculated after removing 'Product Grade' which is the
second least important feature. The procedure is repeated until we finish evaluating the model that
only incorporates 'Payment Method’. By comparing the AUC score, we find that the score reaches
the highest when the top five variables are incorporated which are the identical set of variables
obtained from Stepwise Regression. Thus, these five variables are used for the final analysis.

The correlations among the variables are also computed, which can be found in Appendix A.2,
to ensure there is no multicollinearity. Multicollinearity is the occurrence of high intercorrelations
among two or more independent variables in a multiple regression model. It can result in wider
confidence intervals with larger standard errors which lower the statistical significance of regression
coefficients and thus the regression model becomes less reliable.
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Feature Importance
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PD_Segment
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ProductGrade
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Importance Values

Figure 5.3: Feature Importance by Random Forest

The bar charts display the Default Rate versus these five variables:

Default Rate v.s. Payment Method Default Rate v.s. Pool ID
3.00% 0.70%
- A474% 0.60%
& 0.50%
£ 200 z
2 2 0.0
£ 150% 1.2600% =
@ &
5 1.00% g
0.50% 0.10%
0.0085% 0.0043% I
0.00% 0.00% - -
Direct Debit Standing Order cheques/cash paying in book El E2 E3 E4 ES5 H1 H2 H3 H4 11 J3 P1 P2 P4 PS5
Payment Method Pool ID
Figure 5.4: Defanlt Rate v.s Payment Method Figure 5.5: Defanlt Rate v.s Pool ID
Default Rate v.s. PD Segment
Default Rate v.s. €SO Flag a.00%
3.5408%
3.50% 3.1388% 3.50%
3.00% 3.00%
o .
g 2505 ..% 2.50%
o = 200%
= E
E g 1.50%
= 1.00%
O 1.00%
1o 0.5937%
0.50% - 0.0000%
[eRe A "
Me Yes i R
et
€50 Flag st

PD Segment

Figure 5.6: Defanlt Rate v.s CSO Flag
Figure 5.7: Default Rate v.s PD Segment
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Figure 5.8: Default Rate v.s Month in Book

From the bar charts of variables, the relationship between the variable attributes and the default
rate can be identified. For different payment methods, cheque and cash have the highest default
rate which is much riskier compared to the direct debit, whereas for the rest two payments, it is
difficult to determine the risk level as there are not enough observations. From different pool IDs,
it can be found the loans held by Entity E and J have relatively high default rates. Also, the
Credit Services Organizations (CSO) loans are much less likely to be defaulted compared with the
rest, as CSOs are licensed companies that assist consumers in obtaining loans from unaffiliated
third-party lenders. Moreover, the high risk segments also have higher default rates as expected.
Finally, the chart suggests that the new loans issued within 131 months have the least probability
to go defanlted.

5.2 Model Evaluation

5.2.1 Data Splitting and Handling Imbalance

In order to evaluate the model, the data arve split into train and test sets with a 7:3 ratio. The
statisties are summarized in the table:

| Data set | Number of Samples | Number of No Default | Number of Default | Default Rate |

Training set 16389 15797 592 3.61%
Test set 7024 6745 279 3.97%

Table 5.1: The statistics of dataset

From Table 5.1, it can be found the dataset is extremely imbalanced with much more no default
samples. In order to handle the imbalance, the cost-sensitive learning method is adopted as
introduced in Section 2.4. A higher weight is imposed on the training cost or loss for the defaunlt
samples based on the default and no default ratio, meaning if a defanlt sample is misclassified as
a no default sample, the penalty is larger. The weight is the reversed ratio of the two classes. For
example, in the training set, the ratio of defanlt and no defanlt is 3.61:100. Then, the weight gives
to the default class when computing the loss function is 100, whereas the weight for the no default
class is 3.61.

5.2.2 Hyperparameter Tuning

An important question in machine learning models is hyperparameter tuning, because different
hyperparameters can produce significant differences in results. Since there are a large number of
combinations of hyperparameters for each model, it is computationally expensive to implement
mamual trials. Thus, a grid search optimizer is conducted to select the optimal hyperparameters.
The idea is to perform an exhaustive search on a set of different values for the hyperparameters,
to find which set of hyperparameter values can optimize the objective function of the model.
The criterion for determining the optimal value is AUC score, that is to check which candidate
hyperparameter achieves the highest score.
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Model Hyperparameters Search Space Optimal Value
Minimum samples in a leaf 2
Decision Tree Minimum samples to split 3
Maximum depth 2
Maximum number of trees 200
Random Forest Minimum samples in a leaf 2
Minimum samples to split 3
Maximum depth 2
Maximum number of trees 200
XCBoost Maximum depth ?."
eta 0.5
gamma 0
regularization term 1
KNN Number of neighbors - 26
kernel linear’, ‘poly’, ‘rbf’, ‘sigmoid’ ‘thi”
SVM gamma "scale’, Tauto’ auto’
regularization term [0, 1.5] 1
Number of layers 1.2.3 2
ANN Number of neurons (1st layer) [2_. 1(]] i
Number of neurons (2nd layer) [2, 10] 4
Number of Epochs [10, 30] 20
Batch size 10, 30, 50, 100 30

Table 5.2: Overview of Search Space for Hyperparameter Tuning

Figure 5.9 demonstrates the entire process of default prediction.
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Figure 5.9: Default prediction flowchart

5.2.3 Model Output

The logistic regression model output is summarized in Table 5.2.3

| Variable | Coef | Mean | Std | 97.5% CI | p-Value |
Intercept -0.0108 | -0.0243 | 0.0199 | (-0.0308,0.0091) 0.0281
PaymentMethod | -0.8651 | -0.8638 | 0.0373 | (-0.9024, -0.8277) 1.2E-05
CurrentPoolID | -0.6721 | -0.5659 | 0.1644 | (-0.8366,-0.5076) | 2.2E-05
CSOFlag -0.5334 | -0.5753 | 0.0785 | (-0.6120.-0.4548) 5.9E-05
PD_Segment -0.0813 | -0.1267 | 0.0970 | (-0.1784,0.0156) 0.0081
month_in_book | -0.1309 | -0.1774 | 0.0858 (-0.2167,0.0451) 0.0335

Table 5.3: The outputs of logistic regression model
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The values are obtained by running logistic regression model ten times, where
e Coef: the coeflicient of the variable
e Mean: the coefficient value averaged over all the results by running ten times

Std: the standard deviations of the results

e 97.5% CI: 97.5% confidence interval

e p-Value: the probability of obtaining the observed results, assuming that the null hypothesis
is true, where the null hypothesis is 0 for all variables

Here, the p-values are all below 0.05 which is typically the threshold of significance, so we can
conclude that the null hypotheses of the variables can be rejected.

To train the neural network, the training set is split into a ratio of 8:2 with 80% as the training set
and 20% as the validation set. Figure 5.10 demonstrates the metric and loss during the training
process.

Model AUC Model Loss
0.80 1 0759 _A —— Training Loss
! —— Validation Loss
0.78 A
0.70
0.76
S 2 0.65
20 ER
077
0.60 -
0.70
—— Training AUC
eal ! Validation AUC 0559
00 25 50 75 100 125 150 175 00 25 50 75 100 125 150 175
Epoch Epoch

Figure 5.10: The values of AUC and loss during the training process

It can be seen that the AUC score for the training set keeps increasing with the increase number
of epochs, whereas for the validation set, the AUC score increases at the beginning, reaching the
highest at the eighth epoch, and then decreases afterwards. It suggests that overfitting can happen
as the training progresses and carly stopping is a strategy to prevent this.

For the rest machine learning algorithms, since they are non-parametric, there are no coeflicients or
weights to be trained, we will evaluate these models based on the metrics in the following section.
5.2.4 Metric Evaluation

All the machine learning algorithms are written based on scikit-learn, the machine learning library
for the Python programming language.[35] The table summarizes the model performance with the
selected variables based on the metrics introduced in Section 3.4
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Model MSLE | Avg LL | TPR | FPR | AUC | Brier Score | Time (s) |

Logistic Regression | (.5559 0.1153 0.7011 | 0.2102 | 0.7641 0.1765 0.3150
Decision Tree 0.5629 0.1221 0.6882 | 0.2176 | 0.7585 0.1887 0.0834
Random Forest 0.5274 0.1022 0.7018 | 0.2004 | 0.7737 0.1654 2.1808
XGBoost 0.5621 0.1298 0.5806 | 0.2335 | 0.6990 0.1938 3.3348
KNN 0.5893 0.1347 0.5663 | 0.1764 | 0.7059 0.1902 1.2513

SVM 0.5025 0.0901 0.7155 | 0.2038 | 0.7755 0.1553 613.4508

ANN 0.4578 0.0712 0.7258 | 0.1885 | 0.7863 0.1257 209574

Table 5.4: The metrics for different models with selected variables

The table summarizes the model performance with the selected variables based on the metrics
introduced in Section 3.4

| Model | MSLE | Avg LL | TPR | FPR | AUC | Brier Score | Time (s) |
Logistic Regression | 0.5535 | 0.1102 [ 0.7001 [ 0.2012 | 0.7732 0.1780 1.2590
Decision Tree 0.5611 [ 0.1211 [ 0.6902 | 0.2136 | 0.7685 0.1302 0.1198
Random Forest 0.5221 [ 0.1009 [ 0.7118 [ 0.2001 | 0.7782 0.1658 3.5746
XGBuoost 0.5608 | 0.1254 | 0.5906 | 0.2275 | 0.6301 0.2012 5.4599
KNN 0.5811 [ 0.1315 [ 0.5763 | 0.1684 | 0.6962 0.1954 2.2775
SVM 0.5022 [ 0.0876 [ 0.7167 [ D.2018 | 0.7801 0.1523 700.0089
ANN 0.4513 [ 0.0703 [ 0.7306 | 0.1817 | 0.7923 0.1203 28.0257

Table 5.5: The metrics for different models with all variables

From both tables, it can be found ANN achieves the highest AUC score, followed by SVM, RF, LR,
DT, KNN, and XGBoost. This performance ranking is also reflected in all other metrics except
Time. The best two models however take longer time, especially SVM, whereas the time taken by
ANN is relatively acceptable.

By comparing the two tables, the AUC scores are slightly higher, about 1% for the models trained
with all variables compared to the models trained with the selected 5 variables by feature selec-
tion. However, the Brier Score is not necessarily lower, which suggests there might be a tendency of
overfitting if all the variables are incorporated in the model. On the other hand, the time increases
significantly with the increase of the number of variables.

The ability of the classifiers to discriminate between defanlt and non-defaunlt samples is evaluated
with the ROC chart. The chart is set up such that the False Positive Rate (FPR) and the True
Positive Rate (TPR) are plotted against each other, with different probability thresholds. The
dots on the curve represent the TPR and FPR with the optimal threshold for each model. The
ROC chart for all classifiers is illustrated in Figure 5.11. Since the classifiers perform roughly
equally well, with most classifiers achieving a ROC AUC between 0.76 and 0.79, it is difficult to
clearly see the difference on the graph. Still, one can observe that the deep neural network (purple)
consistently has a higher TPR for a given FPR than the other classifiers. Also, it is clear from the
figure that the XGBoost and the KNN perform worst. One reason can account for this is that the
samples may contain outliers, since both algorithms, XGBoost and KNN, are sensitive to outliers
which leads to poor performance as discussed in Section 3.2.14 and 3.2.5.

Figure 5.11 shows the ROC curves obtained from the test dataset with all the models trained and
tested with the selected five variables after WoE transformation:
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Figure 5.11: ROC curves of all models with selected variables

Figure 5.12 shows the ROC curves obtained from the test dataset with all the models trained and
tested with all the variables after WoE transformation:
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Figure 5.12: ROC curves of all models with all the variables

From the above two figures, it can be observed that there is no large diserepancy, which means the
variables chosen through feature selection capture the majority of information of the dataset, so
that other variables provide little information for prediction and there is no need to incorporate
them. It suggests that feature selection for high-dimensional datasets is essential for saving com-
putation power and avoiding potential overfitting.

The dots on the ROC curves represent the corresponding TPRs and FPRs with the optimal
thresholds. The threshold is optimized based on the geometric mean of sensitivity (TPR) and
specificity (TNR), also called G-Mean in short. The formula is

G-Mean = vTPR+«TNR
=+TPR=x*(1—FPR)

The optimal probability threshold is the one which yields the highest G-Mean. The table summa-
rizes the optimal threshold for each model.
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| Model | Optimal Threshold |

Logistic Regression 0.6043
Decision Tree 0.765H4
Random Forest 0.5596
XGBoost 0.4754
KNN 0.3069

SVM 0.3945

ANN 0.4762

Table 5.6: The optimal threshold for different models with selected variables

Figure 5.13 displays the confusion matrix for all the algorithms trained and tested with selected
rariables. The values are calculated based on the optimal threshold probability for each model. As
it can be seen, Neural Network achieves the highest True Positive Rate and True Negative Rate,
which means it can make the most number of correct predictions for both default and no default
samples. In default prediction, a low FNR is desired, because when a loan actually defanlts but is
predicted as no default, a huge loss would occur. Thus, when evaluating the performance of RF
and LR, although they only have a 0.07% difference in TPR, the FNR of RF is 0.98% higher than
LR, making RF slightly more reliable.

On the other hand, although LR is less precise than ANN, RF, and SVM, the high interpretability
remains a remarkable advantage of LR. It has a clear coefficient for each variable so that one can
know how much influence each variable exerts on the final result. Also, a p-value test can be con-
ducted on each variable to see if it is statistically significant. On the contrary, such interpretability
is hard to achieve for the machine learning algorithms. For SVM, the plane separation cannot
be visualized in high-dimensional space when there are more than three variables. For RI, it is
difficult to plot all the trees and explain how the final node separations are achieved. Finally, for
ANN, the interpretation of "Black Box" is still an unresolved topic in academia. Although ANN
has achieved many practical applications in various industries, the drawback of low interpretability
limits its usage in the financial industry which emphasizes the clear interpretation of the models.
Hopefully, with more research done in this area, the "Black Box" will be unrevealed in the future.
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Chapter 6

Conclusion

6.1 Contributions

In this study, it evaluates the incremental power of five machine learning techniques over Logistic
Regression on a set of home loan datasets to determine PD and therefore the default flag based on
the optimal threshold for each model. The study follows the guideline of IRB, where the institutions
are allowed to use sell-developed methods to calculate risk parameters. For all classifiers, the
variables undergo the same preprocessing process, including variable transformation by Weight
of Evidence and a two-step feature selection process. By this mean, the results become more
comparable between the models. The AUC for the best classifier is Artificial Neural Network which
is 0.7863, followed by Support Vector Machine and Random Forest. The results of the analysis
suggest machine learning techniques have great potential in credit risk modelling. Meanwhile,
Logistic Regression still remains as a robust method in PD estimation, that the AUC is only 2%
lower than Neural Network. It is not surprising since this model has been applied in the industry
for decades, which manifests the strong discriminant power it possesses. However, the machine
learning techniques still perform slightly better than LR. These algorithms are experiencing a fast
pace development and are particularly usetful for handling high-dimensional datasets.

6.2 Limitations and Future Work

Despite the contributions discussed above made by this study, there are still several limitations
that exist due to time constraints and data availability. Based on the limitations, some future
research directions are proposed.

First, since the goal is to predict 1-year PD, it is better to have monthly or quarterly data for the
entire year. However, only six months of data is available for this study, which may not be able
to represent the whole picture of one year. Thus, once the data is available, the study needs to
be re-conducted on a full-year dataset to verify the results, so that it can meet the requirement
outlined by IRB and IFRS9 for calculating 1-year PD.

Second, to deal with the imbalanced data, only one approach is considered and applied to all the
models, which is cost-sensitive learning. This is to add more weight to minority data during the
training process. However, the models may exhibit different behaviours if other balancing tech-
niques are applied such as oversampling or downsampling. In the future, these techniques can be
applied to the data to evalnate the model performances.

Third, the home loan datasets are the sole data nsed for training and testing the models. Without
testing on other datasets, it is difficult to comment on the generalization of the models. Hence,
different datasets from the firm or similar datasets from other firms should be used to test how
well the models can generalize.

Fourth, the interpretability of some machine learning models, especially the so-called "Black Box"

Artificial Neural Networks, remains low which can be a major concern of the regulators. Unlike
the traditional models such as the logistic regression which can exhibit a clear relationship between
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each explanatory variable and the final output, the machine learning models can hardly build a
single link between one variable to the result, but all the variables are taken into account together
for the output, as the samples mapped in a high-dimensional feature space. This is an important
research topic in academia to uncover the underlying mechanisms of the machine learning models
so that they can be more widely applied in practice.

Lastly, due to the data availability and time constraint, we only study the PD prediction problem
in this paper. In the future, we can also apply these models to calculate other risk parameters,
such as EAD, LGD, SICR, and RR to evaluate the results in the existing literature as well as
propose new findings by employing machine learning techniques in the field of credit risk.
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Appendix A

Data Description

A.1 Variables

This table lists all the variables contained in the dataset:

Index Variable Name Index Variable Name
1 ExtractDate 28 IndividualVoluntaryArrangementFlag
| 2 EffectiveDate 29 IVARegisteredDate
3 Asset_ID 30 TermExtension
| 4 Account_ID 31 LatestMaturityChangedDate
5 OriginationDate 32 TemplOSwitch
| 6 AdvanceAmount 33 Capitalisation
7 CurrentPoollD 34 Passession
| 8 CurrentPoolDescription 35 PaymentMethod
9 LegalEntityName 36 InterestOnlyRepVehicle
| 10  PD_Segment 37  DWPPayer
11 CCF_Segment 38 PropertyRegion
| 12 Contractual_Maturity 39 PropertyRegion2
13 Default_Flag 40 ProductGrade
| 14 Default_Date a1 PropertyType
15 ArrearsCounter 42 PropertyType2
| 16 |collateral Value 43 CSOFlag
17 OriginalValuation 44 CSODate
| 18 OriginalValuationDate 45 LGD_Segment
19 Outstanding Balance 46 Counterparty
| 20 BalanceAtTerm a7 Origination_Rating
21 Currency 48 Current_Rating
| 22 Repayment_Type 49 Collateral_Value_AccountlD_Level
23 EIR 50 AssetSegment
| 24 Frequency 51 GroupEntity
25 Limit 52 Maturity
| 26 Bankruptcy_Flag 53 Months_in_book
27 BankruptcyRegisteredDate 54 Month_maturity_change

Figure A.1: All variables contained in the dataset
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This table lists the variables that are removed from the dataset:

Index Variable Name Reason for Exclusion
1 ExtractDate Same for all loans - 01/01/2019
2 CurrentPoolDescription Not related to default prediction
3 LegalEntityName Not related to default prediction
4 CCF_Segment same for all loans - All
5 Default_Date Not use default information to predict default
6 Currency same for all loans - GBP
7 Frequency Same for all loans - monthly
8 Limit Same forall loans -0
9 Counterparty Same for all loans - All
10 QOrigination_Rating same for all loans - All
11  Current_Rating Same for all loans - All
12 OriginalValuationDate Not related to default prediction
13 BankruptcyRegisteredDate  Use a flagto indicate bankruptcy
14  |IVARegisteredDate Use a flag to indicate Individual Voluntary Arrangement
15 LatestMaturityChangedDate Not related to default prediction
16 CS0Date Use a flagto indicate C50
17 InterestOnlyRepVehicle Has null and blank value
18  |Account_ID Not related to default prediction
19 Contractual_Maturity Will convert to maturity
20  |OriginationDate Not related to default prediction
21 Asset ID Used for identifying loans only
22 |ArrearsCounter Same as default flag, if >= 3 months, default
23 Default_Flag Not use default information to predict default
24 |EffectiveDate Same for all loans - 31/12/2018

Figure A.2: Dropped variables and the reasons
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This table lists the variables that are used during data analysis after removing unnecessary variables
and indicates the variable type:

Index Variable Type Description
1 AdvanceAmount Numerical Ui rn?nrrjulrn eI LAt
lender is willing to extend.
Th. h fault risk
2 PD Segment Categorical "¢ category based on the default ris
level.
3 Collateral Value Numerical The value of the collateral for this loan,
Th k fthe | t the iginati
4 OriginalValuation Numerical  value of the loan at the origination
date.
Th. f the | that h: t
5 Outstanding_Balance Numerical o IEOUES Rt th s D
been paid.
[ BalanceAtTerm al |The balance at the maturity.
7  Type Categorical The type for making the payment.
a8 EIR L ical |El'fecl|veinteresl Rate.
The indicator of whether the loan
9 Bankruptcy_Fl Cat ical
s L ] holder gets bankrupt.
The indicator of an agreement with the
10 IndividualVoluntaryArrangementFlag |Categorical . &
creditors to pay all or part of the debts.
The indicator of whether the | h
11 TermExtension Categorical © Indica Jr? siherthe joan has
been
The indicat f whether the | i
12 [TemplOSwitch Categorical | - o cater@lwhemerihefoan is
interest-only.
The indicator of whether the interest is
13 Capitalisation Categorical M
[ on the loan.
The indicator of whether the buyer
14 Possession Categorical |takes ownership of a property after
signing closing documents.
15 _PaymentMethod Categorical The ways of making the payment.
The indicator of whether the loan is
16 DWPPayer Categorical |from the the Department of Work and
| | Pensions.
N . The region of the property located
17 PropertyRegion Categorical
_ pertyRegl _ S based on the location.
. X The region of the property located
18 PropertyRegion2 Categorical
| pertyReg | e based on the city.
19 ProductGrade Categorical The grade of the home loan.
Tl
20 PropertyType Categorical ‘ he type of the property based on the
use.
2 PropertyType2 Categorical Th-e type of the property based on the
building type.
The indicator of Credit Services
izati I hich
22 CSOFlag Categorical IDrganlla‘lUrIS oans,l w ich are
installment loans originated by
independent third party lenders.
Th. i
23 LGD_Segment Categorical OEICT e TG EED
value,
24 Collateral_Value_AccountID_Level Numerical The value of the collateral for foans in
the same account.
25 A Categorical The category based on the asset.
26 GroupEntity Categorical |The antity which sells the loan.
The time difference in month between
rs) Maturity Numerical the effective date and the maturity
date.
The time difference in month between
28 Menths_in_book Nurnerical [the effective date and the origination
date.
The ID of the entities that buy the
29 CurrentPoollD Categorical mortgage pool which is a group of loans
led for selling.
The time difference in month between
30 Meonth_maturity_change Numerical |the effective date and the maturity
change date.

Figure A.3: Used variables with their types and descriptions
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The histograms show the distributions of all numerical variables:
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The histograms show the distributions of all categorical variables:

Distribution of Catgorical Variables
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Figure A.5: Distributions of all categorical variables




A.2 Correlation

The correlations among all the variables are plotted below:
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Figure A.6: Correlations among all the variables
The correlations among the variables with [V greater than 0.1 are plotted below:

Correlation between Variables

10
AssetSegment
CSOFlag
-08
CurrentPoollD
PD_Segment 06
PaymentMethod -
-04
ProductGrade
PropertyType
02

month_in_book

(SOFlag -

D_Segment

AssetSegment
CurrentPoollD -
ProductGrade
PropertyType -

month_in_book -

PaymentMethod -

Figure A.7: Correlations among the variables with IV greater than 0.1
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