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Abstract

The forecast of the joint covariance matrix of financial asset returns suffers from
the difficulty of the true covariance matrix being unobservable. Work has been
done in the one-dimensional case by evaluating and comparing the performances of
conditional variance forecasts using a “robust” loss function and volatility proxies
from observable data. This thesis extends to multidimensional setting and aims to
find a suitable loss function to rank the covariance forecasts and prove its relevant
properties so that the ranking of competing covariance forecasts is robust to the
noise in the covariance proxy, i.e. the ranking is consistent whether forecasts are
evaluated using true conditional covariance matrix or an unbiased proxy of it. The
comparison method is then applied to simulated and historical financial returns and
we test the statistical significance of the difference in the predictive accuracy of
different covariance forecasts to arrive at a ranking of competing forecasts.
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Introduction

Both univariate and multivariate volatility(the multivariate volatility is referred to
as covariance in this thesis) of financial asset returns can be seen as a measure of
risk and plays an important role in portfolio management and asset pricing. It is
therefore of great interest to forecast it. In the literature, forecasts are usually eval-
uated either using statistical loss functions such as in [6] or by economic significance
in a global minimum-variance portfolio framework such as in [3]. Sometimes both
approaches are employed in forecast evaluation [19]. We focus on evaluation by
statistical loss functions.

However, volatility/covariance is unobservable even after the realization of the
returns. This means we have to substitute a proxy for the true conditional volatil-
ity/covariance into the loss functions. As shown in [4], there can be distortions in
the rankings of competing forecasts if noisy proxies are used in forecast compari-
son. Such distortions will result in an inferior model being chosen as the optimal
model for the forecast task. Patton [15] addressed this problem in forecasts of uni-
variate volatility by introducing sufficient and necessary conditions satisfied by the
loss functions in order for the ranking to be consistent whether the loss values are
computed using the volatility proxy or the unobservable true conditional volatility.
Patton [15] also derived functional forms of such a class of loss functions which he
called “robust”.

Normally, robustness describes the statistical property that an estimator is not
sensitive to outliers, and this is the most widely used definition in the literature of
covariance forecasts [21]. However, we adopt a slight abuse of the word “robust”
following the definition in Patton’s work [15]. In this thesis, this refers to the con-
sistency in the rankings of competing forecasts, whether the evaluation is based on
the true conditional covariance or an unbiased proxy of it.

Patton and Sheppard [14] gave a multivariate analogue to [15], and Patton’s
work [15] in univariate volatility was extended by Laurent et al. [7] to the multi
variate scenario. This paper used the terminology “consistency” for what we call
“robustness” in Patton’s work and this thesis. Besides exploring the influence on
the distortions of ranking caused by the level of noise in the covariance proxy, it
mainly proposed a generalized suflicient and necessary functional form for a class of
Bregman distance measures that ensure “robustness” of the ranking,.

This thesis in particular studies one such loss function that was not studied in
detail in [7]. The assumption that the loss function is uniquely minimised at the

true conditional covariance matrix was directly proposed without much discussion
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in [7], but this thesis explicitly proves such property and most importantly, the ro-
bustness of the loss function is proved from the first principals without high-level
assumptions as in Laurent et al. [7].

The thesis is structured as follows. Chapter 1 introduces several main forecast
schemes used in covariance forecasts. Several technical points such as the shrinkage
of the covariance matrix and random matrix theory filtering are presented in detail.
Chapter 2 continues the technical setup by elaborating on how we evaluate different
forecasts and the testing procedure we apply to the loss values. Out of several widely-
used testing procedures, we choose the Diebold and Mariano test [2] (referred to as
DM test in the rest of the thesis) for its ease of implementation and effectiveness
in identifying different predictive accuracy. This chapter also contains the most
important theoretical results of the thesis— we propose a special case of robust loss
functions and prove several important relevant properties. Then we are ready to
apply this loss function with the chosen covariance proxy and testing procedure to
a variety of simulated return data sets and real returns of stocks and Treasury yield
returns, in Chapter 3 and 4 respectively. The robustness of our chosen loss function
is verified with simulated return data set, and we are able to identify top performers
of covariance forecasts based on the DM test results on all the return data sets.
Chapter 5 concludes the thesis.




Chapter 1

Covariance Matrix Forecasts

In this chapter, we introduce several reliable estimation/forecast schemes of the
conditional covariance matrix of financial return time series. These include the mul-
tivariate version of the exponentially-weighted moving average (EWMA) scheme,
Ledoit and Wolf's shrinkage covariance matrix estimators [10, 9, 8], and the filtering
method [5, 16] based on random matrix theory.

Suppose we have time series of log returns of N financial assets, each of length
T. These time series are arranged in an N x T matrix X. The tth column of X is
denoted as X, and is treated as an observation of a multi-dimensional variable of
dimension N. Let (.#,),.; be the filtration generated by the process (X,),.;. We
are interested in estimating the covariance matrix C'ry; of these N financial assets
given .Zr. And the conditional covariance matrix is defined as

Cri1i=E[(Xrs1 — E[ X1 Fr)) (X1 — B[ X 01| Fr))T| - Fr]

Meanwhile, we can also interpret this estimation as a forecast for the conditional
covariance matrix at time 741 given information at 7. The reference to estimation
and forecast is therefore interchangeable in the rest of this thesis.

To begin with, we look at the easily-computed and unbiased approach — the
sample covariance matrix, which is defined as

T
1 —
Sxr=7 3 (X~ X) (X - X)'
t=1

where X = % Zf;l X, is the sample mean. It is necessary that N < T for Sy r to
be invertible.

In the application of covariance matrix estimation such as mean-variance port-
folio optimization in the framework of Markowitz [11], the number of assets can
be large while the length of time series T is limited by lack of data and the non-
stationary nature of financial returns. The performance of the sample covariance
matrix estimator becomes poor when the ratio ¢ := N/T becomes large. Meanwhile,
this estimator is not robust to noise or outliers, further corrupting its performance.
In particular, as shown in [13, Chapter 4, pages 57-60], the closer ¢ is to 1, the more
likely that Sy gives eigenvalues very close to zero, which can make the inversion
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of Sy numerically impossible. There are other poor performances [17, Chapter
20, pages 322-327] of Sxnr such as the poor out-of-sample realized risk when ap-
plied to the Markowitz optimal portfolio [11]. Therefore, we need to consider more
accurate estimators that take into account the heteroskedasticity of volatility and
correlations, seek to attenuate estimation noise and avoid ill-conditioning (that is,
inversion hugely amplifies the estimation error).

1.1 Multivariate EWMA Scheme

The exposition in this section is partly based on [12] with slightly different notations.
The multivariate version of the exponentially-weighted moving average (EWMA)
scheme is an extension of the univariate version. It takes into account the het-
eroskedasticity of covariance and the non-stationarity of financial series. Compared
with GARCH modelling, the EWMA scheme is more straightforward and it usually
produces quite close results compared with formal multivariate GARCH modelling
[12, Chapter 9, page 340].

Let (X,);cz be a multivariate process of dimension N with zero conditional
mean.(This assumption is justifiable by the nearly zero sample mean of stock re-
turns.) The conditional covariance matrix at time { + 1 is written as

C!.+1 = E[XH-IXL_]l'gﬁ]'
An EWMA forecast H, ., of C,.; given .%, is computed recursively by
H,,=aH,+(1-a)X,X], (1.1.1)

where « is a positive number usually slightly smaller than 1. The forecast consists
of a weighted sum of one-step-earlier forecast H; and a conditionally unbiased esti-
mator (A?; := X X of the current covariance (which we refer to as covariance proxy
at time ¢ from now), so that the forecast reacts to new information at each step. A
more rigorous definition of the equally weighted moving average forecast is

t
l—a . .
H£+1 = m E [,I‘LXL,IE\-XI_‘\_; (112)

which makes sure the weights assigned to each covariance proxy add up to 1. In the
limit of { — oo, the denominator vanishes, and (1.1.2) is asymptotically

¢
H . ~ (1« Z Cthz—kXI_k:

k=0

and this approximation is used in applications (consistent with (1.1.1)) as long as
t is a sufficiently big integer. Denote the weight as wy := (1 — a)a*, where k is the
number of days back from ¢, then the exponentially weighted average of look back

period as t — oo is
oo

T(a) := kak -° (1.1.3)

T l-a
k=0
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T'(a) is increasing in «v, and we can interpret alpha as a measure of the length of
the effective look-back window. The larger «, the longer the look-back period, and
more memory of past covariances are retained. In its application, too big « values
limit the ability of the EWMA scheme to capture the non-stationarity of financial
time series, while too small values waste data and make the forecast of covariance
matrix numerically singular. Therefore, we wish to find the optimal « in application
to data.

1.2 Ledoit and Wolf’s Shrinkage Approach

The exposition is based on work by Ledoit and Wolf [10, 9, 8]. Let X € R™*7
denote T observations of a vector of N random variables. For the shrinkage anal-
ysis, we assume these T observations are independent and identically distributed
through time. The aim is to come up with a reliable covariance estimator of the
true covariance C given information in X.

1.2.1 Why Shrinkage and Choice of Shrinkage Targets

Despite being unbiased, the sample covariance matrix (SCM) contains too much
estimation error when the ratio of the number of assets to the number of observations
becomes large. On the other hand, a very structured estimator such as the single-
factor model of Sharpe [18] is potentially misspecified and severely biased. There is
a clear trade-off between the bias and the estimation error. To reach a compromise,
we consider a weighted average of the SCM and a structured estimator (referred to
as the shrinkage target) as an estimator of the covariance matrix, a technique known
as linear shrinkage. Denote the shrinkage target by F and the SCM by § we can
write our shrinkage estimator as

éS’hrink =0F + (l - 6)8 (121)

where ¢ € (0,1) is called the shrinkage intensity and is interpreted as the weight
given to the structured estimator F. The closer ¢ is to 1, the more structure is
introduced to (A?th,.,-nk and vice versa. This approach effectively pulls extreme coel-
ficients in S towards more central ones to reduce estimation error, in particular, the
extreme eigenvalues of S will be adjusted to avoid the computational singularity. It
is, therefore, well-conditioned and won't break down even when N > 1. Asymp-
totically, the linear combination yields a more accurate estimator than either the
sample covariance matrix or the structured estimator.

Next, we discuss three types of structured estimators as the shrinkage target:

e The Identity Model

This model [10] assumes that all variances are the same and all covariances
are zero, then the shrinkage target is a scalar multiple of the identity matrix
so that F'; = vI, where v is a positive scalar.
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e The Equi-Correlation Model

This model [9] treats all pairwise correlations to be equal, and the constant
correlation is estimated by averaging over sample correlations between each
pair. It makes more sense than simply assuming all assets are uncorrelated.
The shrinkage target has sample variances on the diagonal. Let s;; denote the
entries of §, then the sample correlation between asset ¢ and asset 7 and the
correlation estimate are expressed as

N-1 N
rij = and 7= N (N ) E E Tij
i=1 j=i+1

respectively. Our constant correlation shrinkage target Foo satisfies

fii = su and  fi; =7 /s;5;; wheni# j

The equi-correlation model incorporates more structure from the available data
compared to the over-simplified identity model.

e The Market Index Model

This model [8] adopts a different angle and derives the structure from a single-
index model. It is suggested by Sharpe [18] and assumes that the asset returns
follow the expression:
T = oy + Bixo + €q

where r;; denote the entries of X, xy represents the return of the market
index at time ¢ and €; are residuals that are uncorrelated across asset and
time, and also uncorrelated with the market return. For each asset, variance
of residual is constant and is denoted by Var(ey) = 6. We can write the
vector of N variables as @ = [x;,x0,...,xx]T, B = [81, 8o, ..., Ox]T, and € =
[€1, €, ..., €ex]T, then we have

xr =P+ €
Then, the theoretical covariance matrix of x is
b= Var(zy)B86"+ A

where A is a diagonal matrix with ith entry on the diagonal equal to é;. Note
that we assume ® # C, otherwise the structured estimator is asymptotically
unbiased.

To get an estimate of the unobservable ®, we carry out a univariate linear
regression of returns of stock i against the market index. The coeflicients from
the regression give an estimate of 5, and ¢; is calculated as the empirical
variance of the regression residuals. The market index variance is computed
as the sample variance. Let gy denote the estimator of Var(zy), and 3, A
denote the estimators mentioned above, we get the market shrinkage target

Fu =6088 +A.
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Using the single-index model avoids the debatable selection of multiple factors,
and the market index can be any broad-based market index. In the implemen-
tation, we take the equally-weighted market factor by averaging returns over
the N assets.

1.2.2 Optimal Shrinkage Intensity

The key question is: which shrinkage intensity should be chosen for the best accu-
racy of the shrinkage estimator? Ledoit and Wolf [10, 9, 8] quantified the problem
by finding ¢ that minimizes the expected Frobenius norm between the shrinkage
estimator and the true covariance matrix C.

Definition 1.2.1 (Frobenius Norm). The Frobenius norm of an N x N symmetric
matrix Z with entries (z;;); ;=15 and eigenvalues (\;)i=1 ... n is defined by:

N N N

|Z|* = Trace (Zz) - EZZi _ X

i=1 j=1 i=1
With the above definition, we consider the quadratic loss function:
L(6)=||6F + (1—-6)S — C|*

The smaller the loss, the more accurate the estimator is. The optimal shrinkage
intensity is therefore
0" = arg min E[L(6)]

SE(0,1)

and the shrinkage estimator is given by
-
sk "
CShrink =0F + (1 -0 )S

First order condition of the risk function R(8) := E[L(d)] gives the optimal shrinkage
intensity and the second order condition verifies it is a minimum. However, §* de-
pends on the true covariance C, of which we don’t have the knowledge. Fortunately,
we can find a consistent estimator of 6*. Notice that the asymptotic framework of
the identity shrinkage target [10] is different from those of the other two shrinkage
targets [9, 8]. The former adopts a framework called general asymptotics where the
number of assets N is allowed to go to infinity while the ratio N/T remains bounded,
whereas the latter assumes N is fixed and finite and T tends to infinity. The form
of C" can be unified though, with detailed expression in [8].

When applied to data, the forecast is carried out in a rolling-window manner,
and the sample covariance matrix of a certain period is shrunk towards the target to
give the forecast for the next day. It is shown in [10] that the consistent estimator of
d* shows good behaviours when N > 20 and T > 20. Hence, applying the shrinkage
estimator to sufficiently large finite samples doesn’t affect the results. It remains
to determine what is the optimal look-back period for best forecast performance,
which can be quantified in the next chapter.
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1.3 Random Matrix Theory Filtering

If we calculate the empirical cross-correlation matrix of financial asset returns with
finite length, a lot of noise is involved. Although noise can be neglected as the
length of observations goes to infinity, the accuracy of the estimation will be nega-
tively affected by the non-stationarity of cross-correlations, and the historical data
have limited length. Hence, we cannot get rid of noise by using an arbitrarily long
time window. While Ledoit and Wolf’s shrinkage approach blends a structured esti-
mator with a noisy but (asymptotically) unbiased estimator, the filtering technique
introduced below employs results from the random matrix theory to statistically
analyse how much information and noise is contained in the correlation matrix and
produce a filtered version of it.

Let’s first give a brief overview of the random matrix theory background.

Definition 1.3.1 (Wishart Matrices). Suppose we have an N x T matrix R whose
columns are vectors drawn independently from a multivariate Gaussian distribution
with zero mean and true (or population) covariance matrix C. Then we call

1
S =_RR"
T
a Wishart matrix.
In the case when the cross correlation matrix of the columns of R is the identity

matrix (i.e. the variables are uncorrelated), if we keep the ratio @@ := T/N fixed

while sending T" and N to infinity, the density of the eigenvalues of § is given by
oy - 2 VOO
f 2o A

where o is the standard deviation of the variables in the columns of R and the
maximum and minimum eigenvalues are given by

(1.3.1)

2

— o2 1 o
A =0 (u \Fc) . (1.32)

p(A) is known as the Maréenko-Pastur density. Without loss of generality, we focus
on studying the correlation matrix instead of the covariance matrix. (It is straight-
forward to convert between covariance matrix and correlation matrix.) Because the
diagonal of the correlation matrix consists of ones, it's equivalent to assume that
every asset has ¢ = 1. Note that the Gaussian assumption of Wishart matrix can be
relaxed [16] when using the asymptotic density of eigenvalues of S, and we still have
eigenvalue density of sample correlation matrix 8§ numerically in good agreement
with equation (1.3.1).

1.3.1 Finding the Noise Band

Now consider a matrix X € RV*T that denotes T observations of returns of N
financial assets. We calculate the normalised return of asset ¢ at time ¢ as
Xy —X;

Ti

G, =
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— T ) )
where X := 737, X, is the sample mean vector and o; is the sample standard
deviation of asset . Define )
P = _GG",
T

then P is the sample correlation matrix. If P is a random matrix (with components
of G having zero mean and unit variance and mutually uncorrelated), then the
eigenvalue density of P when N, 7 — oo and the ratio Q = T/N >= 1 fixed is
given by equation (1.3.1) with o = 1, and we write it as

Q VO N0 —W
27 A '

Prm(A) = (1.3.3)
The empirical density of eigenvalues of P, denoted by p()), is then compared with
the theoretical density p,,,(A). Some deviations of p(X) from p,.,,(A) will occur, and
this indicates real historical returns are not completely random, and they contain
some information distinguishable from the noise. The purpose of filtering is to ex-
tract those information and filter out the noise by reconstructing the correlation
matrix. Also, by the results in [16], we know that the deviation of empirical den-
sity from theoretical one (especially the largest few eigenvalues) doesn’t result from
finite values of T and N, it is therefore safe to regard the large eigenvalues of P as
carrving information. However, we need to determine quantitatively a noise band
outside of which eigenvalues of P are considered non-random.

The process of finding the noise band is best illustrated through an example.
Let’s take the normalised log returns of 300 stocks of S&P500 during the years 2018-
2022. We have N = 300 and 7' = 1110, so Q = T/N = 3.7. The RMT (random
matrix theory) boundaries are given by equation (1.3.2) with [A_, X, ] = [0.23,2.31]
and p.,(A) plotted in a black dashed line in the below Figure 1.1. This plot only
shows p(A) for A € (0, A+ + 1) to compare the random bulk of eigenvalues. The
eigenvalues of P are concentrated in bulk between 00 and 1, with a small proportion
of much larger eigenvalues. In particular, the upper bound is A, = 2.31, while the
biggest eigenvalue is 127.49, which is about 55 times of A.. This is the most ob-
vious deviation from the random matrix theory results. Indeed, its corresponding
eigenvector represents an influence common to all stocks [16], often referred to as
the “market factor”.

Meanwhile, we can see that p,,,(A) doesn't quite fit p(A), this means the param-
eters Q = 3.7 and ¢ = 1 do not give the Marcenko-Pastur density that matches
p(A). By minimizing the squared loss, we find a best fit with @ = 2.08,6 = 0.59
as shown by the red curve and denoted as p,..(A). We can interpret p...(A) as the
density contributing to the randomness in the correlation matrix eigenvalues. The
best fit density has theoretical RMT boundaries [A_, A.| = [0.03,0.99], covering 88%
of the spectrum of P. The fitted density agrees with the bulk of empirical eigenval-
ues satisfactorily, but this is not sufficient to draw the conclusion that eigenvalues
spectrum covered in the RMT boundaries are random and only those that devi-
ate carry information. Luckily, results from [16] confirm that the statistics of the
bulk of empirical eigenvalues is consistent with those of a real symmetric random
matrix. Therefore, the information carried by the genuine correlation exists in the
eigenvalues that deviate from the RMT boundaries, which we refer to as the noise
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band. A fraction of 6% = 0.34 of variance is explained by eigenvalues corresponding
to random noise.

Density

Figure 1.1: The theoretical distribution p,.,(A), the empirical density p(\) of P and
the fitted theoretical distribution p.,(A) in the range A € (0, A+ + 1), where P is

formed from N = 300 stocks in S&P500 stock index from 2018 to 2022

It is tempting to keep only the eigenvalues above :\+: but the finiteness effect of N
and 7T can affect the upper bound of the noise band. We can see from Figure 1.1 that
beyond the right end of the red curve, there exists a continuation of the spectrum
until about 1.5, and this continuation looks like part of the random bulk. Indeed,
summing up eigenvalues larger than 1.5 divided by the sum of all eigenvalues of P
yields that 0.67 of variance is explained by eigenvalues larger than 1.5, which closely
matches that a fraction of 0.34 of variance is explained by noise. (The fractions 0.67
and 0.34 add up to 1.01, very close to 1.) The lower bound of the noise band is very
close to zero (about 0.03), there are only 3 empirical eigenvalues below it. Because
the eigenvalues of the correlation matrix can be interpreted as the variance of a
portfolio of stocks (with normalised returns), a portfolio with nearly zero in-sample
variance is very unrealistic, and it is very likely to be a result of noise. Hence,
we adjust the lower bound of the noise band to be zero and the upper bound is
modified to be the eigenvalue such that the eigenvalues above it explain the amount
of variance that the best fit Marcenko-Pastur density fails to explain. Denote this
upper bound by A" and the eigenvalues of P as Ap, it is defined as

A i=max { A: Z Ap > 1 -6} (1.3.4)

Ap=A

Therefore, our final noise band is [0, ma.x{)A‘Jr= A*}], and we are ready to perform the
filtering process, which essentially modifies the eigenvalues in the noise band while
preserving the trace of P.

17




1.3.2 Implementation of Filtering
The real symmetric correlation matrix P can be decomposed as
P =QDQ’

where columns of QQ are normalised eigenvectors of P denoted as (v;),—1 .. ., and D
is a diagonal matrix with eigenvalues (A;);=1,.. n on the diagonal and the eigenvalues
satisty Ay = -+ = Ax. The above decomposition can also be written as

N
P = Z /\I"U,"UI-T.

i=1

After finding the noise band, we proceed with two ways of filtering,

The first method is from Laloux et al.[5] (referred to as the LCPB method), who
propose that because eigenvalues below A* are only a result of random noise, we
shouldn’t distinguish between them. Hence, we replace each eigenvalue in the noise
band with the average of them. By doing so, the trace of P is preserved. More
precisely, suppose Ai._1 > A" and Ay < A* for some 2 < k< N, let

N
X S
TN - k+14&77
i=k
we have the filtered correlation matrix
k-1 N
Propp = E /\I"UI"UIT + /\’UI"UIT. (13:})
i=1 i=k
Strictly speaking, Propp is not a correlation matrix with diagonal of 1's, rather, it
o (= b (=) 1 1
can be seen as the correlation between clean and noisy time series.

The second method comes from Plerou et al.[16] (referred to as the PG+ method)
This procedure replaces Ag, -, Ax by zero because the random eigenvalues and
eigenvectors shouldn’t contribute to the genuine correlation. i.e. we construct

k—1
f
PO+ = E /\i'UI'UII.

1=1

Then, the diagonal elements of P’ ., are all replaced by 1's to give the filtered
’ (=) PG+ & &
correlation matrix Ppq. .

To sum up, given a sample correlation matrix P with the ratio (2, we implement
the filtering procedure as follows:

1. Find the eigenvalues and eigenvectors of P

2. Calculate the maximum eigenvalue (1.3.2) using the given ¢ and 0 =1

3. Only keep the small eigenvalues in [0, A, +1] and find the empirical distribution
of these eigenvalues for fitting a best fit Marcenko-Pastur distribution. The
best fit is quantified by minimizing squared loss from real Marcenko-Pastur
distribution. Obtain the fitted @ and &.
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4. Find the noise band [0, max{A.], \*}] and modify the corresponding eigenval-
ues to get Propp or Ppas.

Both filtered correlation matrices will be converted back to covariance matrix in
the covariance forecast schemes. The random matrix theory filtering will be applied
to both the sample covariance matrix forecast and EWMA forecast to reduce the
negative effect of noise. Most of the time, the effects of the two types of filtering
are comparable, and we use the PG+ method in our implementation of filtering in
Chapters 3 and 4.
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Chapter 2

Forecast Performance Evaluation

The performances of covariance forecasts in the previous chapter are evaluated by a
class of loss functions, from which we define the optimal forecast. Then, we introduce
the Diebold-Mariano test [2] to compare the performances of different forecasts. The
loss functions have to be “robust” [15] for the DM test applied to data to reflect
the infeasible ranking, which is the ranking obtained using the unobservable true
covariance matrix. Our choice of the loss function in a multi-dimensional scenario is
motivated by the class of robust and homogeneous loss functions in Patton’s work
[15], and we will prove our loss function is indeed robust with the assumption also
justified.

2.1 The Optimal Forecast

Under the same setting of chapter 1, we are interested in forecasting the conditional
covariance matrix C; at time ¢t given .%,_;, where C; is defined as

C,_', = E[thgl’-gt—l] .

Note that we assume the multi-dimensional variables have zero conditional mean,
Le.

E[Xll’-gl—ll - D

However, the true conditional covariance matrix of financial returns is not observ-
able, we cannot find the forecast error directly. Therefore, we need a proxy C of it
as a standard for comparison such that EA¢_1 [Cy] = C,, where E,_;[] is the abbrevi-
ation for E[-|.%,_4]. An example can be C, := X, X].

Using the information in %, ;, we come up with a forecast H, of C,. H, is
Z,_1-measurable and is a real symmetric positive definite matrix. By convention,
we denote the set of NV x N real symmetric matrices as SV, the set of symmetric
positive semi-definite matrices as Sf, and the set of symmetric positive definite
matrices as Sl .. To assess the predictive accuracy of the forecast, we need a loss
function

L: SL X SL =R,
where IR, represents the positive real line, and the optimal forecast is defined as

H; .= arg min E, 1 [L(Cy, H,)]. (2.1.1)
H,c8Y,

H,; is .#;_; —measurable
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A smaller value of the loss function should represent a smaller distance of H,; from
C,. We want the forecast to be as close to the true covariance as possible, therefore,
it is desired that the expected loss I, 4 [L(C,, H,)] is minimised when the forecast
equals the variable of interest, which is the conditional covariance. i.e. we want

H; =C, (2.1.2)
Note that H,; and C; are both F,_;-measurable, we actually have
IEL_I[L(CL; HL)] = L(Ch H,:)

By (2.1.1) and (2.1.2), we can derive a necessary condition for the optimal forecast
to be the true conditional covariance:

L(C,-)(H) is minimised at H = C

The notation L(C,-)(H) means that we treat the argument C as fixed and H is
the only variable.

However, due to the unobservable nature of C', we cannot calculate L(C,, H,).
Instead, we put the conditionally unbiased estimator C, in the loss function. In
practice, we define the optimal forecast for a given loss function and proxy as

H; = arg min E,_1[L(C:, H))). (2.1.3)
H,esY,
H; is #; | —measurable
When mentioning H} below, we refer to the one defined in (2.1.3). Still, we want
the optimal forecast derived using (2.1.3) to be the true covariance matrix C;.

2.2 Diebold-Mariano Test

‘We have quantified the performance of a forecast by the expected loss, and when
we have two different forecasts, we can compare them based on the expected loss.

Let’s suppose we have two forecasts H,, and H,,. Let u;, := L(C,, H;,) for
i = 1,2, and define d; := u;,; — uy, as the loss differential. The presence of noise
makes it hard to tell which of u;, and wusy, is bigger, so we perform a statistical test
on finite samples as proposed by Diebold and Mariano [2], which we refer to as the
DM test. The null hypothesis of the DM test is

Hy : E[d,] =0,

which means that on average, there is no difference between the loss values of the
two forecasts. i.e. the two forecasts statistically have equal predictive accuracy.

Suppose we have a sample of loss differential series {d,}T | of length 7. Denote

its sample mean by
T

T
— 1 1
d:= TZ(II; = T;(UI‘L — UQ‘L).

t=1
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Let the population mean of the loss differential be g, Under the assumption of the
loss differential series being covariance stationary and short memory, the sample
mean d can be shown to have the following asymptotic distribution

p— . i
VT(d—p) = N(0,03)
as the sample size goes to infinity. Taking into account of the effect of serial corre-

lation of d;, we have

oo

op= Y valr) and u(7) =E[(d — p)(dier — pr)]

—

where y4(7) is the auto-correlation function of d; of lag 7. While o, is unknown,
we use a consistent estimator in the finite sample. And when we only consider the
one-step-ahead forecast, we can ignore serial correlation and take

T
. 1 —.
65 = v4(0) = T § (d, —d)*.
t=1

Under the null hypothesis of ¢ = 0, the test statistic

VT d

Td

S = (2.2.1)
is asymptotically A(0,1). Note that this is a two-sided test. Hence, we reject Hy
at a confidence level of 1 — « and conclude that the two forecasts have different
predictive accuracy when S; > Zg or 51 < —Zsg, where e 1= o (1 5)isthel—5
quantile of the standard normal distribution. In particular, if 5, > 2z, it means on
average uy, > ug, and Ho, is a more accurate forecast. Vice versa if S; < —Zg.

When applying the DM test to the loss differential series, we need to check
whether the assumptions of covariance stationarity and short memory are satisfied.
To test covariance stationarity, we can first plot the series and visualise it. If visual-
ization cannot provide obvious evidence of non-stationarity, we try the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) Test! whose null hypothesis is that the time series
considered is stationary around a deterministic trend. Regarding the short memory
property, we plot the empirical auto-correlation function to see the rate of decay of
the serial correlation of d;. Rapid decay such as exponential decay or sudden drop
to zero after a certain time lag serves as good evidence of a short memory process.
However, it’s likely that one or both assumptions are not satisfactorily met, in that
case, the conclusion from the DM test will be less reliable.

2.3 Robust Loss Functions

When we introduce the DM test, we defined u;, := L(C, H;;). In the actual im-

plementation, we can only use C;. By true ranking of the forecasts, we refer to the

Yhttps:/ /en.wikipedia.org/wiki/KPSS _test
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ranking based on the expected loss E[L(Cy, H;,)]. While the true ranking is not
directly available, we can work out the proxy ranking by IE[L((A?L,H i1)], with the
mean estimated by the sample mean of a series of forecasts. The crucial question
is that whether the ranking of two forecasts obtained by comparing the expected
loss using the covariance proxy C, is consistent with the true ranking using the
true covariance matrix. In another word, if we conclude from the DM test with d,
calculated using C, we need the same conclusion to hold when the true covariance
C, is used. This consistency must be satisfied for the comparison between different
forecasts to make sense, as the accuracy is measured as a distance from the true
covariance matrix. The consistency, however, may be violated as discussed in [4].
In order to avoid distorted ranking when evaluating forecasts, it is crucial to choose
a sensible loss function.

2.3.1 Definition and Properties
To formally address this problem, we define loss functions that are “robust™.

Definition 2.3.1 (Robust Loss Function). A loss function L : SY. x SY, — R,
is robust if, for any two F,_;-measurable forecasts H,; and Ha,, the following is

satisfied:
E[L(Cy Hy,) Z E[L(C,. Hy,)|
= (2.3.1)
E[L(C.H)| ZB[L(C0H,)]
for any C, such that EL,I[CA?L] =C,.

This idea of robust loss function was introduced and elaborated by Patton [15],
whose work focuses on forecasts of one-dimensional conditional volatility. We extend
the idea to the multi-dimensional conditional covariances. Conventionally, robust-
ness describes the property of an estimator that is not sensitive to the presence of
outliers, while this definition emphasizes the robustness of forecast ranking to the
noise in the covariance proxy C?L.

In the implementation of the DM test, we use u;; = L((A?L.HI-‘L) and (ft =
iy — tipy. We are testing the null hypothesis H, : E[d,] = 0, and if the null
hypothesis is rejected, we conclude that

E[”?al s0 < E {L(éu Hl,z)} sE {L(éu Hz,a)}

Thanks to the loss function I being robust, the property (2.3.1) leads to the con-
clusion about the infeasible ranking with respect to the distance from the true
covariance matrix:

Eld]s0 & E[L(C\, Hy) SE[LC:, Hy,)

It follows from (2.3.1) that a necessary condition for a loss function to be robust
to noisy proxy is that the optimal forecast H; defined in (2.1.3) is the true condi-
tional covariance matrix. Recall that in section 2.1, we put a restriction on our loss
function:
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Assumption 2.3.2. L(C,-)(H) is minimised at H = C and the minimiser is
unique.

Under this assumption, we propose and prove the following:

Proposition 2.3.3. Let assumption 2.5.2 hold, if the loss function is robust in the
sense of definition 2.3.1, then the optimal forecast HY under the loss function is the
true conditional covariance matriz C,.

Proof. Let H . be any .#,_ -measurable forecast, by definition of the optimal forecast
given in (2.1.3), we have
Eci [L(C H))| <oy [L(C, HY)|
Taking expectation on both sides and using tower property gives
E|L(C:, H)| <E[L(C, H)|
L is a robust loss function, by (2.3.1), we know
E[L(C,, H;)| <E [L(C;= fm} (2.3.2)
By assumption, we know L(C, H) has a unique minimum when H = C. So
L(C,.C,) <LC,H;) and E[LIC,C,)| <E[LC, H})
Also, C, is F,_j-measurable, setting H,=C,in (2.3.2) gives
E[L(C\, H})| < E[L(C,,C))]
Hence, we must have
E[L(C, H;)|=E[L(C, C,)] and H;=C,.
O

One might wonder about the exact form of robust loss functions. We start
with one dimension when N = 1. In one dimensional setting where we denote the
volatility proxy as @2 and % for the forecast, common robust loss functions include
the MSE and QLIKE loss functions, which are given by

MSE : L(6% h) = (6% — h)*
6_2
h

Patton [15] showed that the entire subset of robust and homogeneous loss func-

tions when N = 1 is indexed by a scalar parameter b. We present the results below.

QLIKE: L(6%h) =logh+

Definition 2.3.4. A loss function L is homogeneous of order £ if for some £ € R,
L(ad® ah) = o*L(6%. 1)
holds for any o > 0.

Proposition 2.3.5. Let .7 be a compact subsef of R, which is the positive part
of the real line. The entire subset of robust and homogeneous loss functions L :
R, x # — R, is given by

6 (624 = pb*2) — ZohP (62— h),  forb ¢ {—1,-2}

L(&%hib) = § h=d* +5*log DT: forb=—-1
% —log % -1, forb=-2
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2.3.2 Choice of Loss Function

We extend the results in proposition 2.3.5 to the multidimensional scenario by re-
placing 6% with C and replacing h with H. In particular, we choose b = —%; then
we obtain the expression

1 ~
—4(C* — H?*)+2H *(C — H)
L1 .
= —4C? +2(H: + H:0)
Remark 2.3.6. In general, a matrix can have several square roots. The positive def-

inite square root of a symmetric positive definite matrix is well-defined and unique.
Suppose the eigendecomposition of H is

H=QDQ",

where columns of @ are normalised orthogonal eigenvectors and D has a diagonal of
corresponding eigenvalues with zeros elsewhere. Positive definiteness of H indicates
that all eigenvalues are positive, so we take

Vi 00 0
0 VA 0 0

0 o 0 PDwxi 0
0 0 0 Vx

S
I

and define 1 :
HI =QD:Q"
By orthogonality of @, this yields
H:H: - QD:Q'QD:Q" = QD:D:Q" = H.

The loss function maps matrices to the positive real line, hence, we need a
mapping [ : SY, — R, that measures the distance in some sense. We choose [ to
be the trace function hecause

e It is a linear operator which is easy to manipulate;
e It represents the sum of all eigenvalues;
e As we will show later, it makes L satisfy assumption 2.3.2.

Therefore, we consider a loss function of the form

L(C,H) =Tr(—4C? + 2(Hz + H2C)) 233)
= —ATr(C?) +2Tr(H? + H :C))

1

Discard the first term —4T'r(C?) which doesn’t depend on H, and scale down the
second term by a factor of a half, we arrive at

L(IC.H)=Tr(H* + H>C) (2.34)
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Changing from (2.3.3) to (2.3.4) doesn’t affect the measure of accuracy and the
choice of optimal forecast.

To verify that our loss function is indeed robust and the assumption of unique
minimum at H = C is satisfied, we present the following proofs.

Proposition 2.3.7. The loss function L(C, H) = TT(H% + H_%CA?) is robust and

homogeneous.

Proof. Let C‘; be a conditionally unbiased estimator of C; such that IEL_I[CA,‘L] =C,.
Then we can decompose the proxy C, as

C’L:CL—FEL

where €, € SV and E;_1le)] =0, i.e. the conditional mean of the estimation error is
a zero matrix. Substituting the above decomposition into the expected loss gives

E[L(C,. H,)| = E[Tr(H} + H, *C)]
—E[Tr(H? + H,*(C, + €]
—E[Tr(H? + H,?C)| + E[Tr(H, " ¢,)]

where in the last line we used the linearity of expectation and the trace function.
The first term is equal to E[L(C,, H)], while the second term can be simplified by
the fact that expectation and trace commute (which is true because trace is a linear
operator ):

E [TT(H;%)} —Tr (E[H;%])
= Tr (B[Ei(H, fal)
—Tr |E |H "E_,[e]
N

0
=Tr(0)=0

where we make use of the tower property in the second line and that H, is .%,_;-
measurable in the third line. Therefore, we arrive at

]E[L(él Hl)] = ]E[L(CI Hl)]
Robustness follows immediately by (2.3.1).

Homogeneity is straightforward by the linearity of both the trace operator and
the expectation:

L(aC.aH) = (aH,)? + (aH,) % (aC,) = at L(C, H)
for any a € SY, and we identify k = . O

Proposition 2.3.8. L(C, - )(H) = T?“(H% + H_%C) has a unique minimum at
H=C.
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Proof. Following remark 2.3.6, we can define the power of H as
H{.t = QD{\QT
for any o € R. This is well-defined because the eigenvalues of H are all positive.

We employ the idea of completing squares. Note that both H® and C” are
symmetric for any o, § € R, we can write

A:=H:+H :C
—H:-2C:+H :C+2C*
=(mi-mict) (B -Hich) - ciHich s HiC +och,
Let B .= H7 — H_%C%, then applying the trace gives
L=Tr(A)=Tr (B B)+2Tr(C?).
The two middle terms vanish because
Tr(C:H :C?)=Tr(H C).

The second term is independent of H, while the first term is non-negative because
BB is positive semi-definite. The loss function is minimised with respect to H if
and only if the first term is zero, i.e.

Tr(B'B)=0 <= B'B=0

This further yields
B=0 <+— H=C

Hence, the unique minimum occurs at H = C.
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Chapter 3

Forecasts Applied to Simulated
Data

In this chapter, we run various forecasts on simulated return data. For each forecast,
we first determine the parameter (for example, we decide on a most suitable look
back period when using the Ledoit and Wolf's shrinkage approach, and the optimal
value of &« when EWMA forecast is employed.) Results from running the forecasts
include the loss value series over the forecast period and the averaged loss values
for each forecast method with covariance proxy and with true covariance matrix.
The loss differentials are passed into the DM test to come up with a ranking of the
forecasts.

3.1 Simulation Schemes

We use two sets of simulations. The first one borrows the idea from the single-index
model by Sharpe [18], in which we assume the simulated index returns are inde-
pendent and identically distributed across time. The second involves the General-
ized AutoRegressive Conditional Heteroskedasticity (GARCH) process that models
volatility clustering and persistence in financial returns so that the simulated returns
have a non-trivial serial correlation and evolving covariance matrix. The details are
elaborated as follows.

3.1.1 IID Simulation

This simulation framework is built upon the single-index model (The Diagonal
Model) proposed by Sharpe [18], which is also mentioned in section 1.2.1 in our
introduction of the Market Shrinkage. Suppose we have N stocks, each has a return
time series of length T". Let x; be the log return of the ith stock, it is assumed that

T = oy + Birg + €,
where ¢, 3; are deterministic parameters, xy is the market index return and ¢; is

the noise term with zero mean. Different stock returns are related only through the
common market index, which is thought to have a major impact on stock returns.
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If we also include the time evolution of the returns, we have
Ty = oy + ,3,'.‘1,’{),5 =+ €4

Note that the noise €, is uncorrelated across time, stock, and the market index. The
market index x, is also assumed to be i.i.d. through time.

To simulate the stock return time series, we first simulate the market index xg.
Financial returns tend to have fat tails and market index returns are very close
to zero on average, so let the index follow a scaled t-distribution with a degree of
freedom 1.

Tor ~ Yolu,
To determine the scaling factor ~;, we take a reference index, the S&P500 index
log returns from 2012 to 2022 and find the sample variance 62 of the 10-year time
series. It is desired that the variance of our constructed market index matches 2.

Also, we know Var(zg) = '}(2,‘[‘]%2 Then, we choose

a
Yo = ——— (3.1.1)
L20]
y—2

Next, we simulate the market index by generating an i.i.d. sequence of length T
of t-distributed random variables of the degree of freedom 1y multiplied by 9. The

degree of freedom is chosen as 1y = 5 in the actual simulation. Denote the simulated
market index series as 7.

Then, we talk about how to simulate individual stock returns. There are two
major steps:

1. Determine the values of ay, 5; fori=1,--. | N;

2. Specify a distribution for ¢; for i -, N, and simulate the noise time

series.

I
s

For 1, We take recent 10 years of stock log returns of the first N stocks listed in
the S&P500 stock index, and for each stock, run a regression of the returns against
the S&P5H00 index log returns. Results from the regression show the fitted &; of
the order 10e-4, hence we can treat the stock log returns to have zero mean. Be-
sides, the sample variance of the fitted residual ¢;, := :J:I-Lfrfr,-f,z'}i oo 18 also calculated.

For 2, suppose the noise term follows a scaled t-distribution as well, that is, for

i=1,,N,
€54 ™~ ’}'i"v;

we take ;== 14 to be constant across stocks to facilitate the data simulation, then
Var(ey) = 7; fl_—z The chclnce of scaling factors 4; is similar to the chglce of g,
which makes the variance of the simulated noise time series match that of the fitted
residual ¢;. The simulated noise term for stock ¢ at time t is denoted by €;,, and
the whole time series of length T' is constructed by multiplying 4; with a simulated
i.i.d. sequence of t-distributed random variables, the degree of freedom of which is 1.
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Putting everything together, we have the simulated return time series:

Ty = Bitor + €a

fori=1... Nandt =1,-.. T Note that we omit the é&; term because it is
negligible in magnitude.

Let :E,_', = [.’E’u; .'1-'}2,_',; B .'}v.'A.\.'L]T; B = [.{91:52 ..... B_.\']T; and EL = [l:.u; ng; P ;E:\'L]T; we

can then put the individual stock returns into a multivariate vector
f.-é,_', = I@.’E’m, + é,_',.

Eventually, we have an ii.d. sequence of multivariate random variables, each has
zero mean and contemporancous covariance

C, = El&,&]] = E[(Bio + &)(Bio + €)7) = BB Var(in) + E[& ]

By (3.1.1), we have Var(io) = 3. Let of := ;%5 we can write

o0 o0 0
0 2 0 0
Ele€]] = o1 T - D=0l
0 «+ 0 73, 0
0 0 - 0 A%

Therefore, we get an expression for the true covariance matrix
C=C,=p3"6t+oT (3.12)
=0 = 0 1 et

and this is constant in time. The expression (3.1.2) is useful, because in running
the covariance forecasts, the true covariance is known. Hence, the forecasts can be
compared against the true covariance in the loss function.

The advantage of this simulation model lies in its ease of implementation. How-
ever, the ii.d. returns give a covariance matrix constant in time. This lack of
dynamic in the covariance doesn’t agree with stylised facts in financial returns as it
fails to explain volatility clustering and persistence. To incorporate this feature in
the simulated returns, we employ a more complicated tool — GARCH simulation.

3.1.2 GARCH Simulation

One-Dimensional Process

Definition 3.1.1. We say a process (X )z is strictly stationary if (X, ,..., X))

have equal distribution to (X, «x,..., X, 1) for any t1,...,t, € Z, k € Z.

Definition 3.1.2. Let (X,);cz be a square-integrable process which is i.i.d. through
time, then it is called a strict white noise. Besides, if E[X;] =0 and Var(X;) = o2,
we denote (X;),., ~ SWN(0, o).
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Definition 3.1.3. Let (X;)ez be a strictly stationary process. If we can write
P el
X, =072, Jf =g+ Z (_tI-Xf_r- + Z;’ijaf_j; teZ,
i=1 j=1

where og > 0,00y, ..., > 0, and Gy, .., B, = 0, for some (Z;)

ez ~ SWN(0,1)
and (0y),. that is strictly stationary and positive-valued, then we say (X;)i.ez is a
GARCH(p, q) process.

In financial applications, we usually model returns (X;);cz using a GARCH(1,1)
process, so that

Xg, == O’;Z;

for some (Z;),., ~ SWN(0, 1), and o, satisfies

LT
Jf =ap+ r_'rle_l + ,3103_1 (3.1.3)

From the above expression (3.1.3), we can see that o, is .%, ;-measurable. The

conditional mean and variance of the process are
E[X{,lr.gl_]] = O—LE[Ztl'-gL—ll = O'L]E[ZL] =0

Var[X| Fi1] = E[X7|Fi-1] — E[X| Fia]* = /B[ ZE| Fi1] = 07 E[Z]] = o}

In [20, Part 3, slides 86-94], it has been shown in model diagnostics’ that assuming
a t-distribution for F;; makes the fitted standardised residuals Z, := %‘ behave most
like i.i.d. samples from the chosen Fz. Given a return time series Xy, X, | Xqp,
the parameters ag, o and 3 in (3.1.3) are estimated using maximum likelihood
after specifying a distribution Fy for (Z;),., ~ SWN(0,1). Once we have the fitted
parameters and proxy for the starting value 62, the fitted conditional variance &2

can be worked out recursively
~2 = ~ 2 5 22
o =00+ X, + 510,

for t = 1,.--,T. These are called the GARCH-fitted volatilities. Suppose we now
want to forecast the conditional volatility at T + 1, this one-step-forward forecast
comes naturally as

6%, = do + @ X3 + 5163

We can also simulate returns following a GARCH model of fitted parameters. For
example, we have the fitted degree of freedom for the t-distributed white noise, so
that we can simulate an independent sample Zp.;, then the simulated return at
T+1is

Xro1 =02

We can continue to find the simulated 6., using (3.1.3), simulate another inde-
pendent Zr,, and so on. This way we have simulated returns that are serially
correlated. In implementation, both the fitting and simulation of GARCH process

are done using the arch5.3.1?% package of Python.

lthrough theoretical pdf plotted with histogram, Q-Q plot and the ACF plot
https://bashtage.github.io/arch /univariate univariate.html
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Multi-Dimensional Process

When considering multiple assets, we deal with multivariate time series modelled
by a multivariate stochastic process (X),cz, where each X, is an N-dimensional
random vector. We extend the definitions for the one-dimensional process to give
the following key definition:

Definition 3.1.4. Let (Z;),ez be an N-dimensional strict white noise with zero
mean and contemporaneous covariance E[Z,Z]] = Iy. Then, we say (X )z is a
multivariate GARCH process if it is strictly stationary and satisfies

X, =C!Z,

where C| is a symmetric positive definite matrix that is random, and it is measurable
with respect to #_1 = o{X1, -+, X1}

The conditional mean and covariance are given respectively by
1 1
E[Xglr_g{,_l] = E[szll’-gt—ll = CfE[Zglr_gL_I] =0

COV[XLlr_?;__I] = E[XLX”'-gL—I] = CE E[ZLZI] CE = C;_
I
N

Let X € RV*T represent returns of NV stocks over a period of 1" days, where the
columns (X ;)= .. 7 are assumed to follow a multivariate GARCH process. The
white noise (Z;)—1.. r are assumed to follow a multivariate t-distribution with
components being ii.d. t-distributed random variables. We decompose the condi-
tional covariance into individual stock’s conditional variances and the conditional
correlation matrix P, as

Ca = DLPLDL

where D, = diag(oy,,--- .ox,) consists of standard deviations of individual stock
returns. Note that G’EL = C}i. The individual stock returns can be modelled by
one-dimensional GARCH process discussed above, for the modelling of P, we focus
on the constant conditional correlation model.

e Equi-Correlation
We assume all stocks have equal correlation, similar to the constant corre-
lation model used for the shrinkage target in section 1.2.1. Given a matrix
X of historical returns of N assets and T days, we can calculate the sample
correlation matrix. The constant correlation 7 is taken as the average of all
pairwise correlations, and we use

1 7 7 T

T LT T
Py =

T T 1 7

T T Fol

in the simulation of stock returns.
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e Constant Correlation
This model is based on the CCC model of Bollerslev[l]. Assume P, := P¢ is
constant, we can write

X!,: CEZL: Dlpgzt
=M

where M, is a strict white noise with contemporaneous covariance Pgo. The
following steps are taken to obtain an estimate of Pe.

1. Fit GARCH(1,1) process to each of X ,’s components and we come up
with a sequence of fitted volatilities (&;)i=1,... 7 fori =1,.-- N, and the
corresponding diagonal matrix of fitted volatility is D).

. . ] . .

2. Compute the devolatised process Y, :=D, X, fort=1,.--.- N. If the
individual components indeed follow GARCH(1,1) process, the devola-
tised process should be a strict white noise with covariance Pc.

: i : - T <r xrT
3. Estimate P by the sample covariance matrix of Po = % YooYy,

Simulation Procedure

1. Take the most recent five years of returns of the first N stocks listed in the
S&P500 stock index and fit a GARCH(1,1) process to the return time series
of each individnal stock.®

2. The fitting results give the fitted residuals and parameters, which can be passed
into the simulate? function to give simulated GARCH process of length 7.
And these give the simulated diagonal matrices D, = (‘.lia.g(f}l‘w C L Ony)

3. Calculate the estimated correlation matrix Pr or Pg depending on which
correlation model we choose. Both correlation estimates are constant, which
is not realistic in modelling actual stock returns, but still serves as an effective
way to include serial correlation in simulated returns.

4. Simulate the N-dimension multivariate t-distributed Z; with each component
an Li.d. t-distributed random variable of a specified degree of freedom, which
is chosen to be 10 in our implementation.

. The simulated returns are

on

Xl = .AD{,sz{,

fort=1,---,1. where P is cither Py or Pc.

3The stock returns have a sample mean very close to zero, so we fitted a zero mean ARCH
model(which is equivalent to a GARCH model).
“https://bashtage.github.io/arch /univariate /univariate_volatility_modeling. html# Simulation
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3.2 Implementation of Forecasts

3.2.1 Details of Implementation

We choose N = 100,200, 300 and 400, and the simulation length is 7" = 2000, which
is approximately 10 years of data. The forecast schemes applied are

e Sample Covariance Matrix(referred to as SCM) with and without filtering®;

o EWMA forecast with and without filtering;

e Ledoit and Wolf shrinkage estimators® with the identity target, the equi-
correlation target and the market index target.

Both the SCM forecast and the shrinkage forecasts are carried out on a rolling
window basis, so they require an input value for the look-back period, which is the
number of past observations used in the sample covariance matrix calculation. The
length of simulated data is T, and let’s denote the look back period as I, then the
forecasts start on the [+ 1th day and the whole forecast period is T'—1[ days. During
the forecast period, the forecast H; on day ¢ is produced using information up until
day t — 1, and the covariance proxy is taken to be C; == X, X 7. The value of the
loss funetion given by (2.3.4) is calculated and stored for each day in the forecast
period, and the averaged loss value is also recorded. The algorithm is outlined as
follows:

Algorithm 1: The algorithm to compute rolling-window forecasts using T
observations and look back period [, note that [ < T is required.

Input: look back period I, return matrix X € RV*7T (the shrinkage target
type if forecast method is shrinkage)

Output: A vector of loss values and averaged loss value

fort=1+1,---,T do

Xops =Xt =1:t-1]

/#* This denotes the ({—Uth to (t—1)th column of X «/

Ci= X[ t] X[ 1]

if SCM Forecast then

| Hi— XX,

else

L H; = shrinkage(X )

L= L(C\, H))

Append the value L; to the loss value series

Averaged loss value L(C) = T ZLEH L(Cy, H,) is the mean of the loss
value series

Theoretically, larger I will denoise the sample covariance better, while at the same
time diminish the dynamics of an evolving covariance by estimating it assuming it’s

"The effects of LCPB and PG+ filtering are comparable, hence, we stick the PG+ type of
filtering in our implementation.

8Source  codes for  implementing the  three shrinkage methods are from
https://github.com/pald22/covShrinkage, and we adapted the output format.
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constant over a long period of time. Also, we need to take into account the limited
availability of data for some stocks(such as newly listed ones). Hence, we are moti-
vated to find an optimal look-back period. Run the SCM forecast on the set of 11D
simulated returns of 100 stocks, using a look-back period of 250 to 950 days, with
increments of 50 days. We found the loss values are monotonically decreasing as
seen from Figure 3.1. Indeed, the SCM is an asymptotically unbiased estimator of
the true covariance matrix when { — oc. But practical limitations won't allow too
long look back period. We take I = 500, an equivalence of 2-year data.

If we run the shrinkage forecast with a market index target on the same set of
data and look back periods, we notice from the plot 3.1 that, although fluctuating,
the loss values are decreasing as look back period increases. We also use [ = 500 as
a balance.

—— Market Index Shrinkage

3.65

Loss Values

3.55

- @ @

250 350 450 550 650 750 850 950
look back period/days

3.45

Figure 3.1: Averaged loss values when applying the SCM forecast and Market
Shrinkage forecast to an IID simulated return data set of N = 100, plotted against
look back periods from 250 to 950 days, increment at 50 days

In the actual implementation of the market shrinkage?, for any asset type, the
market index is estimated as the equally-weighted return of the N assets. Instead of
doing regression, it is easier to find the covariance vector between the N assets and
the market index, calculate the outer product of this covariance vector, and then
divide by the variance of the equally-weighted market index. Finally, we replace the
diagonal with the diagonal of the sample covariance matrix.

Tsee https://github.com/pald22/covShrinkage /blob/main /covMarket.py for source codes
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For the EWMA forecast scheme, it remains the question to determine an optimal
value of . We employ the scipy.optimize.minimize® function of Python to
find the o that minimizes the averaged loss value. Using the 11D simulated returns
of 100 stocks, we get the optimal & = 0.998954 with the effective look back period
955 as given by (1.1.3), which is much longer than we can take in practice. A plot
of the averaged loss values against a’s in the vicinity of & is shown below in Figure
3.2. We then use & in running the EWMA forecast. Moreover, the EWMA forecast
needs an initial H, and Cy to kick off the initial forecast. We use the first 500 days
of data to find the SCM as Hj, and the covariance proxy on day 500 as Cy. The
forecast starts on day 501 until the last day in the sample.

3.55

354

loss values
@
n
4

w
o
3

3.51

0.997908 0.998348 0.998789 0.999229 0.999670
alpha

Figure 3.2: Averaged loss values when applying EWMA forecast to an 11D simulated
return data set of 100 stocks with a’s near &, plotted against the corresponding a's

For the SCM forecast, adding filtering is straightforward, as we only need to
apply filtering with the process detailed in section 1.3.2 to each H,. However, for
the EWMA forecast, it is a little tricky. We need to distinguish between the forecast
that is filtered and then put into the loss function and the forecast that is used to
update the next step forecast. Failing to do so will give an inaccurate update that
leads to undesirably large loss values.

In the above set-up, all the forecast schemes have a forecast period of 1500 days,
and the loss series of length 1500 can be passed into the DM test to tell which
forecast is statistically better, hence yielding a ranking of the various forecasts. We
don’t apply filtering to the shrinkage estimators because they both serve the purpose
of noise reduction. The results are presented for different simulated data sets.

3.2.2 Results for ITD Simulated data

The IID assumption of financial asset returns doesn’t quite agree with real data,
however, it is commonly used [8] thanks to its statistical tractability. For IID simu-
lated data, we can obtain the true covariance matrix C' (3.1.2) which is constant in

8https://docs.scipy.org/doc/scipy/reference/generated /scipy.optimize. minimize. html
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time, so we also run the forecast with C in L(C, H,).

We first look at the optimal « values and the corresponding effective look-back
periods of the EWMA forecast.

N 100 200 300 400
& 0.998909  0.998907 0.998881 0.998877
T(a) 916 914 893 890

Table 3.1: Optimal values of a’s that minimize the averaged loss value f{é ) when
EWMA forecast is applied to IID simulated returns

As the number of assets increases, the optimal o decreases, which means in the
equation (1.1.1), the forecast H, ; depends less on the previous forecast H,, and
more weight is put on the new information at ¢. This is counter-intuitive because
larger N will bring more noise to the covariance proxy C, - X,X !, whose weight
should be lowered to achieve a more accurate forecast. We would be expecting in-
creasing effective look-back periods, while the opposite is observed.

The averaged loss values are presented in the tables below:

L) | Z(©)
SCM 3.548 | 3.564
SCM + filtering 3.459 | 3.473
EWMA 3.496 | 3.509
EWMA + filtering 3.456 | 3.469
Identity Shrinkage 3.533 | 3.549
EquiCorrelation Shrinkage 3.516 | 3.531
Market Shrinkage 3.460 | 3.474

Table 3.2: Averaged loss values over a forecast period of 1500 days when different
forecast schemes are applied to an 11D simulated return data set of N = 100

L(C) | Z(©)
SCM T.763 | 7.754
SCM + filtering 7.279 | 7.272
EWMA 7.466 | 7.460
EWMA + filtering 7.274 | 7.267
Identity Shrinkage 7.639 | 7.631
EquiCorrelation Shrinkage 7.537 | 7.531
Market Shrinkage T.281 | 7.274

Table 3.3: Averaged loss values over a forecast period of 1500 days when different
forecast schemes are applied to an IID simulated return data set of N = 200

The diagram 3.3 illustrates the averaged loss values f(é ) for different forecast
schemes when N varies. Because we fixed the look back period I = 500, as N
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L(C) | L(C)

SCM 12.214 | 12.235
SCM —+ filtering 10.763 | 10.780
EWMA 11.254 | 11.273
EWMA + filtering 10.755 | 10.771
Identity Shrinkage 11.737 | 11.757
EquiCorrelation Shrinkage 11.388 | 11.408
Market Shrinkage 10.764 | 10.781

Table 3.4: Averaged loss values over a forecast period of 1500 days when different
forecast schemes are applied to an IID simulated return data set of N = 300

L©) | L©)
SCM 18.738 | 18.705
SCM + filtering 14.773 | 14.780
EWMA 15.819 | 15.815
EWMA + filtering 14.752 | 14.759
Identity Shrinkage 16.803 | 16.784
EquiCorrelation Shrinkage 16.013 | 16.003
Market Shrinkage 14.762 | 14.769

Table 3.5: Averaged loss values over a forecast period of 1500 days when different
forecast schemes are applied to an IID simulated return data set of N = 400

increases, the ratio () := [/N decreases, and random noise distorts the forecasts
from true covariance more, giving larger loss values. Obviously, the SCM forecast is
most likely to be influenced by noise.

— SCM
1 — SCM+filtering
—— EWMA
16— EwMA+filtering
2 —— Identity_Shrinkage
S 14— EquiCorrelation_Shrinkage
£ Market_Shrinkage
812
o
-
E 10
o
&
3
z
5]
4
100 200 300 400
N

Figure 3.3: The averaged loss values L(C) plotted against N when various forecasts
are applied to IID simulated returns




We can immediately see some patterns in the above tables:

e The SCM forecast produces the largest averaged loss values, and is the worst
forecast as expected;

e Filtering effectively reduces noise in the forecast and gives smaller loss values;

e Among the three shrinkage schemes, the Market Shrinkage performs much
better than the other two. This makes sense because the data set used for
forecasts is simulated under the market index model, so the target F s best
describes the structure of the return data.

The ranking of various forecasts by L(C) in an ascending order are in table 3.6.
And the ranking by L(C') is the same. We can see that when N varies, the ranking
is quite consistent, with the SCM with filtering and Market Shrinkage being the

only exception.

N 100 200 300 400
SCM 7 7 7 T
SCM + filtering 2 2 2 3
EWMA 4 4 4 4
EWMA + filtering 1 1 1 1
Identity Shrinkage 6 6 6 6
EquiCorrelation Shrinkage [ 5 5 5 5
Market Shrinkage 3 3 3 2

Table 3.6: Ranking of forecasts applied to [ID simulated returns by the averaged
loss values

The next step is to determine whether the difference between f(é ) of different
forecasts is statistically significant, utilising the DM test introduced in section 2.2.
The same is repeated for the difference between L(C) to check if the DM ranking®
is consistent using covariance proxy and true covariance, which should be satisfied
when our loss function is robust. The DM test statistic (2.2.1) is asymptotically
normal, and a forecast period of 1500 days is large enough for the asymptotic 57 to
work. For loss series produced using covariance proxy and using true covariance, we
carry out the DM test of every pair of loss series by calculating the DM test statistic
S1 (2.2.1) of the loss differential of the two loss series. Note that the 97.5%-quantile
of a standard normal variable is 1.96, because the DM test is a two-tailed test, we
will consider +1.96 as critical values of DM statistic so that the null hypothesis is
rejected at a significance level of 5% when 57 > 1.96 or 57 < —1.96. We present the
DM test statistics with covariance proxy C, for N = 100, 200, 300 and 400 in tables
3.8, 3.9, 3.10 and 3.11 respectively. The same is done with true covariance in tables
3.12, 3.13, 3.14 and 3.15. In these tables, for brevity, we denote different forecast
schemes by capital letters, with the mapping shown in table 3.7.

We interpret the presentation of DM test statistics as explained below:

9The ranking based on results of the DM test
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Equi-

SCM ﬁsl?M* EWMA Ef:ﬁ MA+ SIldf?"'l"{‘;v" Correlation S?'I‘f‘ﬂ:zt
ering ering irinkage Shrinkage winkage
A B C D E F G

Table 3.7: Mapping of forecast schemes to capital letters

e The forecast schemes in each column are H;, and the ones in each row are
Hy,.

e Tor example, the test statistic at row B and column C is the normalised mean
of d?‘B = ey — up,y. Hence, a value larger than 1.96 tells us we can reject
the null hypothesis at 5% confidence level and conclude that the loss values
using forecast C are statistically larger than that of B, so B is a better forecast
at that particular value of N. This conclusion is visualized by colouring the
corresponding cells in red.

e Vice versa, a test statistic smaller than -1.96 leads to the conclusion that C is
a better forecast. This is coloured green.

e Otherwise, we cannot reject the null hypothesis and cannot tell which one is
more accurate. This is marked by a vellow cell.

e Recall that the assumption of stationarity needs to be fulfilled for the DM test
to be applicable, therefore, we plot the loss differential series of each pair of
loss series and each N. We take a p-value of 0.05 as the critical value, and any
smaller values make us reject the null hypothesis of the KPSS test that the
observed loss series is stationary. These loss differential series are less suitable
for the DM test and are marked in red in the plot. We present in the appendix
some plots of loss differentials d; = 4, — 12, of every pair of forecasts. The
loss differentials in the 7 x 7 plots corresponds to the DM test statistic values
in the tables in implementation of the forecasts in chapters 3 and 4.

A [B_[C [D [E [F |G

A -55.26  -38.92 -54.02 -53.02 -65.18 -61.05
B -5.54

C -31.15 -36.13 -33.22
D

E -51.35 -30.05 -49.65 -51.87 -57.64
F -45.48 -17.77 -44.06 -52.57
G -2.46 -6.94

Table 3.8: The DM test statistics using w;, = L(éh H,,;) and a?,i = Uy — Uz, ON
IID simulated returns when N = 100

From the tables of DM test using covariance proxy, we can see that all of the null
hypotheses are rejected with very large test statistics. For those tests with the true
covariance matrix, the test statistics are larger, which means that the difference in
predictive accuracy is more statistically significant. We determine the DM ranking
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A [B [Cc_ |D |E | F | G
A -107.52 -71.36 -106.32 -120.03 -127.00 -111.76
B -7.41

C -54.16 -56.89
D

E

F

-97.85 4745 -96.10 -106.01 -102.86

-87.60 -2241 -85.82 -93.60

6.85 [EBI000 -9.94

Table 3.9: The DM test statistics using i, = L((AL, H;,;) and d, = i — Ugy ON
IID simulated returns when N = 200

A _[B |C D JE [F |G

A 15950 -95.27 -150.07 -166.07 -173.57 -161.45
B -10.59

C -56.78 -58.32

D

E -145.84 -54.38 -144.98 -158.87 -148.52
F -129.73 -16.57 -128.29 -133.35
G -3.64 -11.21

Table 3.10: The DM test statistics using i;, = L(CA?t, H;,) and d, = iy, — Uy, ON
IID simulated returns when N = 300

A |B | C | D | E | F | G
-202.59 -117.03 -202.94 -188.33 -201.11 -203.27
-19.65 -21.78
-51.33 -52.55 -51.67

-188.97 -48.13 -188.92 -195.37  -190.14
-173.14  -9.78  -172.98 -175.13
-10.88

[ Res| Res| Rwl kap] fus] o=

Table 3.11: The DM test statistics using i, = L(Ct, H;,) and c?,t = U1y — Uoy ON
IID simulated returns when N = 400

A [B [C_[D [E B [G

A 898.65 -113.66 -931.68 -800.61 -730.91 -1700.46
B -37.07

C -75.97 -94.56

D

E -807.25 -82.54 -810.90 -497.20 -1735.14
F 718.05 -46.67  -789.15 -2059.97
G -6.87 -53.47

Table 3.12: The DM test statistics using u,, = L(C,, H;,) and d, = 1y, — us, on
IID simulated returns when N = 100

by comparing the number of cells of each colour in every column. For a particular
value of N, a green cell in a column means that the forecast of the column is more
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Al B | ¢ ] p | E | F | G
-3360.32 -119.86 -3779.22 -1126.35 -866.41 -3394.26
-59.32

| -2817.86  -69.40  -3174.14 -511.06  -3027.40

_ -932.42  -30.13  -1134.22 -947.69

| G -47.15 [UTE297  -84.62

Table 3.13: The DM test statistics using u;, = L(C,, H;;) and d, = u;, — uy, on
IID simulated returns when N = 200

A
B
C -75.31 -79.73
|'D
E
F

A ] B | ¢ ] D | E | F | &G

A -3094.40 -130.88 -3145.15 -966.99 -1419.93 -3122.65
B -75.15

C -66.25 -68.40

D

E -2253.05  -64.74  -2250.63 -882.87  -2260.35
F -1274.69  -18.65  -1408.06 -1262.14
G -17.32 -77.94

Table 3.14: The DM test statistics using u;, = L(C,, H;,) and d; = uy, — ug,; on
IID simulated returns when N = 300

A ] B | ¢ ] D | E | F | @
276751 -150.11 -2778.71 -1052.22 -1427.51 -2056.45
-65.25 -33.98

-55.68 -57.07 -55.96

-2025.70  -52.24  -2125.18 -1391.83  -2029.62
-1203.32  -10.11  -1330.95 -1281.52
-h2.65

A
B
C
D
E
F

G

Table 3.15: The DM test statistics using u;, = L(Cy, H;,) and d; = 1y, — ug, on
IID simulated returns when N = 400

accurate than the forecast of the row, a yellow cell is a tie, while a red cell means the
column forecast is less accurate. Using this principle, we arrive at the DM ranking of
various forecasts based on loss values against covariance proxy and true covariance.
The DM ranking for both scenarios agree completely with the ranking by averaged
loss values in table 3.6.

For every pair of forecasts, we can very confidently conclude the DM ranking,
which is consistent for both the covariance proxy and true covariance, verifying that
our loss function is indeed robust. Also, we can see that the DM ranking remains
almost unchanged when N changes.

The conclusion for the I1ID simulated returns is that the EWMA forecast with
filtering is the most accurate forecast, followed by the SCM forecast with filter-
ing/Market Shrinkage, and then the EWMA forecast, EquiCorrelation Shrinkage,
Identity Shrinkage and SCM forecast is the worst forecast.
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3.2.3 Results for Equi-Correlational GARCH (ECG) simu-
lated data

The optimal o values and the corresponding effective look-back periods for the
EWMA forecast are shown in the following table.

N 100 200 300 400
@ 0.998801 0.998842 0.998852 (.998841
T(a) 833 362 870 362

Table 3.16: Optimal values of a’s that minimize the averaged loss value f(é) when
EWMA forecast is applied to ECG simulated returns

The & for the ECG simulated returns are fluctuating when N increases, but
slightly smaller than those for the IID simulated returns.

The averaged loss values are presented in the table 3.17 below. Note that we
don’t include the loss values against the true covariance matrix, because the data
is simulated based on auto-regressive processes, and there is no known distribution
that the returns follow.

N 100 200 300 400
SCM 31.146 | 66.035 | 106.031 | 160.262
SCM + filtering 30.270 | 61.460 | 92.305 | 123.452
EWMA 30.629 | 63.245 | 96.930 | 133.178
EWMA + filtering 30.268 | 61.475 | 92.295 | 123.424
Identity Shrinkage 30.425 | 61.927 | 92.945 | 124.360
EquiCorrelation Shrinkage | 30.244 | 61.434 | 92.266 | 123.392
Market Shrinkage 30.287 | 61.484 | 92.317 | 123.450

Table 3.17: Averaged loss values f(é ) over a forecast period of 1500 days when
different forecast schemes are applied to an ECG simulated return data set of varying
Ns

The loss values are much bigger than the IID simulated data, but we are more
focused on the relative magnitudes of the loss values and the absolute values can be
adjusted by scaling the returns. Some patterns to notice are

e SCM forecast gives the largest averaged loss values and is again the worst
forecast.

e As N increases, the averaged loss values increase almost linearly except for
the SCM forecast whose loss value grows faster than the linear rate. This also
indicates it is the forecast most influenced by noise.

o Filtering still works as an effective way of noise reduction.
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e This time the EquiCorrelation Shrinkage performs the best out of the three
shrinkage targets hecause the original return data is simulated using the Equi-
Correlational model. The next best is Market Shrinkage while the worst one
is Identity Shrinkage which incorporates the least structure.

The ranking by averaged loss values in ascending order for different N's is in ta-
ble 3.18. Applying the DM test to the relevant pairs of loss series gives the following
results in tables 3.19, 3.20, 3.21 and 3.22.

N 100 200 300 400

SCM T 7 7 7
SCM + filtering :
EWMA

EWMA —+ filtering
Identity Shrinkage
EquiCorrelation Shrinkage
Market Shrinkagee

[ LR i e
[ L RS ) ) SV

[ B L i ) N
Lo = U O e

Table 3.18: Ranking of forecasts applied to ECG simulated returns by the averaged
loss values

A B [C D JE JF |G
-54.92 -39.56 -52.93 -49.37 -57.15

[3186° -0.55 [I7.53 -16.90
-34.77 -18.15 -34.72
-5.99
-20.67

-31.86
0.55

-17.53 -18.04

-22.51

Table 3.19: The DM test statistics using 1, = L(C;; H;,;) and ri’; = 11y — 1oy ON
ECG simulated returns when N = 100

A [B__[C _[D [E [F |G

A 10735 7177 -106.03 -101.46 -10819 -108.15

B -17.23

C -52.63 -53.81  -39.79 -53.18 -H2.11

D -2.27 p26BON 617 1.9

E -24.89 -26.39 -26.20 -24.04

F q
-24.44

Table 3.20: The DM test statistics using u,, = L(C’;, H;,) and rf; = Uy — Uz ON
ECG simulated returns when N = 200

Based on the results in the tables of DM test statistics, we come up with the
DM ranking of forecasts in table 77, with the different ranking from averaged loss
values ranking marked in red. We can see that, statistically, we are unable to tell
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A [B [Cc_ |D |E | F | G
-158.64 -94.57 -157.80 -154.85 -159.00 -159.19

134 [BSEON -18.05

-60.00 -50.64  -59.48

-58.91

1.34 -3.74
-33.79 -35.86 -35.75
-24.09

Table 3.21: The DM test statistics using i;, = L(é;, H;,;) and dy = i1y — gy ON
ECG simulated returns when N = 300

A |B | C D [ E | F | G

A 19013 -114.63 -180.64 -18859 -100.47 -190.49
B -3.17 8800 -2189  -0.55
C -52.20 -52.56  -47.07 5240 -52.13
D -3.73

E -41.81 -40.56  -38.27
F

G -26.43

Table 3.22: The DM test statistics using i, = L(é;, H;,) and rf; = Uy — gy ON
ECG simulated returns when N = 400

N 100 200 300 400
SCM T 7 7 7
SCM + filtering 2/3| 2 |2/3] 3/4
EWMA 6 6 6 6
EWNMA + filtering 2/313/4(2/3 2
Identity Shrinkage 5 ) 5 5
EquiCorrelation Shrinkage | 1 1 1 1
Market Shrinkage 4 3/4| 4 3/4

Table 3.23: The DM ranking of forecasts applied to ECG simulated returns

e whether SCM forecast with filtering or EWMA forecast with filtering is a
better one when N = 100, 300;

whether EWMA forecast with filtering and Market Shrinkage is a better fore-
cast when N = 200;

whether SCM forecast with filtering and Market Shrinkage is a better forecast
when N = 400.

Nevertheless, the rest DM rankings are clear and consistent with the averaged loss
values ranking. In general, the EquiCorrelation Shrinkage is the most accurate fore-
cast, followed by SCM with filtering/EWMA with filtering, then Market Shrinkage,
Identity Shrinkage, and EWMA forecast, with SCM at the bottom.
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3.2.4 Results for Constant Correlational GARCH(CCG) sim-
ulated data

The optimal o values and the corresponding effective look-back periods for the
EWMA forecast are shown in table 3.24. The & for the CCG simulated returns
increases when N increases and the effective look back period also increases. This
is expected as explained in the results for IID simulated data.

N 100 200 300 400
& 0.998655 0.998771 0.998780 0.998807
T(a) 742 813 818 837

Table 3.24: Optimal values of o’s that minimize the averaged loss value f(é) when
EWMA forecast is applied to CCC simulated returns

The averaged loss values are presented in the table 3.25 below. Note that we
don’t include the loss values against true covariance for the same reason as the ECG
simulated data.

N 100 200 300 400
SCM 25.840 | 51.380 | 78.981 | 113.273
SCM + filtering 25.949 | 50.352 | T4.536 | 100.472
EWMA 25.478 | 49.499 | 73.245 | 97.381
EWMA + filtering 25.878 | 49.998 | 73.530 | 96.968
Identity Shrinkage 25.751 | 50.674 | 76.230 | 102.961
EquiCorrelation Shrinkage | 25.633 | 50.025 | 74.097 | 98.246
Market Shrinkage 25.622 | 49.995 | T3.851 | 97.845

Table 3.25: Averaged loss values f(é ) over a forecast period of 1500 days when
different forecast schemes are applied to a CCG simulated return data set of varying
Ns

The ranking by averaged loss values in ascending order are in table 3.26. Apply-
ing the DM test to the relevant pairs of loss series gives results presented in tables
3.27, 3.28, 3.29 and 3.30. Most of the DM tests have null hypothesis rejected and
the DM ranking is the same as the ranking by averaged loss values in table 3.26.
Sometimes, we cannot tell the DM ranking of two forecasts directly from the sin-
gle test between them, for example, when N = 200 in table 3.28, the DM test of
EquiCorrelation Shrinkage and EWMA forecast with filtering gives 57 = 1.12, so we
cannot reject the null hypothesis. However, EquiCorrelation Shrinkage has 3 green
cells, 1 yellow cell and 2 red cells, while EWMA forecast with filtering has 1 more
vellow cell and 1 fewer red cell. This means that, statistically, EWMA forecast with
filtering has a tie with two forecast schemes, meanwhile, EquiCorrelation Shrinkage
has one tie and one loss. It is therefore fair to say EWMA forecast with filtering is
more accurate.
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N 100 200 300 400
SCM 5 7 7 7
SCM + filtering 7 5 5 5
EWMA 1 1 1 2
EWMA + filtering 6 3 2 1
Identity Shrinkage 1 6 6 6
EquiCorrelation Shrinkage | 3 1 1 4
Market Shrinkage 2 2 3 3

Table 3.26: Ranking of forecasts applied to CCG simulated returns by the averaged

loss values and the DM ranking are the same

A B C D E [F ]G

A 1654 -38.81 -50.81 -50.03 -49.97
B | -6.54 -28.77 -6.46 -12.47 -21.56 -22.72
C

D | -2.32 -27.56 -8.16 -17.01 -18.12
E -31.63 -43.12 -43.57
F -18.98 -8.59
G -17.59

Table 3.27: The DM test statistics using i;, = L[C;, H,,) and rfl = U1y — gy ON

CCG simulated returns when N = 100

A __[B_ [C [D [E [F [G

A 3234 -7020 -42.88 -108.64 -102.99 -104.08
B -27.08 -20.71 -13.62  -15.02
C

D -18.38 112 -0.12
E -11.54 -49.45 -23.97 -89.38  -91.82
F -2356 -1.12 -14.63
G 2231 0.12

Table 3.28: The DM test statistics using i;, = L(C;, H;,) and rf; = iy — 1lgy ON

CCG simulated returns when N = 200

A B [C |D J|E F G
A -57.54 -90.34 -86.04 -140.32 -138.05 -137.22
B -16.16 -16.10 704 -11.07
C
D -5.34
E -25.03 -55.46 -55.87 -126.07 -125.37
F -16.32 -15.07 -60.65
G 1172 8.4

Table 3.29: The DM test statistics using i;, = L[C;, H,,) and rfl = U1y — gy ON

CCG simulated returns when N = 300




A |B | C | D [ E |F | G

-126.04 -111.38 -139.87 -173.67 -177.63 -177.02
-25.72  -61.62 -49.92  -59.98
-3.85

-44.95  -49.16  -89.13 -157.09 -155.47

-7.41  -26.30 -49.91
-4.05  -18.94

Table 3.30: The DM test statistics using i;, = L(é;, H;,;) and dy = Q14 — g,y ON
CCG simulated returns when N = 400

Unlike the IID and ECG simulated returns, where the forecast ranking by the
DM test isn’t significantly influenced by the number of assets N, the DM ranking can
be N-dependent when different forecast schemes are applied to the CCG simulated
returns. And we can see that:

o The EWMA forecast with filtering isn't as powerful as with the previous two
simulated data sets, but its predictive accuracy improves as N increases. Be-
cause there is more noise and filtering’s role in noise reduction becomes more
important.

e The EWMA forecast and Market Shrinkage are the top forecasts for various NV,
with the EWMA forecast having a slightly smaller loss value than the Market
Shrinkage.

e Among the three shrinkage targets, the Market Shrinkage is the most accurate,
followed by EquiCorrelation Shrinkage and then Identity Shrinkage. This is the
same as the ITD simulated data. It shows that, without the special structure of
equal correlation in data simulation, the Market Shrinkage target best captures
the useful structure in the return data.

In general, for the CCG simulated returns, it is best to use EWMA forecast or
Market Shrinkage, and only apply filtering when N gets larger.
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Chapter 4

Forecasts Applied to Historical
Data

In this chapter, we apply various forecast schemes to the historical returns of the
S&P500 listed stocks and explore the ranking of different forecasts. We also explore
the covariance between US Treasury yield returns at the 1, 2, 3, 5, 7, 10, 20, and 30
vears maturity. Note that while we calculate log returns for the stocks, we directly
calculate the difference between adjacent yields at a daily frequency.

4.1 S&P500 Stock Data

We use the data from 01-01-2017 to 06-01-2022 of the first N = 100,200,300 and
400 stocks listed in the S&PH00 index and calculate their log returns. The total
forecast period is 861 days when we keep using 500 days as the look-back period
just as in the previous chapter. The optimal o values and the corresponding effective
look-back periods for the EWMA forecast are shown in the following table.

N 100 200 300 400
G 0.996649 0.997805 0.998146 0.998333
T(d4) 297 455 538 599

Table 4.1: Optimal values of a’s that minimize the averaged loss value f(é ) when
EWMA forecast is applied to historical stock returns

As N increases, there is more noise in the covariance proxy €y, the weighting
of which is therefore reduced to achieve a more accurate forecast, and this is done
by increasing «v. Meanwhile, the effective look-back period increases, which makes
sense because more assets are involved. Also, we notice that the & of the historical
stock returns are smaller than those of the simulated returns.

Next, we show the averaged loss values calculated using covariance proxy and
the ranking by the averaged loss values in tables 4.2 and 4.3. The test statistics for
the DM tests are presented in the tables 4.4, 4.5, 4.6 and 4.7 for N = 100, 200, 300
and 400 respectively.
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N 100 200 300 400

SCM 3.672 | 7.487 | 11.632 | 17.641
SCM + filtering 3.640 | 7.152 | 10.512 | 14.903
EWMA 3.595 | 7.219 | 10.811 | 15.075
EWMA + filtering 3.599 | 7.044 | 10.306 | 13.972
Identity Shrinkage 3.595 | 7.051 | 10.411 | 14.197
EquiCorrelation Shrinkage | 3.579 | 7.112 | 10.349 | 13.941
Market Shrinkage 3.585 | 7.026 | 10.290 | 13.864

Table 4.2: Averaged loss values f(C) over a forecast period of 861 days when
different forecast schemes are applied to historical return data set of varying Ns

N 100 200 300 400
SCM T 7 7
SCM + filtering
EWMA

EWMA —+ filtering
Identity Shrinkage
EquiCorrelation Shrinkage
Market Shrinkage

B = L L e O
Lo = = r
R = S e
— b e L Oy

Table 4.3: Ranking of forecasts applied to historical stock returns by the averaged
loss values

A B Jc D JE [|F |G
-481 -12.28 -587 -6.52 -T.07 -8.88
-593  -4.06 -4.98 -632 -7.85
0.37 -0.06 -162 -1.50
-0.37 -0.38 (=203 1.62
0.06 038 -491 -2.52
1.62 1.48
1.50

1.62 -1.48

Table 4.4: The DM test statistics using w;, = L(C:‘h H,,;) and rf,i = iy — Uz, ON
historical stock returns when N = 100

A _[B [C [D J[E [F |G

A -11.90 -21.40 -1791 -9.36 -9.91 -11.78
B -10.01 -2.04 -5.26 -6.27
C -3.33 -11.35 -39 -5.29  -6.13
D -0.70  0.44
E -3.25 -10.43 -8.20
F 0.70

G -0.44 -2.41

Table 4.5: The DM test statistics using @;, = L(C,, H,,) and d, = i, , — 15, on
historical stock returns when N = 200

50




A [B Jc [D JE [F ]G

-1598 -21.06 -19.38 -12.20 -12.36 -13.81
-11.91 276  -3.84 -6.60
-14.54 623 -6.76 -8.37

P20 099  -0.45

-2.70 -5.73 -12.84
-0.99 -4.90
0.45

Table 4.6: The DM test statistics using i, = L((ATL, H;,;) and d, = i — Ugy ON
historical stock returns when N = 300

A B [C D JE JF |G

-7.91

A 1728 1820 -18.04 -13.92 -13.07 -14.86
B 36810 -16.36 -6.86 -8.05 -0.75
C -3.68 -15.76 -7.63 -8.65 -0.98
D -043 -1.84
E -4.01 12,04 -17.79
F 0.43 -3.90
G 1.84

Table 4.7: The DM test statistics using u;, = L((A?h H;;) and rfé = iy — gy ON
historical stock returns when N = 400

By comparing the proportions of green, yellow and red cells for each column, we
can reach a conclusion about the DM ranking of various forecasts at different N's,
which is shown in table 4.8. The bold numbers in red mark the difference from the
ranks by averaged loss values in table 4.3.

N 100 200 300 400
SCM 7 7 7 7
SCM + filtering 6 5 5 5
EWMA 3 6 6 6
EWMA + filtering 4 2 2 2
Identity Shrinkage 5 1 4 1
EquiCorrelation Shrinkage | 1 1 3 3
Market Shrinkage 2 3 1 1

Table 4.8: The DM ranking of forecasts applied to historical stock returns

Although the ranking varies as N changes, the top performers are Market Shrink-
age, EquiCorrelation Shrinkage and EWMA forecast with filtering regardless of the
number of stocks. Recall that from Chapter 3, we have EWMA forecast filtering as
the most accurate forecast with IID simulated returns; EquiCorrelation Shrinkage
as the best for ECG simulated returns, and EWMA forecast with filtering is the best
when N gets large in CCG simulated returns. Market Shrinkage constantly performs
well except for a slightly worse ranking with ECG simulated returns. Therefore, it
is not surprising to get results like this for the historical return data. This also indi-
cates that all three simulation models capture part of the actual market performance
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of stocks.

4.2 US Treasury Yield Data

Treasury bonds, Treasury bills, and Treasury notes are all government-issued fixed-
income securities.! The different names are for different maturities. For convenience,
we call them Treasury securities. We use the US Treasury yield data® at constant
maturity of 1, 2, 3, 5, 7, 10, 20 and 30 years from 1980-01-02 to 2022-08-11. The only
exception is the 20-year Treasury yield, which is not available from the beginning of
1987 until October 1993. Therefore, we use the period 1993-10-01 to 2022-08-11 for
the 20-year Treasury vield. When applying forecasts, we use two different data sets,
one includes the 20-year Treasury yield from 1993 to 2022, and the other excludes
the 20-year Treasury yield and all other yields dating from 1980 to 2022. There are
8 and 7 assets in these two data sets respectively. The return from the treasury
vield is calculated directly as the absolute return. The optimal a’s for the EWMA
forecast and the corresponding effective look-back periods are shown below.

N 7 8
@ 0.970837 0.970507
T(a) 33.3 32.9

Table 4.9: Optimal values of a’s that minimize the averaged loss value Z(C') when
EWMA forecast is applied to Treasury yield returns

The values of & and the effective look-back periods are much smaller than those of
the stock returns. This is because the Treasury securities are traded less frequently,
and their yields contain much less noise. Moreover, unlike stock data, the Treasury
vields are available over decades of time, we can therefore double our look-back
period from 500 to 1000 when applying various forecasts of the covariance matrix.
The averaged loss values calculated using covariance proxy and the ranking by the
averaged loss values are shown in table 4.10. The test statistics for the DM tests
are presented in the tables 4.11, 4.12 without and with the 20-year yield returns
respectively. We also present the DM ranking in table 4.13.

The averaged loss values are much smaller than those calculated with the stock
returns, indicating that the covariance forecasts of the Treasury yield returns are
more accurate and less affected by noise. Therefore, we can observe that filter-
ing doesn’t work and worsens the original forecasts by SCM and EWMA. The DM
ranking shows some difference with and without the 20-year yield returns, but the
EWMA forecast is the most accurate for both data sets. We can also conclude
statistically that filtering indeed worsens our forecasts, giving larger loss values.
Therefore, our conclusion for the covariance forecast of the Treasury yield returns
covariance matrix is that it is best to apply the EWNMA forecast and avoid the use

1See “https:/ /www.investopedia.com/ask /answers/033115/what-are-differences-between-
treasury-bond-and-treasury-note-and-treasury-bill-tbill.asp” for detailed explanation

“For example, the 10-year Treasury yield is the "Market Yield on U.S. Treasury Se-
curities at 10-Year Constant Maturity, Quoted on an Investment Basis” downloaded from
"https:/ /fred.stlouisfed.org/series /DGS10”
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Table 4.10: Averaged loss values f(é ) when different forecast schemes are applied
to Treasury vield returns, with the ranking in the adjacent column on the right

N 7 8
SCM 0.5226 | 4 | 0.5199 | 4
SCM + filtering 0.6143 | 7 | 0.5510 | 7
EWMA 0.4895 | 1 | 0.4916 | 1
EWMA + filtering 0.5364 | 2 ] 0.5144 | 6
Identity Shrinkage 0.5222 | 5 | 0.5209 | 2
EquiCorrelation Shrinkage | 0.5227 | 6 | 0.5215 | 5
Market Shrinkage 0.5225 | 3 | 0.5199 | 3

Table 4.11:

The DM test statistics using u;, = L(é;; H;,) and rfg = 1y — 1oy ON

A B C]]D E
A -20.67 -3.16
B -28.28 -30.63 -20.47 -28.83
C
D -22.42
E | -3.86 2157 -3.87
F| 614 2184 -4.24 822
G -20.66  -3.15

F

-29.24

Treasury yield returns without the 20-year Treasury security

-28.35

G
-3.32

-3.97

-6.27

Table 4.12:

The DM test statistics using i;, = L(é;, H;,;) and dy = i1y — gy ON

A [BJ] C]D E F | G

A H -16.88 113 022 -2.80
B | -29.98 -29.59 -19.35 -30.56 -30.58 -30.04
C

D | -5.04 -22.79 -542 -524 -5.07
E| 113 -16.94 1.04
F | -0.22 -17.02 -8.69 -0.35
G -16.86 -1.04 0.3

Treasury yield returns with the 20-year Treasury Security

Table 4.13: The DM ranking of forecasts applied to Treasury yield returns

N 7 8
SCM 414/5
SCM + filtering 7|7
EWMA 1|1
EWMA + filtering 2|6
Identity Shrinkage 512/3
EquiCorrelation Shrinkage | 6 | 4/5
Market Shrinkage 312/3
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of filtering. The next best choice is Market Shrinkage.
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Chapter 5

Conclusions and Discussions

This thesis studies the ranking of competing forecasts of the conditional covariance
matrix of financial returns by a robust loss function (2.3.4).

L(IC.H)=Tr(H* + H>C)

where C' is the conditionally unbiased covariance proxy and H is the covariance
forecast. The loss function evaluates the distance of the forecasts from the true
covariance matrix and it comes from a special case of Patton’s [15] class of robust
and homogeneous loss functions, and we extended the inputs into the loss function
from univariate to multivariate. We then proved its robustness as defined in 2.3.1.
and also proved that the above loss function is uniquely minimised when the fore-
cast equals the true conditional covariance matrix. Then, we verified its robustness
using the IID simulated returns, by showing that the DM ranking of forecasts based
on the covariance proxy and the true conditional covariance agree with each other.
With the robustness property, this loss function can be used to evaluate various
covariance forecasts and most importantly, we can select the forecast closest to the
true conditional covariance.

The following table summarizes the top forecasts of covariance for different return
data sets:

1 2 3

Market Shrinkage /

SCM + filtering EWMA

IID Simulated Returns | EWMA + filtering

EquiCorrelation SCM + filtering/

ECG Simulated Retwrns | gy iage | EWMA + filtering

Market Shrinkage

EWMA/
CCG Simulated Returns | EWMA + filtering | Market Shrinkage

. Shrinkage
(when N is large) ©

EquiCorrelation

EquiCorrelation

Historical Stock Returns | Market Shrinkage .
Shrinkage

EWMA + filtering

Treasury vield Returns | EWMA | Market Shrinkage N.A.

Table 5.1: The most accurate forecast schemes for different return data set
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From the above table, we can clearly see that the most accurate forecasts are
EWMA/EWMA with filtering, Market Shrinkage and EquiCorrelation Shrinkage.
‘When the return data set has certain features, some forecasts tend to do better
than others.

e When the number of assets is more than 200, filtering is statistically significant
in noise reduction and improvement of forecast accuracy. This can be verified
if we look at the DM ranking of forecasts applied to CCG simulated returns in
table 3.26 and to historical stock returns in table 4.8, where the rank of SCM
with filtering and EWMA with filtering are both much better when N = 200
compared to when N = 100. In particular, the ranking of EWMA forecast
with filtering increases from the bottom to the top as N increases from 100 to
400 in table 3.26. When the asset number is small and when the returns are
in nature not very noisy (for example, the Treasury securities are traded less
frequently than the stocks), filtering actually worsens the forecast by treating
useful information as noise.

e Market Shrinkage is a good forecast regardless of the structure of the return
data sets. This is because it uses the average of all assets involved as the
market index and always captures a good amount of structured information in
the return data set. Notice that Market Shrinkage is the best forecast when
applied to historical stock returns.

e Although the EWMA forecast provides a very good forecast in some return
data sets (e.g the CCG simulated returns, historical returns when N = 100
and the Treasury yield returns), it can be near the bottom for some other data
sets. The behaviour is quite unstable compared to Market Shrinkage. If we are
not sure whether the asset number is big enough for filtering to be beneficial,
it is the most reliable to just apply the Market Shrinkage.

e EquiCorrelation Shrinkage’s rank depends on the degree to which the actual
correlations between the assets are equal. When the returns are simulated as-
suming an equal correlation i.e. the ECG simulated returns, EquiCorrelation
Shrinkage naturally provides the best forecast. Interestingly, the EquiCorre-
lation Shrinkage applied to historical stock returns also gives good accuracy,
indicating that for the most frequently traded stocks, the correlations between
them don't differ much.

e For the US Treasury yield returns, filtering is not suitable at all. EWMA and
Market Shrinkage are the best choices, while the others are all not so good,
the third most accurate forecast is therefore not applicable.

The structure of actual financial returns can change over time and can be quite
unpredictable. The simulated data sets above are far from an accurate replication
of the real stock returns, and the ranking of various forecasts applied to them just
gives us a list of potentially well-performing forecasts.

Even though we have performed the same procedure with some actual financial
returns like the stock returns and Treasury yield returns, we didn’t explore how the

forecast accuracy can be influenced by certain time periods in the economy. The
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performance of different forecasts might differ in calm and volatile markets. And
this can be a further direction of investigation.

In general, by introducing the multivariate version of the robust loss function,
the work of this thesis does provide a reliable way to measure the loss of a covari-
ance forecast /estimate against the unobservable true covariance matrix. Although
a significant proportion of the loss differentials don’t seem to satisfy the stationary
assumption of the DM test, most test statistics values exceed the critical value of
+1.96 by a large amount. This already shows the loss differentials deviate much
from zero, which is a fair justification of different predictive accuracy even if the
test statistic 57 aren’t asymptotically standard normal.




Appendix A

Loss Differentials Plots
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Figure A.1: Plots of loss differentials of every pair of the seven forecasts calculated
using the covariance proxy when applied to IID simulated returns of 100 assets
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Figure A.2: Plots of loss differentials of every pair of the seven forecasts calculated
using the covariance proxy when applied to IID simulated returns of 200 assets
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Figure A.3: Plots of loss differentials of every pair of the seven forecasts calculated
using the covariance proxy when applied to IID simulated returns of 300 assets
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Figure A.4: Plots of loss differentials of every pair of the seven forecasts calculated
using the covariance proxy when applied to IID simulated returns of 400 assets
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Figure A.5: Plots of loss differentials of every pair of the seven forecasts calculated
using the covariance proxy when applied to CCG simulated returns of 100 assets
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Figure A.6: Plots of loss differentials of every pair of the seven forecasts calculated
using the covariance proxy when applied to CCG simulated returns of 200 assets
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Figure A.7: Plots of loss differentials of every pair of the seven forecasts calculated
using the covariance proxy when applied to CCG simulated returns of 300 assets
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Figure A.8: Plots of loss differentials of every pair of the seven forecasts calculated
using the covariance proxy when applied to CCG simulated returns of 400 assets
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Figure A.9: Plots of loss differentials of every pair of the seven forecasts calculated
using the covariance proxy when applied to historical stock returns from 2017-01-01
to 2022-01-06 of the top 100 stocks in S&P500 index
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Figure A.10: Plots of loss differentials of every pair of the seven forecasts calculated
using the covariance proxy when applied to historical stock returns from 2017-01-01
to 2022-01-06 of the top 200 stocks in S&P500 index
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Figure A.11: Plots of loss differentials of every pair of the seven forecasts calculated
using the covariance proxy when applied to historical stock returns from 2017-01-01
to 2022-01-06 of the top 300 stocks in S&P500 index
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Figure A.12: Plots of loss differentials of every pair of the seven forecasts calculated
using the covariance proxy when applied to historical stock returns from 2017-01-01
to 2022-01-06 of the top 400 stocks in S&P500 index
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