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ABSTRACT
Difficulties arise in the definition of power flow in transmission-line systems with a complex propagation constant. These were resolved by
Kurokawa using quantities known as “power waves,” which contain both voltage and current terms and correctly separate power flow into
forward- and backward-traveling components. Similar difficulties must arise for electromagnetic metamaterials since any discrete, periodic
structure leads to band-limited propagation, with a complex propagation constant both inside and outside the bands due to loss and cutoff,
respectively. Here, discrete power waves are defined for magneto-inductive (MI) systems, metamaterials based on chains of magnetically
coupled LC resonators. These waves are shown to satisfy the discrete power conservation equation for MI waves and are used to calculate
scattering parameters for multi-port MI devices without the anomalous predictions of conventional methods. The results will allow correct
evaluation of internal scattering parameters in MI systems.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0049806

I. INTRODUCTION
Scattering parameters provide tools to analyze reflection

and transmission at discontinuities in electromagnetic systems or
media.1,2 However, it is well known that there may be inconsistencies
when port impedances are complex or there is gain or loss.3,4 These
arise from the fact that while amplitudes are linear quantities, powers
are not. Conventional definitions may then result in anomalies, such
as a reflection coefficient being apparently greater than unity even
for a passive load.5 These difficulties were resolved for transmission-
line systems by Kurokawa6 and others.7–9 For input voltages and
currents vi and ii into a set of ports of impedance zi, the new quan-
tities ai = (vi + ziii)/{2

√

Re(zi)} and bi = (vi − z∗i ii)/{2
√

Re(zi)}

are introduced, where “∗” denotes the complex conjugate. Since
1
2{∣ai∣

2
− ∣bi∣

2
} =

1
2 Re(iiv∗i ), forward and backward power flow may

then be separately described using these “power waves” by the terms
1
2 ∣ai∣

2 and 1
2 ∣bi∣

2. This allowed a consistent definition of scatter-
ing parameters, for example, for a two-port device as S11 = b1/a1,
S12 = b1/a2, S21 = b2/a1, and S22 = b2/a2.

While debate continues,10,11 real impedance and low loss
render these distinctions largely unimportant for conventional
systems. However, they assume much greater significance for

metamaterials, which, due to their periodic arrangement, often have
complex impedance and support lossy, band-limited propagation.
Here, we demonstrate the application of power waves to magneto-
inductive (MI) waveguides, metamaterials based on chains of mag-
netically coupled LC resonators.12,13 MI waves have been described
at frequencies from RF to optical.14–22 Passive devices have been pro-
posed,23,24 and applications are demonstrated in power transfer,25–29

communications,30–33 and sensing.34–37 However, low-loss and in-
band propagation has often been assumed.24 Although MI systems
will almost certainly be terminated using real impedance, they are
becoming increasingly connected internally, and effective design
then requires that intermediate scattering parameters be correctly
evaluated.

The aim of this paper is to develop a power wave formula-
tion for a periodic system supporting current waves that can be
used to obtain scattering parameters at junctions between media in
addition to terminations. Important differences from Kurokawa’s
work are introduced by the discrete nature of the system and lack
of voltages at internal elements. In Sec. II, we derive the power con-
servation relation for MI waves. In Sec. III, we prove that discrete
variants of power waves satisfy this relation and show how they may
be used to find scattering parameters in MI systems. In Sec. IV,
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we illustrate the process with simple examples for N-port MI devices
where conventional methods break down. Conclusions are drawn in
Sec. V.

II. POWER CONSERVATION IN MAGNETO-INDUCTIVE
SYSTEMS

We begin by considering an infinite MI waveguide formed from
magnetically coupled, lossy resonant loops, as shown in Fig. 1.

At a low frequency, the elements may be modeled as lumped
circuits of inductance L (with associated resistance R) and capac-
itance C, coupled by mutual inductance M. For nearest-neighbor
coupling, the equation relating the currents In in adjacent loops at
angular frequency ω is

(R + jωL + 1/jωC)In + jωM(In−1 + In+1) = 0. (1)

The assumption of forward-going traveling wave solutions in the
form In = IF exp(−jnka), where IF is the current amplitude, k is
the propagation constant, and a is the element spacing, yields the
well-known dispersion equation12,13

R + jωL + 1/jωC + 2jωM cos(ka) = 0. (2)

This result may be expressed alternatively in the normalized form as

1 − ω2
0/ω

2
− jω0/ωQ + κ cos(ka) = 0. (3)

Here, ω0 = 1/
√

LC is the resonant frequency, Q = ω0L/R is the qual-
ity factor, and κ = 2M/L is the coupling coefficient. Lossless systems
are band-limited to a frequency range determined by κ (which may
be positive or negative), namely,

1/
√

(1 + ∣κ∣) ≤ ω/ω0 ≤ 1/
√

(1 − ∣κ∣). (4)

Within this band, k is real, with ka = π/2 at resonance. Outside
it, k abruptly becomes imaginary. It is also well known23 that the
characteristic impedance is

Z0 = jωM exp(−jka). (5)

In general, Z0 is complex. However, when k is real, we can obtain

Re(Z0) = ωM sin(ka). (6)

In this case, Re(Z0) reduces to ω0M at resonance and to zero at
the band edges. Lossy systems have a complex propagation constant
k = k′ − jk′′ and allow propagation out-of-band. Figure 2 shows the
frequency dependence of k′a and k′′a, for example, parameters of
κ = 0.6, Q = 10 000. Here, the black dotted lines show the cutoff fre-
quencies, highlighting the band-limited nature of propagation in
low-loss systems.

FIG. 1. MI waveguide showing the direction of power flow for type 1 power waves.

FIG. 2. Frequency dependence of k′a and k′′a for an MI waveguide with
κ = 0.6, Q = 10 000. Dotted lines indicate the lossless band edges.

Figure 3 shows the corresponding variation of Z0; the wide
variations in both the real and imaginary parts make broad-band
impedance matching difficult.

We now consider the flow of power. Multiplying (1) by I∗n , we
get

(R + jωL + 1/jωC)InI∗n + jωM(In−1I∗n + I∗n In+1) = 0. (7)

Adding (7) to its own complex conjugate, dividing by 4, and re-
arranging, we then get

1
2

RInI∗n + (
jωM

4
)(I∗n In+1 − InI∗n+1)

= (
jωM

4
)(I∗n−1In − In−1I∗n ). (8)

FIG. 3. Frequency dependence of Z0 for an MI waveguide with κ = 0.6,
Q = 10 000.
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Since the first term above is the power Pd dissipated in element
n, (8) is a power conservation relation, with the second and third
terms representing the powers Pn+1 and Pn flowing into element
n + 1 from element n and into n from n − 1, respectively. Figure 4
shows variations of Pd, Pn, and Pn+1 with n for a very lossy
MI waveguide with parameters κ = 0.6 and Q = 10, assuming that
L = 100 nH, f 0 = 1 GHz, and ω/ω0 = 1. Figure 4(a) shows the results
obtained when there is only a forward-going wave present so that
In = IFexp(−jnka), with IF = 1 mA. In this case, all three varia-
tions decrease exponentially with n as expected. Figure 4(b) shows
results when both forward- and backward-going waves are present
so that In = IF exp(−jnka) + IB exp(+jnka), with IF = IB = 1 mA. In
this case, Pd, Pn, and Pn+1 are not (as might initially be expected)
sums or differences of exponentials; there is an additional oscillation
caused by beating. In both cases, we have verified that the power
conservation relation (8) is satisfied.

III. DISCRETE POWER WAVES AND SCATTERING
PARAMETERS

We now seek to express power flow for the discrete current
waves that exist in MI systems. To do so, we introduce a discrete
form of power wave. We will need two types. For lines extending to
the left, we define type 1 amplitudes A1n and B1n at element n as

A1n = (−jωMIn−1 + Z0In)/{2
√

Re(Z0)},

B1n = (−jωMIn−1 − Z∗0 In)/{2
√

Re(Z0)}.
(9)

Note that these expressions contain no voltages. However, analo-
gies with Kurokawa’s a and b coefficients follow from the fact that

FIG. 4. Variation of Pd , Pn, and Pn+1 with n for an MI waveguide with κ = 0.6,
Q = 10, assuming L = 100 nH, f 0 = 1 GHz, ω/ω0 = 1, and (a) IF = 1 mA, IB = 0
and (b) IF = IB = 1 mA.

−jωMIn−1 is the voltage induced in element n by element n − 1.
Multiplying out, we get

∣A1n∣
2
= {ω2M2In−1I∗n−1 + jωMZ0I∗n−1In − jωMZ∗0 In−1I∗n
+ Z0Z∗0 InI∗n }/{4Re(Z0)},

∣B1n∣
2
= {ω2M2In−1I∗n−1 − jωMZ∗0 I∗n−1In + jωMZ0In−1I∗n
+ Z0Z∗0 InI∗n }/{4Re(Z0)}.

(10)

Subtracting these equations from each other and dividing by 2, we
then get

1
2
{∣A1n∣

2
− ∣B1n∣

2
} = (

jωM
4
)(I∗n−1In − In−1I∗n ). (11)

In a similar way, we can obtain

1
2
{∣A1n+1∣

2
− ∣B1n+1∣

2
} = (

jωM
4
)(I∗n In+1 − InI∗n+1). (12)

Equations (11) and (12) may then be recognized as Pn and Pn+1,
respectively. Substituting into (8) and re-arranging the equation so
that all terms are positive, the result is

1
2

R∣In∣
2
+

1
2
{∣A1n+1∣

2
+ ∣B1n∣

2
} =

1
2
{∣A1n∣

2
+ ∣B1n+1∣

2
}. (13)

Equation (13) then allows the direction of the separate power flows
carried by each power wave to be identified as shown in Fig. 1.

Before proceeding, we briefly consider some properties of these
waves when k is real and the current consists of the sum of a forward-
going wave of amplitude IF and a backward wave of amplitude IB so
that In can be written as

In = IF exp(−jnka) + IB exp(+jnka). (14)

Direct substitution shows that

A1n = +
√

Re(Z0)IF exp(−jnka),

B1n = −
√

Re(Z0)IB exp(+jnka).
(15)

Clearly, A1n is only dependent on IF in this case, while B1n is only
dependent on IB. The forward and backward power flows are then

1
2
∣A1n∣

2
=

1
2

Re(Z0)∣IF ∣
2,

1
2
∣B1n∣

2
=

1
2

Re(Z0)∣IB∣
2.

(16)

These results imply that for real k, there will be no difference between
calculations based on power waves and on the moduli squared of the
separate current amplitudes. However, differences are to be expected
when k is complex.

We now consider the second type of discrete power wave for
lines extending to the right. For consistency with Kurokawa’s direc-
tion of current flow as “inward,”6 we define type 2 amplitudes A2n
and B2n at element n as

A2n = (jωMIn+1 − Z0In)/{2
√

Re(Z0)},

B2n = (jωMIn+1 + Z∗0 In)/{2
√

Re(Z0)}.
(17)
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FIG. 5. Type 1 and type 2 power waves used to find the scattering parameters of
a two-port MI device.

FIG. 6. (a) General two-port device and example two-port MI systems with (b)
equal and (c) unequal port impedance.

Here, jωMIn+1 is the voltage induced in element n by element n + 1.
Carrying out similar manipulations, it is simple to show that

1
2

R∣In∣
2
+

1
2
{∣A2n−1∣

2
+ ∣B2n∣

2
} =

1
2
{∣A2n∣

2
+ ∣B2n−1∣

2
}. (18)

This power conservation relation is in a similar form to (13), but
the terms are different. The two types of discrete power waves allow
sources at different locations, and both are needed to compute the
full set of S-parameters. For example, Fig. 5 shows a two-port MI
device extending from element m to element n; here, the scattering
parameters are

S11 = B1m/A1m, S12 = B1m/A2n,

S21 = B2n/A1m, S22 = B2n/A2n.
(19)

As expected, these expressions are analogous to Kurokawa’s scat-
tering parameters. Simple conclusions may be drawn immediately.
For example, if k is purely imaginary, which occurs out-of-band in
lossless systems, the conjugate impedance is Z∗0 = −Z0. In this case,
B1m = A1m and B2n = A2n, so S11 and S22 are unity for any k.

Before presenting examples, we show how Kurokawa’s scatter-
ing parameters can be found for terminated MI circuits; we term this
the circuit method. Figure 6(a) shows the arrangement of a two-port
device using his notation for voltages v1 and v2 and currents i1 and
i2 at ports 1 and 2.

In this case, the power wave scattering parameters are

S11 = (v1 − z∗1 i1)/(v1 + z1i1),

S21 =
√

{Re(z1)/Re(z2)}(v2 − z∗2 i2)/(v1 + z1i1).
(20)

If v1 is derived from a source at port 1 with voltage v01, v1 = v01
− z1i1. Similarly, in the absence of a source at port 2, v2 = −z2i2.
These results may therefore be written as

S11 = 1 − 2Re(z1)i1/v01,

S21 = −2
√

{Re(z1)Re(z2)}i2/v01.
(21)

These expressions allow the power wave scattering parameters to be
found from a numerical solution of the circuit equations, which can
yield i1 and i2 for a given v01.

IV. EXAMPLES
We illustrate the use of the discrete power waves with examples

chosen to demonstrate anomalous predictions of increasing severity
using conventional methods, first involving a two-port device with
equal and unequal port impedances and then a three-port device.

A. Two-port device, equal port impedances
We begin with the case shown in Fig. 6(b), namely, an MI

waveguide discontinuity caused by a local variation in the mutual
inductance from M to M′ = μM between two elements. We follow
the approach used in Ref. 24 of finding the reflection and transmis-
sion coefficients at the junction. The governing equations are as (1)
for all elements except these, where

(R + jωL + 1/jωC)I−1 + jωM(I−2 + μI0) = 0,
(R + jωL + 1/jωC)I0 + jωM(μI−1 + I1) = 0.

(22)

Solutions may be found for incidence from n = −∞ by assum-
ing incident and reflected waves before the discontinuity and a
transmitted wave after it so that

In = II exp(−jnka) + IR exp(+jnka) for n < 0,
In = IT exp(−jnka) for n ≥ 0.

(23)

Away from the discontinuity, these solutions satisfy Eq. (1). Substi-
tution into (22) allows the reflection and transmission coefficients
Γ = IR/II and T = IT/II to be found as

Γ =
(μ2
− 1) exp(+jka)

{exp(+jka) − μ2 exp(−jka)}
,

T =
μ{exp(+jka) − exp(−jka)}
{exp(+jka) − μ2 exp(−jka)}

.
(24)

As expected, Γ = 0 and T = 1 when μ = 1. For lossless systems and
in-band operation, these expressions allow calculation of ∣S11∣

2 and
∣S21∣

2 as ∣Γ∣2 and ∣T∣2; we refer to this approach as the “modulus
square” method. However, for lossy systems and/or out-of-band
operation, the results can be anomalous. We illustrate this by com-
parison with the results obtained by (a) using the circuit method (21)
with an equivalent circuit model of the system in Figs. 6(a) and 6(b)
substituting (24) into expressions (9) and (17) for discrete MI power
waves and then evaluating the scattering parameters using (19). In
each case, the ports are effectively located at elements −1 and 0.

As a numerical example, we first assume parameters of
κ = 0.6, Q = 10 000, and μ = 1.1, defining a weak reflector in a
strongly coupled system with unfeasibly low loss. Figure 7 shows the
variations with frequency of ∣S11∣

2 and ∣S21∣
2 on a dB scale obtained

using the three methods. The results are qualitatively similar in each
case. All three methods agree in-band, where there is high transmis-
sion. The circuit and power wave methods agree out-of-band and
show high reflection in this range. However, the modulus square
method predicts a reflection coefficient greater than unity here.
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FIG. 7. Frequency dependence of ∣S11∣2 and ∣S21∣2 for a weak MI reflector with
κ = 0.6, Q = 10 000, and μ = 1.1 as predicted using three different methods.

Figure 8 shows similar results for ∣S11∣
2 obtained with more

realistic losses (Q = 100). The circuit and power wave calculations
again agree exactly over the whole range. However, the predictions
of the modulus square method are now incorrect in-band as well as
out-of-band.

B. Two-port device, unequal port impedances
We now consider the case shown in Fig. 6(c), namely, a dis-

continuity caused by a global variation in the mutual inductance
from M to M′ = μM between elements −1 and 0 and thereafter, so
the system consists of two MI waveguides with different propaga-
tion constants k1 and k2 connected together. There are now two
dispersion equations,

R + jωL + 1/jωC + 2jωM cos(k1a) = 0 for n < −1,
R + jωL + 1/jωC + 2jωμM cos(k2a) = 0 for n > 0.

(25)

These equations lead to characteristic impedances Z01
= jωM exp(−jk1a) and Z02 = jωμM exp(−jk2a) for the two
lines. At the junction, the governing equations are

(R + jωL + 1/jωC)I−1 + jωM(I−2 + μI0) = 0,
(R + jωL + 1/jωC)I0 + jωμM(I−1 + I1) = 0.

(26)

Assuming a solution in the form of incident, reflected, and transmit-
ted waves, namely,

In = II exp(−jnk1a) + IR exp(+jnk1a) for n < 0,
In = IT exp(−jnk2a) for n ≥ 0.

(27)

FIG. 8. Frequency dependence of ∣S11∣2 for a weak MI reflector with κ = 0.6,
Q = 100, and μ = 1.1 as predicted using three different methods.

The reflection and transmission coefficients may be found as

Γ =
{μ exp(+jk1a) − exp(+jk2a)}
{exp(+jk2a) − μ exp(+jk1a)}

,

T =
{exp(+jk1a) − exp(−jk1a)}
{exp(+jk2a) − μ exp(+jk1a)}

.
(28)

Once again, as expected, Γ = 0 and T = 1 when μ = 1 and k1 = k2.
Scattering parameters for ports at elements −1 and 0 may

again be calculated by all three methods. For example, we again
assume the parameters κ = 0.6 and Q = 100 and take μ = 1.1 so that
the right-hand side line has a larger bandwidth than the left-hand
side line and ∣Z02∣ > ∣Z01∣. Figure 9 shows the frequency depen-
dence of ∣S11∣

2 and ∣S21∣
2 calculated by all three methods on a dB

scale, with the cutoff frequencies of the two lossless bands marked
using black dotted and dotted-dashed lines. Once again, the cir-
cuit and power wave methods agree exactly. The modulus square
method agrees reasonably inside the smaller band, when k1 and
k2 are both approximately real. However, it predicts unphysical
results when either or both of k1 and k2 have significant imaginary
parts.

C. Three-port device, equal port impedances
We now consider the three-port splitter shown in Fig. 10 and

formed from three MI waveguides with identical characteristics.
These support currents Ii,n, where i = 1, 2, 3. Line 1 extends from
n = −∞ to n = −1, and lines 2 and 3 extend from n = 1 to n = +∞.
The three lines are coupled together at element 0, which has mutual
inductance Mi = μiM to line i. Elsewhere, the three lines have

AIP Advances 11, 045327 (2021); doi: 10.1063/5.0049806 11, 045327-5
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FIG. 9. Frequency dependence of ∣S11∣2 and ∣S21∣2 for a junction between two MI
waveguides with κ = 0.6, Q = 100, and μ = 1.1 as predicted using three different
methods. Black dashed and dotted-dashed lines show the lossless band edges.

parameters R, L, C, and M, and the dispersion equation is analogous
to (1).

The equations that must be solved at the junction are

(R + jωL + 1/jωC)I1,−1 + jωM(I1,−2 + μ1I0) = 0,
(R + jωL + 1/jωC)I0 + jωM(μ1I1,−1 + μ2I2,1 + μ3I3,1) = 0,

(R + jωL + 1/jωC)I2,1 + jωM(I2,2 + μ2I0) = 0,
(R + jωL + 1/jωC)I3,1 + jωM(I3,2 + μ3I0) = 0.

(29)

Here, I0 is the current at the connecting loop, a separate unknown.
For incidence from line 1, solutions are assumed as

I1,n = II exp(−jnka) + IR exp(+jnka) for n < 0,
I2n = IT2 exp(−jnka)for n > 0,
I3n = IT3 exp(−jnka)for n > 0.

(30)

FIG. 10. Three-port MI splitter: (a) port definition and (b) physical arrangement.

Substituting and making use of the dispersion equation, solutions
can be obtained as24

Γ =
IR

II
=

(1 − μ2
1) exp(+jka) − (μ2

2 + μ2
3 − 1) exp(−jka)

(μ2
1 + μ2

2 + μ2
3 − 1) exp(−jka) − exp(+jka)

,

T2 =
IT2

II
=

μ1μ2{exp(−jka) − exp(+jka)}
(μ2

1 + μ2
2 + μ2

3 − 1) exp(−jka) − exp(+jka)
,

T3 =
IT3

II
=

μ1μ3{exp(−jka) − exp(+jka)}
(μ2

1 + μ2
2 + μ2

3 − 1) exp(−jka) − exp(+jka)
.

(31)

Here, we focus on the case when μ1 = 1 and μ2
2 + μ2

3 = 1 and (31)
reduces to Γ = 0, T2 = μ2, and T3 = μ3, implying that the splitter is
matched and has a constant splitting ratio. Using the circuit method,
equations are solved for the four loops, assuming a voltage source
with output impedance Z0 at port 1 and terminations at ports 2 and
3, as shown in Fig. 10(a). Using discrete power waves, A and B coeffi-
cients are found for each line in turn. Figure 11 shows the frequency
dependence on a dB scale of ∣S11∣

2 and ∣S21∣
2 thus obtained for a split-

ter with parameters κ = 0.6, Q = 100, μ1 = 1, and μ2 = μ3 = 1/
√

2, so
the device is a 3dB splitter. As usual, the black dotted lines show the
lossless band edges. The predictions of the modulus square method
are entirely incorrect for ∣S11∣

2 since this trace is absent. Although
the predictions for ∣S21∣

2 (and ∣S31∣
2, since this is identical) are qual-

itatively correct in-band, only the circuit and power wave methods
show the expected band-limited performance.

These results highlight the need to obtain realistic estimates
of power flow when there is loss and/or when propagation is out-
of-band. For terminated ports, the circuit method of Eq. (21) gives

FIG. 11. Frequency dependence of ∣S11∣2 and ∣S21∣2 for a 3dB MI splitter with
parameters κ = 0.6, Q = 100, μ1 = 1, and μ2 = μ3 = 1/√2 as predicted using
three different methods. Black dashed lines show the lossless band edges.
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numerical results that are universally equivalent to those obtained
using Kurokawa’s method.6 However, the discrete power wave
method also allows scattering parameters to be found when there
is no immediately adjacent port, for example, at junctions between
semi-infinite media. As we have shown numerically, this allows
direct exploitation of the solutions of boundary matching problems.
Although these are not presented here due to their length, we have
also used known results for Γ and T to construct complete analytic
expressions for the S-parameters themselves.

V. CONCLUSIONS
A discrete formulation of power waves has been developed for

magneto-inductive waveguides. These waves are analogous to the
continuous power waves introduced by Kurokawa for transmission-
line systems, satisfy the power conservation relation, and avoid the
physical anomalies seen in scattering parameters found using mod-
ulus square methods for passive MI systems. They are applicable
to a system supporting pure current waves and allow determina-
tion of intermediate scattering parameters, for example, at junctions
between semi-infinite media.

The importance of the power wave approach has been demon-
strated using examples involving multi-port MI devices, which show
how analytic solutions can be correctly converted to scattering
parameters. Consequently, this approach should assist in designing
systems that involve connected MI devices (for example, contain-
ing splitting or filtering components as well as simple propagation
pathways). Since an analogous power conservation relation may be
constructed for MI waves in 2D, assuming mutual inductances Mx
and My in the two perpendicular directions, it may be useful for cal-
culating power flow in devices based on metasurfaces. Finally, it is
likely to be relevant to other periodic metamaterials, such as electro-
inductive waveguides,38 for which discrete power waves may also be
constructed.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.
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