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Rytov’s theory of thermally generated radiation is used to find the noise in two-dimensional

passive guides based on an arbitrary distribution of lossy isotropic dielectric. To simplify

calculations, the Maxwell curl equations are approximated using difference equations that also

permit a transmission-line analogy, and material losses are assumed to be low enough for modal

losses to be estimated using perturbation theory. It is shown that an effective medium

representation of each mode is valid for both loss and noise and, hence, that a one-dimensional

model can be used to estimate the best achievable noise factor when a given mode is used in a

communications link. This model only requires knowledge of the real and imaginary parts of the

modal dielectric constant. The former can be found by solving the lossless eigenvalue problem,

while the latter can be estimated using perturbation theory. Because of their high loss, the theory is

most relevant to plasmonic waveguides, and its application is demonstrated using single interface,

slab, and slot guide examples. The best noise performance is offered by the long-range plasmon

supported by the slab guide. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4880663]

I. INTRODUCTION

The development of long-distance optical communica-

tions was a major technological success of the 21st century.

Necessary conditions were the availability of waveguides with

low dispersion and low loss. Alternative structures based on

metals and dielectrics—plasmonic guides—are being pro-

posed for on-chip communication.1–3 However, collision

damping in metals causes high attenuation. Consequently,

there has been intensive interest in arrangements with low

loss. The earliest example is the “long-range” plasmon sup-

ported by a thin metal slab, which achieves its effect by

extending the modal field outside the metal.4–6 Narrow metal

strips, which loosen the confinement further, are now being

investigated,7–9 as are wires,10–12 slots,13–16 and grooves.17–19

Amplification using a dye has also been proposed to compen-

sate for losses.20,21

Communication systems also suffer from noise. In fibre

optics, propagation loss is so low that the focus is on ampli-

fied spontaneous emission in amplifiers22–24 and Johnson

and shot noise in the receiver.25 Noise theories have already

been developed for active plasmonics,26,27 and their implica-

tions are being explored.28 However, because losses are

much higher in plasmonics, thermal noise may be more sig-

nificant. Noise was first observed experimentally in resistors

by Johnson,29 and its relation to loss explained in classical

and quantum–mechanical terms by Nyquist30 and Callen and

Welton.31 The general relation is known as the fluctuation-

dissipation (FD) theorem. In the 1950s, Rytov developed a

model for thermal radiation by adding sources derived from

the FD theorem to the Maxwell curl equations.32 However,

Rytov only explored simple waveguide problems, the effect

of walls or inclusions in hollow waveguides.33 Emission

from such guides forms the basis of microwave noise

standards.34

Rytov’s methods are hard to apply to general geome-

tries. Spurred by the development of metamaterials, for

which an equivalent circuit model is realistic, we have devel-

oped a transmission line approach to one-dimensional (1D)

thermal noise, which involves replacement of differentials

with discrete equivalents.35 The problem of integrating the

effect of noise sources is then replaced with summation.

Analytic proofs—that noise is linked to effective medium

properties—may then be arrived at easily. Emission and

related metrics such as the noise factor may be computed

directly, and additional effects such as noise carried by inter-

nal lattice waves may also be incorporated.36

Here, we adapt the method to more general 2D guides.

Once again, we use difference equations that allow a

transmission-line analogy. To simplify calculations, losses

are assumed to be low, so perturbation theory can be used.

Because most dielectric guides have low loss and TEM-like

modes, there are few literature discussions of loss or polar-

ization effects. An exception is the difference between TE

and TM mode gain in semiconductor lasers.37,38 However,

losses are much higher in plasmonics, and polarization is

crucial. Here both polarizations are considered together. The

aim is to prove that modal noise is directly linked to modal

effective medium properties, and hence that noise can be

computed directly in a 1D calculation. If this can be done,

thermal noise may easily be incorporated into transmission

line models of plasmonics,39 or network models of amplifi-

cation.40 The wave equation is discussed in Sec. II, the wave-

guide equation in Sec. III, and perturbation expressions for

loss in Sec. IV. The link between modal noise and loss is

derived in Sec. V, and a method of calculating the noise fac-

tor in Sec. VI. The performance of three different plasmonic

waveguides is compared in Sec. VII, and conclusions are

drawn in Sec. VIII.
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II. THE DISCRETE MODEL AND THE WAVE EQUATION

We first develop a transmission line representation for the geometry of Figure 1(a), namely a z-propagating wave-

guide described by a general dielectric constant variation e(x) in the transverse direction. The Maxwell curl equations

reduce to

TE : @Hx=@z � @Hz=@x ¼ þjxeEy

@Ey=@z ¼ þjxl0Hx

@Ey=@x ¼ �jxl0Hz

TM : @Ex=@z � @Ez=@x ¼ �jxl0Hy;

@Hy=@z ¼ �jxeEx;

@Hy=@x ¼ þjxeEz:

(1)

Here, Ex, Ey, and Ez and Hx, Hy, and Hz are x-, y-, and

z-components of the time-independent electric and mag-

netic fields at angular frequency x, and l0 and e are the per-

meability of free space and the more general permittivity.

We represent both polarizations using the 2D

transmission-line model of Figure 1(b). Here, the lattice is

of side a, the fields are represented by a nodal voltage Vm,n,

and line currents IXm,n and IZm,n, and material parameters

are represented using per-unit length inductance and capac-

itance LPm and CPm that vary only with the transverse index

m. The circuit equations are

IXm;n � IXm�1;nð Þ=a þ IZm;n � IZm;n�1ð Þ=a ¼ �jxCPmVm;n;

Vmþ1;n � Vm;nð Þ=a ¼ �jxLPmIXm;n;

Vm;nþ1 � Vm;nð Þ=a ¼ �jxLPmIZm;n:

(2)

Comparison with (1) shows that the field and circuit quanti-

ties must map together as shown in Table I. The transmission

line must then be different for each polarization. For TE

(Figure 2(a)), the series inductors represent magnetic proper-

ties and the shunt capacitors dielectric properties. For TM

(Figure 2(b)), it is the other way around. This conclusion is

counter-intuitive, but the circuit analogy is best considered

as an aid to calculation rather than a physical model. The

effect of noise in the dielectric may then conveniently be

represented by shunt current sources Jm,n (for TE) and series

voltage sources UXm,n and UZm,n (for TM). Their values will

be discussed later.

FIG. 1. Graded 2D waveguide in (a) continuous and (b) transmission-line

models.

TABLE I. Mapping of electromagnetic field and transmission line quantities

for TE and TM modes.

CPm LPm Vm,n IXm,n IZm,n

TE e(x) l0 Ey(x, z) Hz(x, z) �Hx(x, z)

TM l0 e(x) Hy(x, z) �Ez(x, z) Ex(x, z) FIG. 2. 2D transmission line models for (a) TE and (b) TM, with noise

sources.
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When single modes are propagating, it would be desira-

ble to reduce the circuits to 1D equivalents as shown in

Figures 3(a) (for TE) and 3(b) (for TM). Here e� is the effec-

tive dielectric constant of the �th mode, and J�n are current

sources (for TE) and U�n are voltage sources (for TM) that

describe the dielectric noise coupled into the �th mode. Also

shown are source and load components, which will also be

discussed later. Generally there will be a set of 1D effective

medium models, one for each mode.

To derive the wave equation for the discrete model, it is

helpful to define column vectors Xn with Xn(m)¼Xm,n that

represent all values of a field quantity for a given n, and diago-

nal matrices Y with Y(m, m)¼Ym that represent material pa-

rameters. It is also useful to define first-order backward and

forward difference operators DBn and DFn for the n-direction

such that DBnXn¼ (Xn � Xn-1)/a and DFnXn¼ (Xnþ1 � Xn)/a.

Clearly, DFnDBnXn¼ (Xnþ1 � 2XnþXn-1)/a
2. We may refer to

this quantity as Dn
2Xn, where Dn

2 is a second-order difference

operator. Similar matrix operators DBm and DFm can be defined

for the m-direction; these are banded matrices such that

DBm(m, m)¼ 1/a, DBm(m, m-1)¼�1/a, DFm(m, m) ¼�1/a

and DFm(m, mþ 1)¼ 1/a. Again, DBmDFm¼DFmDBm ¼Dm
2,

where Dm
2 is a banded matrix with Dm

2(m, m-1) ¼ 1/a2,

Dm
2(m, m)¼�2/a2 and Dm

2(m, mþ 1)¼ 1/a2. With this nota-

tion, (2) becomes

DBmIXn þ DBnIZn ¼ �jxCPVn;

DFmVn ¼ �jxLPIXn;

DFnVn ¼ �jxLPIZn:

(3)

This approach is clearly directly analogous to the well-

established transmission-line matrix method,41,42 and related

to the method of lines,43 which only uses discretization in

one direction. Elimination of the currents IXn and IZn then

yields the wave equation

DBmL�1
P DFmVn þ L�1

P D2
nVn þ x2CPVn ¼ 0: (4)

The analysis can be used for TE or TM, merely by assum-

ing the correct values of LP and CP from Table I. In terms

of a diagonal relative dielectric constant matrix er, we

obtain

Discrete Continuous

TE : ðD2
m þ D2

n þ k2
0erÞVn ¼ 0 @2Ey=@x2 þ @2Ey=@z2 þ k2

0erEy ¼ 0;

TM : ðDBme�1
r DFm þ e�1

r D2
n þ k2

0ÞVn ¼ 0 @=@xf1=er@Hy=@xg þ ð1=erÞ @2Hy=@z2 þ k2
0Hy ¼ 0;

(5)

where k0
2¼x2l0e0. Here, we also show the continuous

equations,44 which correspond.

III. THE WAVEGUIDE EQUATION AND MODAL
SOLUTIONS

Assumption of a modal solution Vn¼ v exp(�jbna)

where v is a fixed vector and b is the propagation constant

then yields the waveguide equation

DBmL�1
P DFmvþ x2CPvþ ð2=a2ÞfcosðbaÞ � 1gL�1

P v ¼ 0:

(6)

This equation can now be recast as a generalized eigenvalue

problem, namely,

Av ¼ kBv; (7)

where A¼DBmLP
�1DFmþx2CP, B¼LP

�1, and k¼ (2/a2)

{1 � cos(ba)}. Equation (7) replaces the problem of solving

Maxwell’s equations with that of finding the eigenvectors of

a matrix. There is no need for boundary matching, and arbi-

trary permittivity variations may be incorporated, including

steps. It has set of eigensolutions, which should be compared

with the modes Ey¼El(x)exp(�jblz) (for TE) and

Hy¼Hl(x)exp(�jblz) (for TM) in the continuous model.

Clearly, the eigenvectors vl correspond to the transverse

fields El or Hl. Since k � b2, if ba is small, the eigenvalues

kl correspond to the squares of the propagation constants

bl
2. Writing bl

2¼ k0
2erl, where erl is a relative dielectric

constant for the mode, we obtain the waveguide equations
FIG. 3. 1D transmission line models for (a) TE and (b) TM modes; (c)

interpretation.
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Discrete Continuous

TE : ðD2
m þ k2

0erÞvl ¼ k2
0erlvl d2El=dx2 þ k2

0erEl ¼ k2
0erlEl;

TM : ðDBme�1
r DFm þ k2

0Þvl ¼ k2
0erle�1

r vl d=dx f1=erdHl=dxg þ k2
0Hl ¼ k2

0erlHl=er:

(8)

Here, we also show the continuous equations,44 which again correspond.

When A and B are symmetric and loss-less, different eigenvectors v� and vl must satisfy the orthogonality relation

v�*
TBvl¼ 0. When � 6¼ l, we then obtain

Discrete Continuous

TE : v�
�Tvl ¼ 0 �1

Ð1
E�
�Eldx ¼ 0;

TM : v�
�Te�1

r vl ¼ 0 �1
Ð1

H�
�ð1=erÞHldx ¼ 0:

(9)

For dielectric guides, transverse fields are normalised, so that the inner products above yield delta functions d�l, simplifying

subsequent calculations. However, because er is negative in a lossless metal, TM inner products must be negative for modes

that have their field concentrated in metal. Because these modes cannot then be normalised to unity, we will work with

un-normalised fields.

The time-averaged power is P¼ 1/2 Re(IZn*TVn). If only the lth mode is propagating, so that Vn¼ alvl exp(�jblna), we

obtain the following expressions for power:

Discrete Continuous

TE : Pl ¼ ðbl=2xl0Þalal
�ðvl

�TvlÞ Pl ¼ ðbl=2xl0Þalal
�ð�1

Ð1
El
�El dxÞ;

TM : Pl ¼ ðbl=2xe0Þalal
�ðvl

�Ter
�1vlÞ Pl ¼ ðbl=2xe0Þalal

�f �1
Ð1

Hl
�ð1=erÞHldxg:

(10)

Once again, we have compared the discrete equations with their continuous counterparts.

The eigensolutions will include both guided and radiation modes. However, because the matrix must, in practice, be finite

in size, the calculation window must also be restricted. With minor modifications (to ensure continuity of diagonal elements of

the matrix DBmLP
�1DFm), the effect is to introduce perfect conductor boundaries. Guided modes may be modeled realistically,

by choosing the range of m so that their transverse fields are sufficiently confined inside the window. However, the spectrum

of radiation modes will be discretized, and general calculations will show spurious effects caused by boundary reflection.

These may be reduced, by introducing absorbing boundary elements.43

IV. LOSS

The effect of introducing loss to an otherwise loss-less guide can be estimated using perturbation theory. A standard result

of the generalized eigenvalue problem is that the first-order change Dkl in kl caused by changes DA and DB to A and B is

Dkl ¼ fvl
�TDAvl � klvl

�TDBvlg=ðvl
�TBvlÞ: (11)

In terms of changes DLP and DCP to LP and CP, we can write DA¼�DBmDLPLP
�2DFmþx2DCP and DB¼�DLPLP

�2. Here,

we will be interested in perturbations caused by the introduction of loss to a previously loss-less system. If we write complex

dielectric constants and eigenvalues as e¼ e0 � je00 and as kl¼ kl
0 � jkl

00, Eq. (11) will allow determination of the value of kl
00

caused by e00. Such results are again usefully expressed in terms of relative dielectric constants, as

Discrete

TE : erl
00 ¼ ðvl

�Ter
00vlÞ=ðvl

�TvlÞ;
TM : erl

00 ¼ ferl
0vl
�Ter

00er
0�2vl � ð1=k2

0Þvl
�TDBmer

00er
0�2DFmvlg=ðvl

�Ter
0�1vlÞ ;

Continuous

TE : erl
00 ¼ f�1

Ð1
El
�er
00Eldxg=f�1

Ð1
El
�Eldxg;

TM : erl
00 ¼ f�1

Ð1erl
0Hl
�ðel

00=er
02ÞHl � ð1=k2

0ÞHl
�d=dx½ðer

00=er
02ÞdHl=dx� dxg=f�1

Ð1
Hl
�er
�1Hldxg :

(12)

V. NOISE

If the effect of modal noise may be represented by sources Jm,n (for TE) and UXm,n and UZm,n (for TM), the loss terms

above should define the noise. To prove this, it is necessary to find the noise coupled into the lth mode from the sources in the

2D model, and show that the value corresponds with the 1D model. To do so, we follow Rytov’s procedure.
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A. TE modes

The calculation is simplest for TE modes (Fig. 2(a)). We

first note that it is only necessary to show that the results

match along one line, say n¼ 0, and that the noise sources

are independent. We therefore start by considering a single

source at (0, 0). Its effects are readily included in Eq. (2) or

(3). The TE wave Eq. (8) will be valid except on n¼ 0,

where there must be an additional excitation term on the

RHS

ðD2
m þ D2

n þ k2
0erÞV0 ¼ �jðxl0=aÞJ0;0d 0ð Þ: (13)

Here, d(0) is a vector containing a single unit element at

m¼ 0. Clearly, the source will radiate in all directions, and

excite all the modes in some proportion. However, symmetry

implies that the overall solution must have the form

Vn¼lRalvl expð�jblnaÞ for n � 0;

Vn¼lRalvl expðþjblnaÞ for n � 0:
(14)

Here, the coefficients al are unknown modal amplitudes.

These solutions satisfy the TE wave equation automatically

for n 6¼ 0. Exactly on n¼ 0, however, we get

lRalfD2
m þ 2½expð�jblaÞ � 1�=a2 þ k2

0ergvl

¼ �jðxl0=aÞJ0;0dð0Þ: (15)

Eliminating terms using the TE waveguide equation, and

assuming that bla is small, this result simplifies to lRalblvl

¼ (xl0/2)J0,0d(0). Pre-multiplying both sides by v�*
T and

making use of TE mode orthogonality, we may extract the

mode amplitude a� as

a� ¼ ðxl0=2b�Þv�0
�J0;0=ðv��Tv�Þ: (16)

From the above, we may then obtain a�a�*¼ (xl0/b�)
2

v�0*(J0,0J0,0*/4)v�0/(v�*
Tv�)

2 and an analogous expression

for a source at a different point (m, 0). Since the sources are

independent, we may sum these terms incoherently to obtain

the total effect as

a�a�� ¼ ðxl0=b�Þ2

�
n

mRv�m
� Jm;0Jm;0

�=4
� �

v�m

o.
ðv��Tv�Þ2: (17)

The values of the thermal sources Jm,0 are defined by the FD

theorem, which implies that an admittance Y will give rise to

a current J whose RMS value in a frequency interval df is

JJ*¼ 4WRe(Y)df. Here, W¼ (hf/2)coth (hf/KH) is the

mean energy at absolute temperature H of an oscillator of

natural frequency x¼ 2pf, and h and K are Planck’s and

Boltzmann’s constants. Here, Y¼ jxe0(erm
0 � jerm

00)a, so

Jm,0Jm,0*¼ 4Wxe0erm
00adf. Hence, we may write

a�a�� ¼ ðxl0=b�Þ2ðWxe0adfÞ

�
n

mRv�m
�erm

00v�m

o.
ðv��Tv�Þ2: (18)

Now, the term mR v�m*erm
00v�m will be recognised as

v�*
Ter
00v�. Comparison with Eq. (12) then shows that

a�a�*¼ (xl0/b�)
2Wxe0er�

00adf/(v�*
Tv�). For RMS values—

which require multiplication of expressions in (10) by two—

the noise power coupled into the �th mode at n¼ 0 is then

P�TE2 ¼ ðxl0=b�ÞWxe0er�
00adf: (19)

Considering now the 1D TE model of Fig. 3(a), it is simple

to show that b�
2¼ k0

2er�, so the 2D and 1D TE models are

equivalent as far as propagation is concerned. It is also sim-

ple to show that the effect of a single current source J�0 at

n¼ 0 is to launch a pair of counter-propagating voltage

waves whose forward amplitude is A�¼ (xl0/b�)J�0/2.

For RMS values, the power carried by this wave is

P�TE1¼ (xl0/b�)J�0J�0*/4. Now, from the FD theorem, the

sources in the 1D model satisfy J�0J�0*¼ 4Wxe0er�
00adf.

Consequently, P�TE1 is exactly as given in (19), and the 2D

and 1D TE mode systems are also equivalent as far as noise

power is concerned.

B. TM modes

We now repeat the process for the TM model of Fig.

3(b). The calculation is more difficult, since there are two

sets of sources that generate more complicated effects.

However, we again need only show that the 2D and 1D

results match on n¼ 0. We begin by considering the voltage

sources UZm,n, and to start with, allow a source only at (0, 0).

Generally, the TM wave equation in (8) will be valid.

However, there must now be an excitation term on the RHS

at m¼ 0 for two lines, n¼ 0 and n¼ 1. Here, we get

ðDBme�1
r DFm þ e�1

r D2
n þ k2

0ÞV0 ¼ ð1=er0a2ÞUZ0;0d 0ð Þ;
ðDBme�1

r DFm þ e�1
r D2

n þ k2
0ÞV1 ¼ �ð1=er0a2ÞUZ0;0d 0ð Þ:

(20)

The source will again excite waves in all directions on a 2D

plane. This time, the excitation suggests an anti-symmetric

response, of the form

Vn ¼ lR� alvlexpðþjblnaÞ for n � 0;

Vn ¼ lRalvlexpf�jbl n� 1ð Þag for n � 1:
(21)

Substitution into either of Eq. (20) gives the same result, so

only one need be considered. Following a similar procedure

(eliminating terms using the TM waveguide equation,

assuming small bla, pre-multiplying both sides by v�*
T and

making use of TM mode orthogonality), the amplitude a�
can be found. The effects of all the sources UZm,0 may then

be found as

a�a�
� ¼ mRv�m

� UZm;0UZm;0
�=4

� �

� ð1=e2
rmÞv�m=ðv��Ter

0�1v�Þ2: (22)

Once again, the FD theorem specifies the sources, as

UZm,0UZm,0*¼ 4Wxe0erm
00adf. Substituting into (22) then

yields
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a�a�� ¼ ðWxe0adfÞv��Ter
00e�2

r v�=ðv��Ter
0�1v�Þ2: (23)

We must now repeat the process for the sources UXm,n, again

starting with a single one at (0, 0). Once, there must now be

additional excitation terms in the wave equation at n¼ 0.

This time, equations at m¼ 0 and m¼ 1 are affected, and

ðDBme�1
r DFm þ e�1

r D2
n þ k2

0ÞV0 ¼ �ð1=er0aÞUX0;0DFmd 0ð Þ:
(24)

This time, the response must be symmetric, so we assume

Vn ¼ lRalvlexpð�jblnaÞ for n � 0;

Vn ¼ lRalvlexpðþjblnaÞ for n � 0:
(25)

Following the same procedure, the effect of all the noise

sources may be obtained as

a�a�
� ¼ �ð1=b2

�ÞðWxe0adfÞ
� v�

�TDBmer
00e�2

r DFmv�=ðv�T� e0�1
r v�Þ2: (26)

The combined effect of both sets of noise sources is then

a�a�� ¼ ðWxe0adfÞfv��Ter
00e�2

r v�

� ð1=b2
�Þv��TDBmer

00e�2
r DFmv�g=ðv��Ter

0�1v�Þ2:
(27)

Comparison with the result of perturbation theory (12)

shows that the two separate loss terms are directly linked to

the two noise terms, and that a�a�*¼ (1/er�
0)Wxe0er�

00adf/

(v�*
Ter
0�1v�). For RMS values, the power coupled into the

�th mode at n¼ 0 is

P�TM2 ¼ ðb�=xe�
0ÞWxe0er�

00adf: (28)

For the 1D model of Fig. 3(b), b�
2¼ k0

2er� as before, so the

2D and 1D TM models are again equivalent as far as propa-

gation is concerned. The effect of a single voltage source

U�0 at n¼ 0 is to launch counter-propagating waves with

equal and opposite amplitudes. For the forward-going wave, the

amplitude is A�¼U�0/2, and the power is P�TM1¼ (b�/xe�0)
U�0U�0*/4. From the FD theorem, U�0U�0*¼ 4Wxe0er�

00adf.

Consequently, P�TM1 is then as given in (28), and the 2D and

1D TM models are equivalent for noise. Thus, the reduction

from Figures 2 to 3 is entirely robust. Furthermore, since

b�
2¼x2l0e�0, P�TE1¼P�TM1, so the noise power is independ-

ent of polarization, and simply depends on the loss. In fact, both

can be expressed as P�¼Z�Wxe�00adf, where Z�¼ �(l0/e�) is

the characteristic impedance of the �th mode.

VI. NOISE FACTOR

We now use the 1D model to estimate the performance

of a waveguide link. We assume the source emits a signal

power PS and noise PSN, so that the input signal-to-noise ra-

tio (SNR) is PS/PSN. We also assume the link has transmit-

tance T and emits a forward noise power PN, so that the

output SNR is PST/(PSNTþ PN). Hence, the noise factor F is

F ¼ 1 þ PN=PSNT: (29)

F may, therefore, be found by adding a noisy source to a

noisy circuit and calculating the powers PSNT and PN reach-

ing the load. For TE modes, the complete circuit is as shown

in Figure 3(a). Here, the source and load have real imped-

ance ZS. Assuming (as here) that the standard noise tempera-

ture is H, the effective input noise temperature Hn may then

be related to the noise factor as Hn¼H(F – 1)¼HPN/PSNT.

We now assume that the source is thermal, and at the same

temperature H. Consequently, the RMS value of the source

noise voltage US is USUS*¼ 4WZSdf. If in addition the source

and load are free space, we can put ZS¼ �(l0/e0). PSNT may be

found by calculating the load power with only the source noise

US present. Similarly, PN may be found by summing the load

powers from each of the waveguide noise sources J�n. The

noise figure (NF) can then be found as 10 log10(F). If the band-

width is wide, all contributions to noise must be integrated in

frequency. Simplifications arise if the bandwidth is narrow,

when df may be used simply as a multiplier. In this case, the os-

cillator energy W in PN and PSN must cancel in F.

For TM modes, the complete circuit is as shown in Figure

3(b). Here, the source and load have characteristic impedance

YS¼ 1/ZS, and the source noise is generated by a current source

JS, whose RMS value is JSJS*¼ 4WYSdf. With these assump-

tions, the nodal equations for TE and TM are the same if cur-

rents are exchanged for voltages. Consequently, all powers

must also be the same, as must be the noise factor. TE and TM

modes can, therefore, both be modelled using Figure 3(a); this

circuit is analogous to one derived in Ref. 35 for lossy slabs.

Since the discontinuities at the input and output are

purely changes in impedance, the circuit models the system

in Figure 3(c). Here, lossless optics couple a beam from free

space into the guide, and then back into free space. The

optics must act as a mode filter, to avoid excitation of modes

other than the �th at the input, and to collect power only

from this mode at the output. If it does not, less power will

be coupled into the �th mode (reducing PSN) and thermal

noise will be detected from other modes (increasing PN).

Because both effects increase F, (29) is a lower bound.

VII. PLASMONIC WAVEGUIDES

We now present examples from plasmonics. For sim-

plicity, we assume that all dielectric is air (erd¼ 1), and that

all metal can be described using the Drude model

erm ¼ 1 � x2
p=ðx2 � jxxsÞ: (30)

Here xp and xs are the plasma and collision damping fre-

quencies. We assume that the metal is silver (with xp¼ 12.2

� 1015 rad/s and xs¼ 0.09 � 1015 rad/s). For angular fre-

quencies x significantly above xs, we may use the approxi-

mation erm¼ erm
0 � jerm

00, where erm
0 ¼ 1 � xp

2/x2 and

erm
00 ¼xp

2xs/x
3.

A. Lossless plasmonic guides

We consider three different plasmonic guides: the

single-interface (Figure 4(a)), slab (Figure 4(b)), and slot
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(Figure 4(c)). In each case, the lossless solutions are well

known.13

The single interface supports a solitary guided mode,

whose magnetic field is

Hy xð Þ ¼ H0 expð�cmPxÞ for x � 0;

Hy xð Þ ¼ H0 expðcdPxÞ for x � 0:
(31)

Here, cmP¼ k0�(erP
0 � erm

0), cdP¼ k0�(erP
0 � erd

0), and erP
0 is

the relative dielectric constant of the mode. The eigenvalue

equation can be found by matching tangential electric fields, as

cmP=cdP þ erm
0=erd ¼ 0: (32)

Solving and re-arranging, erP
0 can be found analytically as

erP
0 ¼ erm

0erd=ðerd þ erm
0Þ: (33)

The propagation constant is bP¼ k0�(erP
0). In fact, erP

0 will

only be positive if erm
0<�erd, so cutoff will occur here at

xp/�2.

The slab supports two modes, with symmetric and anti-

symmetric magnetic fields. For the mode with symmetric Hy

(the long-range plasmon or xþ mode), the variations are

Hy ¼ H0 expfcdSðx þ h=2Þg for x � �h=2;

Hy ¼ H0 coshðcmSxÞ=coshðcmSh=2Þ for jxj � h=2;

Hy ¼ H0 expf�cdSðx � h=2Þg for x � h=2:

(34)

Here, cmS¼ k0�(erS
0 � erm

0), cdS¼ k0�(erS
0 � erd

0), and erS
0 is

the relative dielectric constant of the mode. The eigenvalue

equation is

ðcmS=cdSÞtanhðcmSh=2Þ þ erm
0=erd ¼ 0: (35)

Similarly, for the mode with anti-symmetric Hy (the x- mode),

the variations are

Hy ¼ �H0 expfcdAðx þ h=2Þg for x � �h=2;

Hy ¼ H0 sinhðcmAxÞ=sinhðcmAh=2Þ for jxj � h=2;

Hy ¼ H0 expf�cdAðx � h=2Þg for x � h=2:

(36)

Here, cmA¼ k0�(erA
0 � erm

0), cdA¼ k0�(erA
0 � erd

0), and erA
0

is the relative modal dielectric constant. The eigenvalue

equation is

ðcmA=cdAÞcothðcmAh=2Þ þ erm
0=erd ¼ 0: (37)

The eigenvalue equations must be solved numerically for erS
0

and erA
0. Once this has been done, the propagation constants

bS¼ k0�(erS
0) and bA¼ k0�(erA

0) may be found.

Depending on the thickness of the dielectric layer and

the polarization, the slot structure can support a more exten-

sive spectrum of guided modes. Here, we focus on the two

plasmonic modes with symmetric and anti-symmetric Hy,

whose fields and dispersion equations can be found by

exchanging the metal and dielectric terms in Eqs. (34)–(37).

Once again, the dispersion equation can be solved

numerically.

B. Perturbation expressions for loss

Calculation of the modal loss simply requires evaluation

of (12). For general guides, a numerical calculation can be

carried out using the matrix expressions. However, since the

guided modes considered here are available analytically,

direct integration may be used. For the single interface and

the slab, we obtain

erP
00 ¼ erm

00fð2er P
0 � erm

0Þ=erm
02g=ð1=erm

0 � erm
0=e2

rdÞ;

erS
00 ¼ erm

00ffS1erS
0=cmerm

02 þ fS2ðerS
0 � erm

0Þ=cmerm
02g=

ð1=cdSerd þ fS1=cmerm
0Þ;

erA
00 ¼ erm

00ffA1er A
0=cmerm

02 þ fA2ðerA
0 � erm

0Þ=cmerm
02g=

ð1=cdAerd þ fA1=cmerm
0Þ: (38)

Here,

fS1 ¼ ftmS þ ðcmSh=2Þ 1 � t2mS

� �
g and

fS2 ¼ ftmS � ðcmSh=2Þ 1 � t2mS

� �
g;

fA1 ¼ fcmA þ ðcmAh=2Þ 1 � c2
mA

� �
g and

fA2 ¼ fcmA � ðcmAh=2Þ 1 � c2
mA

� �
g;

(39)

where tmS¼ tanh(cmSh/2), cmA¼ coth(cmAh/2). Similarly, for

the slot, we get

erS
00 ¼ erm

00ferS
0=cmerm

02 þ ðerS
0 � erm

0Þ=cmerm
02g=

ð1=cmerm
0 þ fS=cdSerdÞ;

erA
00 ¼ erm

00ferA
0=cmerm

02 þ ðerA
0 � erm

0Þ=cmerm
02g=

ð1=cmerm
0 þ fA=cdAerdÞ:

(40)

Here,

fS ¼ ftdS þ ðcdSh=2Þ 1 � t2dS

� �
g;

fA ¼ fcdA þ ðcdAh=2Þ 1 � c2
dA

� �
g;

(41)

where tdS¼ tanh(cdSh/2) and cdA¼ coth(cdAh/2). Finally, we

note that some modes can become backward waves. In this

FIG. 4. Geometries for (a) single-

interface, (b) slab, and (c) slot plas-

monic waveguides.
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case, power flow is reversed; the simplest method of includ-

ing this eventuality is to work with absolute values of erl
00.

C. Numerical results—Modal fields and dispersion

We first briefly demonstrate that the matrix method gen-

erates realistic results. For simplicity, we consider only the

single-interface guide, at the particular frequency for which

erm¼�10. Figure 5(a) shows the variation of jHyj for the

guided mode and some low-order radiation modes of the

lossless structure. The modes are normalised so that

v�*
Ter
�1v�¼61, so that modes concentrated in the metal

(which has a large value of jerj) appear large.

The field of the plasmon falls off exponentially on either

side of the interface. Since the calculation window has been

chosen so that the field has decayed sufficiently at the edges

of the calculation window, the results are indistinguishable

from analytic theory. The radiation modes are standing

waves, with zeros forced by the perfect magnetic conductor

(PMC) boundaries. Modes with er� just less than erd have

their energy predominantly in the dielectric, while modes

with er� just below erm are concentrated in the metal. These

results are also indistinguishable from analytic theory,

assuming the presence of PMC boundaries.

Figure 5(b) compares the predictions of the matrix

method (points) and analytic theory (full line) for the plas-

mon dispersion characteristic. Detailed investigations show

departures from full agreement at low frequency (when the

characteristic approaches the light line) if the calculation

window is too small, and at high frequency (when the char-

acteristic tends to x¼xp/�2) if the size of the matrix is too

small. However, with a suitable matrix, the two agree well

over the whole frequency range. We have investigated other

cases involving TE and TM modes; the matrix method gen-

erally gives good results.

D. Numerical results—Noise

We now use the matrix method to demonstrate the exci-

tation of radiation by noise sources. Figure 6 shows the vari-

ation of jHyj for the field generated in the lossy structure by

the two noise sources at the point (0, 0), just at the edge of

the metal. Figure 6(a) shows the results obtained with a

standard matrix A. Here, power coupled into radiation in the

dielectric is reflected from the edge of the calculation win-

dow to create a confusing standing wave pattern. Figure 6(b)

shows the results when the matrix elements are modified to

provide a 10-layer broadband absorber at either edge of the

window. Absorbing boundaries clearly eliminate most of

the boundary reflection, and it is now clear that the effect of

the excitation is mainly to launch the plasmon itself, together

with a lobe of radiation in the dielectric. Radiation into the

metal is quickly damped, because radiation modes concen-

trated here have negative relative dielectric constants even in

the lossless case.

E. Numerical results—Waveguide performance

We now compare the performance of the three different

plasmonic guides. Figure 7(a) compares the dispersion char-

acteristics for plasmons on single interfaces, slabs, and slots.

Two sets of data are shown, for h¼ 200 nm (LH) and

h¼ 20 nm (RH). When h is large, all modes are forward

waves and their dispersion characteristics are similar for

most of the frequency range (except the slot plasmon with

anti-symmetric Hy, whose dispersion characteristic is

band-pass rather than low-pass). This behaviour can be

FIG. 5. (a) Transverse variation of jHyj
for the guided mode and some

low-order radiation modes supported

at a single interface, as calculated

using the matrix method; (b) compari-

son between the predictions of analytic

theory and the matrix method for the

dispersion characteristics of a

single-interface plasmon.

FIG. 6. Two-dimensional variation of

jHyj generated by the two noise sour-

ces at (0, 0), calculated (a) without and

(b) with absorbing boundaries in the

matrix A.
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understood by comparing the three dispersion equations;

when cmh/2 is large, tanh(cmh/2) and coth(cmh/2) tend to

unity, and the equations tend together. However, the equa-

tion for slot guides has cdh/2 instead of cmh/2, so there is a

difference at low frequency. When h is small, there are much

larger differences. The dispersion characteristics of the slab

and slot modes with symmetric and anti-symmetric Hy are

split about that of the single-interface plasmon, and the

anti-symmetric slab and symmetric slot modes are backward

for some or all of the frequency range.

Figure 7(b) shows the frequency variations of erl
00 over

the same range. When h is large, the modes again have simi-

lar attenuation. This behaviour can again be understood by

considering the values of fS1, fS2, fA1, and fA2 in (39) and fS

and fA in (41). All tend to unity when tanh(cmh/2) tends to

unity, so that the perturbation expressions for loss tend to-

gether. However, when h is small, there are again differen-

ces. The slot modes typically have high loss and are,

therefore, of less interest. However, the attenuation charac-

teristics of the slab modes are split about that of the

single-interface plasmon, and the slab mode with symmetric

Hy has low value of erl
00 over a wide spectral range.

Common explanations are the extension of the evanescent

field into the dielectric and the presence of a zero in the dom-

inant electric field component (which is antisymmetric) in

the metal.

Figure 7(c) shows the frequency variation of the noise

figure, calculated assuming a 10 lm long guide sub-divided

FIG. 7. (a) Dispersion characteristic and (b) and (c) frequency variation of erl
00 and the noise figure for plasmons on single interfaces, slabs, and slots. Two sets

of data are shown: h¼ 200 nm (LH) and h¼ 20 nm (RH). The propagation distance is 10 lm.
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into 200 sections. Even over this short distance, the noise fig-

ures of most modes are greater than 10 dB over much of the

available bandwidth, for both values of h, and the asymmet-

ric mode of the slot waveguide is entirely out of scale for

h¼ 20 nm. Any such mode might be considered unusable for

practical on-chip communication. However, when h is small,

the slab mode with symmetric Hy has a noise figure of only a

few dB up until x/xp¼ 0.5, as might be expected from its

loss variation. This mode, therefore, offers the best loss and

noise performance.

VIII. CONCLUSIONS

Using a discrete form of Rytov’s theory for thermally

generated radiation, we have proved that the noise properties

of all two-dimensional guides based on distributions of iso-

tropic dielectric can be determined from their modal effec-

tive medium properties. The noise sources distributed over

the cross-section of a lossy waveguide scatter exactly the

correct amount of power into each mode to make this equiv-

alence possible. It is likely that similar proofs may be

obtained using continuous theory, and for three-dimensional

guides.

We have also presented a simple transmission line

model that allows direct calculation of emission. All that is

required are the real and imaginary parts of the modal dielec-

tric constant. The former can be found by solving the lossless

eigenvalue equation, and the latter may then be estimated

using perturbation theory. This model allows the noise per-

formance of different guides to be compared, and is espe-

cially relevant to plasmonics (where collision damping

causes high loss). Not unnaturally, the best noise perform-

ance is obtained from the plasmonic guide with the lowest

propagation loss. The model effectively assumes perfect

source-waveguide and waveguide-load coupling, and hence

estimates the best possible performance. However, more

complicated models could be developed to include coupling

into and out of multiple modes. To describe excitation, these

would require a lossless splitting network between the source

and a set of parallel transmission lines, one for each mode

being considered. To describe detection, a similar lossless

splitting network would be needed between the transmission

lines and the load.

It is likely that equivalent circuit models may also be

developed for non-thermal sources, and also for waveguides

with distributed amplification. An important question then

will be the relative magnitudes of amplified spontaneous

emission from the gain medium and amplified thermal noise

from the metal. Finally, we note that the method is simple

enough to incorporate into general simulation tools that use

circuit-based or discrete approximations.
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