

A Catheter-Mounted Magnetic Resonance Detector Coil For Biliary Imaging: First *Ex Vivo* Human Hepatobiliary Images

Christopher A. Wadsworth¹, Ian R. Young², Shahid A. Khan¹, Marc Rea⁴, Munir M. Ahmad², Shirin E. Khorsandi³, Brian Davidson³, Simon D. Taylor-Robinson¹ and Richard R.A. Syms²

¹Liver Unit, Department of Medicine and ²Department of Electrical and Electronic Engineering, Imperial College London. ³Department of Surgery, Royal Free Hospital, London. ⁴MR Imaging Unit, Department of Radiology, Imperial College Healthcare NHS Trust, London, United Kingdom.

Introduction

- o Correct classification of biliary strictures as benign or malignant is difficult
- o Even ERCP with brush cytology has a low sensitivity for neoplasm detection
- o Diagnosis is particularly challenging in patients with PSC
- Standard MRI systems have an external resonant radiofrequency (RF) detector coil
- A MR system in which a miniature resonant RF detector is very closely apposed to the tissue of interest should improve the resolution of the images obtained.
- Our group has developed a resonant microcoil, designed to be passed into the biliary tree via an endoscope to improve tissue conspicuity (Figs 1 and 2)

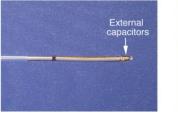
Aim

- To confirm the utility of a prototype MR receiver microcoil
- To image a human liver resection specimen
- o To collect signal-to-noise ratio (SNR) and resolution data
- o To collect comparable imaging data with the MR body coil

Method

- An extended left hemihepatectomy specimen was studied (Fig 3A)
- Images were acquired using a 1.5T GE Signa[™] scanner
- The microcoil is a 60mm long flexible 2-turn thin film device, tuned and matched at 63.8 MHz and is attached to an 8F biliary catheter. Overall the probe is 2.7mm in diameter and is fully MR compatible
- Imaging data were first acquired using the main body coil for excitation and detection
- Scan repeated with the same parameters, but with the prototype microcoil used for detection
- The microcoil was positioned on the surface of the specimen, parallel to the gallbladder and cystic duct (Fig 3B)
- The microcoil was located at the magnet isocentre and arranged parallel to the magnet bore
- Axial images were obtained

Results


- High resolution images were obtained using the body coil (Fig 4) and the catheter-mounted microcoil (Fig 5)
- o The microcoil images had a field of view of 15mm radius around the coil
- Resolution was substantially better in the images obtained with the microcoil than those obtained with the gantry receiver coil
- o The SNR was 8-fold greater in the microcoil images; 260 vs 30

Conclusion

- A MR microcoil can produce high quality images of ex vivo human liver tissue.
- These images demonstrate interpretable anatomical detail, with submillimetre resolution
- o Images are superior to those obtained using a standard body coil
- Ongoing work includes:
 - migration to a 3T scanner
- sequence optimisation
- collection of MR spectroscopy data
- development of a clinical study
- This catheter-mounted microcoil has the potential to enhance clinical imaging, as well as a number of exciting research applications

Acknowledgements

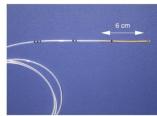


Figure 1 - Catheter mounted MRI detector microcoil

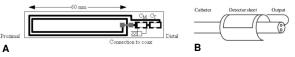


Figure 2 – Microcoil design showing (A) layout of copper track on film and (B) application of film to catheter

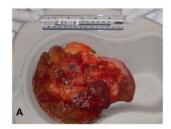


Figure 3 – Arrangement of microcoil catheter on hemihepatectomy specimen

Figure 4 - MR images obtained using standard receiver body coil

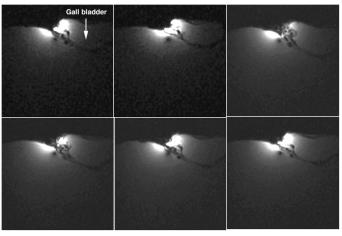


Figure 5 – MR images obtained using microcoil