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Abstract
Coupled resonator filters implemented as microelectromechanical systems (MEMS) offer performance advantages as band-

pass filters at MHz frequencies. Here new designs based on resonant cavities for acoustic slow waves are developed to

allow alternative frequency responses. Derivation of the lumped element model for coupled beam systems with in-plane

motion from Rayleigh–Ritz perturbation theory is first reviewed. Departures from ideal behaviour caused by mechanical

and electrostatic detuning are resolved. Slow wave theory is then used to develop linear array topologies with novel

responses including band-stop and comb filtering with controlled filter roll-off. A systematic procedure is developed to

allow rapid identification of design parameters without the need for lengthy numerical simulation, using the lumped

element, stiffness matrix and finite element methods to investigate the layout parameters of initial design concepts, detailed

mechanical effects and detailed electrostatic effects, respectively. High performance is demonstrated, with good agreement

between the models.

1 Introduction

Microelectromechanical systems (MEMS) have had sig-

nificant economic impact, with widespread adoption in

many industries (Elwenspoek and Jansen 1999; Madou

2011; Beeby et al. 2004; Uttamchandani 2013). Applica-

tions exploit the high performance, reliability and

repeatability and small size of MEMS to enable new, high-

value systems. There is now an increasing drive towards

nanoelectromechanical systems (NEMS) (Lyshevski 2002).

This paper is concerned with MEMS filters containing

nanostructured parts.

Band-pass filters have been used in radio receivers since

the invention of the super-heterodyne receiver (Armstrong

1921). The super-het uses an intermediate frequency (IF)

and requires IF filters with flat passband and small frac-

tional bandwidth. Due to their high Q-factors, coupled

mechanical resonators have long been used for filtering

(Hathaway and Babcock 1957; Johnson et al. 1971), and

electrostatically driven resonators were among the first

MEMS (Tang et al. 1989). Low-frequency filters were

constructed from comb-drive actuators with folded springs

(Lin et al. 1998; Wang and Nguyen 1999), and high-fre-

quency filters from parallel plate actuators and clamped

beams (Bannon et al. 2000). In most cases, coupling is

between adjacent beams, with their number determining

the filter order, but non-adjacent coupling has been used to

increase roll-off (Li et al. 2004). Gas damping, thermoe-

lastic damping and support losses all reduce Q-factor

(Zhang and Tang 1994; Yang et al. 2002; Srikar and

Senturia 2002), but the first two can be small for single

crystal materials at low pressure and the third reduced

using free-free beams (Wang et al. 2000).

The coupling must be weak for small fractional band-

width. Suitable results can be achieved by placing coupling

springs near beam roots or coupling via the supports (Ho

et al. 2004). Weak springs based on nanowires have also

been demonstrated (Galayko et al. 2003; Pourkamali and

Ayazi 2005a); however, sidewall patterning (Pourkamali

and Ayazi 2005b) may be a simpler way to combine micro-

and nano-scale flexures. An alternative is electrostatic

coupling (Galayko et al. 2006; Hajhashemi et al. 2012; Lee

and Seshia 2009), which allows electrical tuning (Pourka-

mali et al. 2003; Toan et al. 2014). However, small elec-

trode gaps are needed to reduce matching loads, and

parasitic coupling to the substrate must be compensated

(Abdolvand et al. 2004). Sub-micron gaps have been

obtained using the HARPSS process (Arellano et al. 2008)

or movable electrodes (Liu and Syms 2014).
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Careful design and appropriate modelling are also

essential. Perturbation theory (Dowell 1971; Jacquot and

Gibson 1972) can establish the effect of spring- and mass-

loading of continuous beams (Bannon et al. 2000; Meng

et al. 1993). The results have been used in lumped element

models (LEM) of single-mode systems, often based on

circuit analogies (Lin et al. 1998; Wang and Nguyen 1999;

Bannon et al. 2000). The stiffness matrix method (SMM)

(Livesey 1964; McGuire et al. 2000) can highlight the

effect of higher modes in any elastic elements that can be

described using Euler theory, and the multi-physics tools

needed to describe electrostatic actuation have been linked

to dynamic nodal analysis (Clark et al. 1998,2000). The

finite element method (FEM) (Zienkiewicz et al. 2013) is

the most widely used tool for MEMS design (Senturia et al.

1992; Gilbert et al. 1995) and has been used for detailed

studies of coupled beam filters (Hammad 2014). However,

de-synchronisation effects complicate the search for suit-

able parameters, and efficient FEM experiment design is

required (Hung and Senturia 1999). These difficulties have

prevented exploration of alternative filter topologies.

In this paper we develop a systematic approach for

designing new filter architectures based on arrays of elec-

trostatically driven, mechanically coupled in-plane MEMS

resonators. We begin in Sect. 2 by reviewing the use of

perturbation theory to derive a suitable LEM and identify

the causes of mechanical and electrostatic detuning. Res-

olution of these difficulties is key to effective design of

complex filters. In Sect. 3 we consider the propagation of

acoustic slow waves in infinite and semi-infinite coupled

resonator arrays. In Sect. 4, we use the LEM show how

these concepts can be used to develop different filter types

based on slow-wave resonators, including band-stop and

comb filters. In Sect. 5 we use the LEM to present

numerical results for promising designs. We then show

how the SMM (which improves modelling of complex

dynamical systems) and the FEM (which accurately mod-

els additional electrostatic effects) can then be used for

rapid identification of realistic design parameters without

excessive computation. Conclusions are presented in

Sect. 6.

2 Lumped element model

In this Section, we follow (Bannon et al. 2000) and use

Rayleigh–Ritz perturbation theory to derive a unit cell

lumped element model, which is then generalised to arrays.

2.1 Perturbation theory

We base the analysis on the unit cell in Fig. 1a, namely a

single electrostatically driven beam of length L0, width wo

and depth d, loaded with weak meander springs. We start

with the equation for free vibrations of a uniform,

undamped beam:

E0I0
o4y

dx4
þ qA0

o2y

dt2
¼ 0 ð1Þ

Here x is position, t is time, y is displacement, E0 and q
are the Young’s modulus and density, and I0 ¼ w3

0d=12

and A0 ¼ w0d are the second moment of area and cross-

sectional area. Assumption of a separated solution y x; tð Þ ¼
! xð Þexp jxtð Þ leads to:
E0I0d

4!=dx4 � x2qA0! ¼ 0 ð2Þ

The general solution is ! ¼ Asin bxð Þ þ Bcos bxð Þ
þCsinh bxð Þ þ Dcosh bxð Þ, where b4 ¼ x2qA0=E0I0. The

coefficients A–D are chosen to satisfy the boundary con-

ditions; for a clamped–clamped beam, these are ! ¼ !
0 ¼

0 at x ¼ 0 and x ¼ L0. Substitution leads to the eigenvalue

equation cos bL0ð Þcosh bL0ð Þ ¼ 1, which has the discrete

solutions bm, with b1L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

22:3733
p

; b2L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

61:6728
p

;

and so on. These lead to angular resonant frequencies

xm ¼ b2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E0I0=qA0

p

, with the lowest-order resonance at

x1 ¼ 22:3722=L20
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E0I0=qA0

p

: The corresponding mode

shapes are:

!m xð Þ ¼ cm
ffiffiffiffiffi

L0
p

� �

sin bmxð Þ � sinh bmxð Þ
sin bmL0ð Þ � sinh bmL0ð Þ �

cos bmxð Þ � cosh bmxð Þ
cos bmL0ð Þ � cosh bmL0ð Þ

� �

ð3Þ

Here the terms cm are constants. The modes are

orthogonal; if they are also normalised so that

h!m;!mi ¼
R L0
0
!2

mdx ¼ 1, the first such constant has the

value c1 ¼ 56:6369.

We assume that the springs are formed from elements of

length L1, width w1, Young’s modulus E1, depth d and

density q inclined at 45� angles to give a span s ¼ L1
ffiffiffi

2
p

.

The equivalent spring constant and mass of each pair are

k1 ¼ 24E1I1=L
3
1 and m1 ¼ 2qA1L1, where I1 ¼ w3

1d=12

and A1 ¼ w1d. Here a different Young’s modulus E1 has

been introduced, to allow a tensor variation in mechanical

properties, and the mass m1 is half the actual mass, to

model the reduced motion of the centre of mass of each

Fig. 1 a Distributed and b lumped element models of a single

electrostatically driven beam with auxiliary springs
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spring. For a damped, driven beam with damping coeffi-

cient r per unit length, loaded at two discrete points xi with

springs ki having associated masses mi, and with a dis-

tributed force f x; tð Þ ¼ W xð Þexp jxtð Þ applied along its

length, Eq. (1) modifies to:

E0I0d
4!=dx4 þ jxr!� x2qA0!

þ
X2

i¼1
ki � x2mi

� �

d x� xið Þ! ¼ W
ð4Þ

Here d xð Þ is a delta function at x ¼ 0. Assuming the

result is mainly to excite the lowest mode, the solution can

be taken as ! x;xð Þ ¼ a xð Þ!1 xð Þ. Substitution, making use

of the eigenvalue equation, taking inner products with !1

and exploiting normalisation yields:

x
02
1 � x2

	 


qA0 þ jxr
n o

a ¼ hW;!1i ð5Þ

Here x
0
1 is given by

x
02
1 ¼ x2

1 þ 2 k1 � x2
1m1

� �

!2
1 x1ð Þ=qA0. The effect of the

springs is to increase the resonant frequency, with the

change depending on their position as well as their stiff-

ness. The effect of their mass is to lower the resonance;

however, when x2
1m1 � k1, this effect is negligible. The

effect of spring damping (omitted) may also be small.

2.2 Lumped element model

The LEM is shown in Fig. 1b. Here a mass M with

damping R is suspended on a spring of combined stiffness

K0 þ 2K1 and excited by a point force F. The equation of

motion is:

K0 þ 2K1ð Þ �Mx2 þ jxR
� �

Ym ¼ F ð6Þ

Here Ym ¼ a!1m is the midpoint deflection and !1m is the

maximum of !1. Assuming that the force W is uniform, the

correspondence between distributed and lumped systems is:

M ¼ qA0L0g2;K0 ¼ x02
1M;R ¼ rL0g2

K1 ¼ k1 � x2m1

� �

L0!
2
1 x1ð Þg2;F ¼ WL0g1

ð7Þ

Here g1 ¼
avg !1ð Þ
!1m

¼ 0:5232 and g2 ¼
avg !2

1ð Þ
!2

1m

¼ 0:3965.

To simplify modelling of transducer effects, Eq. (6) can be

written in terms of the velocity Sm ¼ jxYm as:

K0 þ 2K1ð Þ �Mx2 þ jxR
� �

Sm ¼ jxF ð8Þ

2.3 Electrostatic transducers

For simplicity, we assume the fixed electrode in Fig. 1a

runs the length of the beam; partial electrodes can be

modelled in a similar way. For a DC voltage VD alone, the

distributed force on the beam is W ¼ 1
2
V2
DC

0
p, where C

0
p is

the derivative of the per-unit length capacitance Cp

Assuming that the DC deflection approximately follows the

mode shape, the effective DC force FD can be found by

integration as:

FD ¼ 1

2
C

0
V2
DC

0g1 ð9Þ

Here C
0
is the derivative of the total capacitance C. If we

writeC
0 ¼ e0L0d= g0 � YmDð Þ2, where g0 is the initial gap;

the static mid-point deflection YmD satisfiesFD ¼ Ke0YmD,

where Ke0 is the effective stiffness. As we show later, it is

sufficient to assume thatKe0 ¼ K0. This is a standard snap-

down problem, and leads to the cubic:

y3mD � 2y2mD þ ymD � c ¼ 0 ð10Þ

Here ymD ¼ YmD=g0 is the normalised static deflection

and c ¼ e0L0dV2
Dg1= 2K0g

3
0

� �

. Solution allows calculation

of C, C
0
and so on. The amplitude of the current I gener-

ated from any harmonic motion can then be found by

integration as I ¼ VDC
0
p

R L

0
Sdx, or:

I ¼ VDC
0Smg1 ð11Þ

Greater attention must be paid to nonlinearity in calcu-

lating the AC deflection, due to the presence of mixing

terms. This time, C
0
must be replaced with C

0
g1 þ C00g2Ym,

where C
0 0 is the second derivative ofC. Assuming that the

voltage V now contains both DC and AC terms of ampli-

tude VD andv, with v � VD, the amplitude of the time-

varying force is:

F ¼ VDvC
0
g1 þ

1

2
V2
DC

0 0
g2Ym ð12Þ

If the AC voltage is obtained from a source with voltage

VA and output impedance zL, v ¼ VA � IzL. Substituting for

Ym and I yields:

F ¼ KvVA � ZLSm þ DKSm=jx ð13Þ

Here the terms Kv, ZT and DK are given

Kv ¼ VDC
0
g1; ZL ¼ K2

vzL andDK ¼ 1

2
V2
DC

0 0
g2: ð14Þ

by:

The first term is a driving term, the second is a loading

term and the third is the well-known electrostatic stiffness.

For the AC terms, the equation of motion is then:

K0 þ 2K1 � DKð Þ �Mx2 þ jx Rþ ZLð Þ
� �

Sm ¼ jxKvVA

ð15Þ

The effect of the transformed impedance ZL is to increase

the damping, and (as we show later) to allow matching. The

effect of the term DK is to introduce detuning, so that the

effective resonant frequency is now x00
1, where

x002
1 ¼ K0 þ 2K1 � DKð Þ=M. This equation is the unit cell

LEM, which may be generalised to arrays as follows.
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2.4 Arrays

Figure 2a and b show distributed and lumped models of an

N-element coupled beam array. Here connection to elec-

trodes is by bond wires; in practice, multilayer construction

would be required. Note that the meander springs are

continued to anchor points beyond the array. If this is not

done, the mechanically modified frequency x0
1 will differ

for the end beams, leading to de-synchronisation when

N[ 2. This effect does not appear to have been high-

lighted, almost certainly due to the focus on small arrays in

earlier work. However, since its significance rises as the

coupling and bandwidth increase, it is important to elimi-

nate the problem using a simple layout modification.

Note also that each beam has a transducer, nominally at

the same DC voltage. With no end-springs, this leads to

equal static deflection of each beam, and hence to identical

electrostatic tuning. Unfortunately, for N[ 2, end-springs

cause the deflections to vary and de-synchronise the array.

To minimise this effect, Kv should be small; however, to

reduce the load resistance zL, K
2
v should be large. Fortu-

nately, K2
v depends on C02, with the latter depending

roughly on g�4
0 . In contrast, DK depends on C00, and hence

on g�3
0 . Small gaps therefore allow a small zL to be com-

bined with a small DK. Modification of the voltage applied

to the end transducers (not shown) to VD1 ¼ VDN ¼ bVD,

where b � 1þ K1=2K0, is then sufficient to equalise

electrode gaps. Finally, although transducers 1 and N are

connected to the source and load here, other port

arrangements are clearly possible. Assuming that the

beams are synchronous, the LEM for the whole array is:

x002
1 � x2

	 


M þ jx Rþ ZLð Þ
n o

S1 � K1S2 ¼ jxKvVA

x002
1 � x2

	 


M þ jxR
n o

Sn � K1 Sn�1 þ Snþ1ð Þ ¼ 0; 1\n\N

x002
1 � x2

	 


M þ jx Rþ ZLð Þ
n o

SN � K1SN�1 ¼ 0

ð16Þ

Here we have used the notation Sn to denote the mid-

point velocity in the nth beam. The equations can clearly be

written in the form:

K þ x2M þ jxR
� �

S ¼ jxF ð17Þ

Here K, M and R are NxN stiffness, mass and damping

matrices, and S and F are N-element column vectors. The

solution can be found by inversion, assuming that the force

vector F contains a single element F1. Reflection and

transmission scattering parameters can then be found as

s11 ¼ 10log10ðqq�Þ and s21 ¼ 10log10ðtt�Þ. Here q ¼ 1�
2S1ZL=jxF1 is the reflection coefficient, S0 ¼ S1=ð1� qÞ
is the amplitude of the forward acoustic wave and t ¼
SN=S0 is the transmission coefficient. Before examining

detailed responses, we consider the physics of waves in

coupled beam arrays.

3 Acoustic slow waves

In this section, we demonstrate that coupled beam arrays

support acoustic slow waves and consider their dispersion,

characteristic impedance and conditions for resonance.

3.1 Acoustic slow wave dispersion

We begin with the central recurrence equation in (16),

which may be written as:

x
0 02

1=x
2 � 1þ j x00

1=xð Þ=Q
n o

Sn

� j=2ð Þ x002
1=x

2
	 


Sn�1 þ Snþ1ð Þ
¼ 0; 1\n\N ð18Þ

Here the quality factor Q and coupling coefficient j are

given by:

Q ¼ x00
1M=R; j ¼ 2K1=x

002
1M ¼ 2K1= K0 þ 2K1 � DKð Þ

ð19Þ

Assumption of acoustic wave solutions in the form

Sn ¼ S0exp �jkað Þ, where S0 is an amplitude, k is the

propagation constant and a is the beam spacing, yields the

dispersion equation for an infinite array:

x
0 02

1=x
2 � 1þ j x

0 0
1=xQ

	 


� j x002
1=x

2
	 


cos kað Þ ¼ 0

ð20ÞFig. 2 a Distributed and b lumped element models of an N-element

electrostatically driven coupled beam array

Microsystem Technologies

123



With no loss, the array only supports waves over a finite

frequency band, found by noting that x=x00
1 ¼ 1� jð Þ1=2

when ka ¼ 0 and x=x00
1 ¼ 1þ jð Þ1=2 when ka ¼ p.

Making approximations for small j, the passband is 1�
j=2�x=x00

1 � 1þ j=2 and the fractional bandwidth is

Dx=x00
1 ¼ j, where j ¼ 2K1=K0. A small bandwidth

therefore requires weak coupling springs. When Q is finite,

k must also be complex. Writing it as k ¼ k
0 � jk

0 0
,

assuming k
0 0
a is small, and equating real and imaginary

parts gives:

x
0 02

1=x
2 � 1� j x002

1=x
2

	 


cos k
0
a

	 


¼ 0

k
0 0
a ¼ x=x00

1ð Þ= jQsin k
0
a

	 
	 
 ð21Þ

The upper equation is the lossless dispersion relation

and shows that k
0
a is almost unaltered by low loss, while

the lower equation approximates the true variation of k
0 0
a.

Figure 3 shows dispersion diagrams for example parame-

ters of j ¼ 0:1 and Q ¼ 200. The full and dashed lines in

Fig. 3a show the exact and approximate variations of

x=x00
1 with k

0
a. The two are clearly similar; however, the

effect of loss is to allow out-of-band propagation. The full

and dashed lines in Fig. 3b show the exact and approximate

variations of k
0 0
a with x=x00

1. Losses are minimized when

x ¼ x00
1 and rise rapidly at the band edges. The minimum

value of k
00
a is 1=jQ, so a high Q-factor is needed for low

loss if j is small. In contrast to electrical systems, this can

be achieved using mechanical resonators, which can have

much higher Q’s than assumed here [e.g. 8000 in Bannon

et al. (2000)].

3.2 Standing waves and resonance

We now consider the case when a line is terminated

without matching, for example at elements 1 and N. The

solution is constructed as a sum of forward- and backward-

travelling waves, as Sn ¼ SFe
�jnka þ SBe

þjnka, with the

coefficients chosen to yield Sn ¼ 0 at elements 0 and

N þ 1. In the lossless case, the result is a standing wave

Sn ¼ S0sinðnkaÞ with ka ¼ mp= N þ 1ð Þ, where S0 is a

constant and m is an integer (the mode number). Thus, a

finite line supports longitudinal modes of the form:

Snm ¼ S0sin nmp=ðN þ 1Þf gwithm ¼ 1; 2. . .N ð22Þ

Each mode exists at a frequency found from x2
m=x

002
1 ¼

1� jcos mp= N þ 1ð Þf g with m = 1, 2 … N. The points in

Fig. 3a are the resonant frequencies for an example line

with N ¼ 4. In this case, resonant modes exist when

k0a ¼ p=5; 2p=5; 3p=5 and 4p=5.

3.3 Characteristic impedance and matching

Matching is required to avoid standing wave resonances.

Comparison of the last two equations in (16) shows that

they will be equivalent if jxZLSN ¼ �K1SNþ1, and hence if

ZL has the value Z0 ¼ �ðK1=jxÞe�jka. Z0 is the charac-

teristic impedance of the slow wave structure. In general,

Z0 is complex, but for lossless systems at resonance it has

the real value Z0R ¼ K1=x00
1. Matching can then be

achieved by choosing ZL ¼ Z0R. This simply requires the

load resistance zL to be chosen so that K2
vzL ¼ Z0R; how-

ever, one well-known issue is that large values of zL may be

needed if Kv is small (Bannon et al. 2000; Arellano et al.

2008).

4 Resonant cavity filters

Most researchers have focused on the arrangement in

Fig. 4a, where the input and output are taken from trans-

ducers 1 and N, with N in the range 2–3. The result is a

bandpass filter, whose centre frequency, bandwidth and

order are determined by x00
1, j and N. However, alterna-

tive possibilities exist, and can be modelled by altering the

port positions. In this Section, we consider filters based on

resonant acoustic cavities.

(a) (b)Fig. 3 Dispersion diagrams for

an array of coupled beam

resonators: a x� k diagram and

b frequency-dependence of loss,

assuming j ¼ 0:1 and Q ¼ 200.

Discrete points indicate

resonances for a 4-beam array
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4.1 Coupled cavity filters

Figure 4b shows an array containing 2N elements, with the

input and output ports at transducers N and N þ 1. This

configuration corresponds to a two-element array, with

each port additionally coupled to a slow-wave cavity. If the

cavities are non-resonant, their effect may be ignored, and

the response will be a second-order band-pass. However,

there will be a set of resonant frequencies at which energy

is coupled into the cavity. Under these conditions, any

input will be reflected, inserting stops into the pass band.

From Sect. 2, the LEM can simply be written down as:

x002
1 � x2

	 


M þ jxR
n o

S1 � K1S2 ¼ 0

x002
1 � x2

	 


M þ jxR
n o

Sn � K1 Sn�1 þ Snþ1ð Þ ¼ 0; 2� n�N � 1

x002
1 � x2

	 


M þ jx Rþ ZLð Þ
n o

SN � K1 SN�1 þ SNþ1ð Þ ¼ jxKvVA

x002
1 � x2

	 


M þ jx Rþ ZLð Þ
n o

SNþ1 � K1 SN þ SNþ2ð Þ ¼ 0

x002
1 � x2

	 


M þ jxR
n o

Sn � K1 Sn�1 þ Snþ1ð Þ ¼ 0;N þ 2\n\2N � 1

x002
1 � x2

	 


M þ jxR
n o

S2N þ K1S2N�1 ¼ 0

ð23Þ

These equations may be solved by matrix inversion after

writing them in matrix–vector form, and the S-parameters

may then be extracted as before. However, an analytic

solution that offers greater insight may be found as follows.

4.2 Analytic solution

In the cavity sections, solutions can be taken standing

waves, as:

Sn ¼ Xsin nkað Þ; 1� n�N

Sn ¼ Ysin 2N þ 1� n½ �kað Þ;N þ 1� n� 2N
ð24Þ

And that remains is then to solve the two central

equations, which can be written as:

GSN � K1 SN�1 þ SNþ1ð Þ ¼ jxKvVA

GSNþ1 � K1 SN þ SNþ2ð Þ ¼ 0
ð25Þ

With G ¼ x002
1 � x2

	 


M þ jx Rþ ZLð Þ. Substitution of

the cavity solutions gives the two simultaneous equations

AX þ BY ¼ E ;CX þ DY ¼ F, with:

A ¼ Gsin Nkað Þ � K1sin N � 1½ �kað Þ ¼ D

B ¼ �K1sin Nkað Þ ¼ C;E ¼ jxKvVA;F ¼ 0
ð26Þ

The solution is X ¼ DE= AD� BCð Þ and

Y ¼ �CE= AD� BCð Þ, allowing the amplitudes at the

ports to be found as SN ¼ Xsin Nkað Þ, SNþ1 ¼ Ysin Nkað Þ.
The variation of S-parameters may then be found as before.

However, without solving the equations, it is clear that SN
and SNþ1 will both be zero whenever ka ¼ mp=N, with
m ¼ 1; 2. . .., provided AD� BC is finite. At any such

point, s21 must be zero, confirming the assume behaviour.

If N ¼ 2, there will be a single stop frequency when ka ¼
p=2 (i.e., at resonance). A filter of this type may be used as

a blocker. For N[ 2 there will be multiple notches and a

comb response. These will lie at equal intervals in k-space,

and hence at slightly unequal intervals in x-space. How-
ever, the frequency spacing will be similar near x00

1, and

wider deviations may be unimportant.

4.3 Higher order filters

Similar approaches may be used to investigate other cou-

pled cavity filters, simply by writing down the relevant

LEM, solving the equations and extracting the S-parame-

ters. We have investigated variants with (a) equal cavity

lengths, (b) unequal cavities and (c) non-adjacent ports.

Not all display useful responses. Equal cavity lengths

perform better than unequal cavities. The most promising

designs with non-adjacent ports found to date are formed

from equal N-element cavities and a total of 4N � 1 cou-

pled beams, and hence have the ports located at transducers

N and 3N. These arrangements also yield comb filters, but

with higher order roll-off at the band edges.

5 Numerical results

In this section, we demonstrate typical filter responses

using the LEM, and verify these by comparison with the

SMM and FEM.

5.1 Lumped element model

The LEM was written in Matlab� (https://www.math

works.com/products/matlab.html). The analysis of Sect. 2

was first used to determine model coefficients from

dimensions and material parameters. The lowest-order

resonance x1 was found for an unperturbed beam, and the

stiffness K0 and mass M were estimated from the mode

Fig. 4 Device topologies for a band-pass and b band-stop and comb

filters

Microsystem Technologies

123

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html


shape. The electrostatic problem was solved to find the

snap-down voltage and the electrode gap at the set VD, and

hence calculate the loading and detuning terms Kv and DK
and the electrostatically modified resonance x0

1. The

stiffness k1 and mass m1 of the coupling springs were then

calculated, and the perturbation problem solved with

electrostatic detuning described as a reduction in E0. The

results were used to estimate the mechanically modified

resonant frequency x00
1, stiffness K1, coupling coefficient

j and characteristic impedance ZL. The load zL was then

estimated. The Q-factor was the only user-defined param-

eter; its value is unimportant, provided it is large enough.

The analysis of Sects. 3 and 4 was used to select promising

designs; the matrix problem was then solved, and the

S-parameters were extracted.

5.2 Stiffness matrix model

A 2D SMM was also written in Matlab. SMM solvers

model beam networks using a stiffness matrix K combining

elements from Euler theory with compatibility conditions.

K was constructed from dimensions and material parame-

ters, with E0 reduced to model electrostatic detuning. Long

beams were subdivided into[ 50 segments to ensure

accuracy. Axial, transverse and angular displacements at

each beam end were found for a vector of applied forces

and torques, here taken as a point load on the actuated

beam. Dynamic analysis was performed using additional

mass and damping matrices. The mass matrix M was

formed by combining dimensions and densities with stan-

dard relations for motions of centres of mass. The damping

matrix C was modelled using Rayleigh’s method as

R ¼ aM þ bK, with a determined from the Q-factor and

b ¼ 0. Ports were simulated by increasing the damping in

the terminal beams, using a damping coefficient deter-

mined from zL. Assuming harmonic forces and displace-

ments, as F;Uð Þejxt, substitution into the governing

equation yields K � x2M þ jxRð ÞU ¼ F. This equation

was solved by inversion, and the velocity vector con-

structed as S ¼ jxU. The scattering parameters s11 and s21
were then extracted from midpoint velocities. The SMM

was used to quantify inaccuracies in the LEM arising from

perturbation theory.

5.3 Finite element model

FEM was performed using COMSOL Multiphysics�
(https://uk.comsol.com), using three coupled modules:

Solid Mechanics, Electrostatics and Electrical Circuit.

First, the mechanical layout and constraints were set up,

and elastic and inertial constants were defined. Inertial

damping was estimated from the Q-factor. Electrostatic

drives were defined on opposing surfaces of cuboid air

volumes between each beam and a fixed electrode. Ter-

minals were added to allow application of DC voltages and

connection to AC parts of the circuit. The mechanism and

air gaps were meshed using a free triangular mesh, using

different mesh sizes to reduce simulation time. A frequency

sweep was used to calculate S-parameter variations, from

currents or beam velocities. The FEM was then used to

correct inaccuracies in the SMM caused by detailed elec-

trostatic effects.

5.4 Parameter selection

Parameters were chosen to model devices operating at

1 MHz with a bandwidth of around 10%. The parameters

of an isolated beam with an appropriate resonance were

first identified. Spring parameters were then estimated to

set the bandwidth, and beam parameters were adjusted to

ensure the desired resonance lay within a tuning range set

by snap-down. The following parameter values were used:

d0 ¼ 4 lm, w0 ¼ 3 lm, L0 ¼ 150 lm, Q ¼ 5000,

E0 ¼ 169� 109N=m2, a ¼ x1=L0 ¼ 0:25, s ¼ 6 lm,

w1 ¼ 0:1 lm, E1 ¼ 130� 109N=m2, and g0 ¼ 0:1 lm,

leading to a snap-down voltage of 	 3:5V . Values of E0

and E1 were chosen to model devices formed in (100) Si

with the MEMS and NEMS beams in

the\ 110[ and\ 010[ directions (Hopcroft et al.

2010), and (although unimportant) a Poisson’s ratio of m ¼
0:28 was assumed in the FEM. VD and zL were adjusted to

achieve tuning and matching, and are identical for all

similar devices, whatever their port arrangements.

5.5 Device responses

Figure 5 shows simulated responses obtained using the

LEM for second-order notch filters with (a) N ¼ 2 and (b)

N ¼ 4. The first design has four beams, with ports located

at transducers 2 and 3, and yields a bandpass response with

a single notch in the frequency variation of S21, while the

second has 8 beams, ports at transducers 4 and 5, and yields

a response with three notches. The DC voltage needed to

set the resonance was VD ¼ 2:83V , yielding zL � 434 kX.
Three resonance frequencies are marked: f 00 (for an iso-

lated beam), f 0e (after electrostatic detuning), and f 0m (after

mechanical detuning). The single notch in Fig. 5a corre-

sponds to f 0m, when ka ¼ p=2, and three notches the fre-

quency variation of S21 in Fig. 5b lie at frequencies for

which ka ¼ mp=4. In-band transmission is high, and the

corresponding reflection is low, confirming that the system

is matched. Figure 6 shows similar responses for higher-

order notch filters, again with (a) N ¼ 2 and (b) N ¼ 4.

These designs require 7 and 15 beams; they also yield
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bandpass responses with 1 and 3 notches, but the roll-off at

the band edges is now much steeper.

Figure 7a shows numerical results corresponding to

Fig. 5a but obtained using the SMM without changing any

parameters except VD (now 2.811 V) and zL (now 392 kX).
The source of the changes needed to the bias voltage and

matched load is perturbation theory, which yields a slight

overestimate of the effect of mass loading by the coupling

springs. For example, Fig. 7b shows the dependence of

x0
1=x1 with x1=L0 as predicted by the LEM (dashed line)

and SMM (full line) for the parameters used here. In each

case, the variation approximately follows the shape of the

lowest order mode, reaching a maximum when the springs

are located at the midpoint of the beam. However, the LEM

predicts a consistently higher resonance, and hence an

over-estimate of the effective stiffness. Providing this

effect is small, the only corrections needed are small

changes to the tuning and matching conditions.

To model designs using the FEM, the voltage ratio b
introduced in Sect. 2 was first found. Because this value

must be known precisely to obtain consistent results, two

different methods were used. In the first, b was obtained as

the value needed to equalize electrode gaps in separate

static models of single, isolated beams and similar beams

with halved springs connecting to anchors. In the second,

electrode gaps were equalised in static models of beam

arrays as used here. Equivalent results were obtained for

three beam arrays, but the stability of the second solution

decreased as the number of beams was raised from 3 to 8.

Figure 8a shows the variation of b with VD found using the

first method for the parameters here. The variation is

almost constant at around 1.098, until the snap-down

voltage VS is approached (dotted line). However, away

from this point, the value differs slightly from the estimate

in Sect. 2 (1þ K1=2K0 � 1:027), presumably due to the

(a) (b)

Fig. 5 Frequency responses of filters with a single and b multiple notches in their pass-bands and second-order roll off, as predicted using the

LEM

(a) (b)

Fig. 6 Frequency responses of filters with a single and b multiple notches in their pass-bands and high-order roll off, as predicted using the LEM
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use of dynamic rather than static values for K1 and K0 in

this approximation.

Figure 8b shows numerical results corresponding to

Figs. 5a and 7a, obtained using the FEM without changing

parameters except VD (now 3.0085 V) and zL (now 390

kX) but introducing the end-transducer voltages VD1 and

VDN (both taken as bVD, with the value of b obtained from

Fig. 8a as b ¼ 1:01983). Excellent agreement is again

obtained in the overall response, apart from minor dis-

crepancies in the unimportant nulls in S11. It was also

verified that the notch position could be tuned using VD

alone. Similar results were obtained for higher-order and

comb filters. These results suggest that the complex design

concepts proposed here are likely to be realisable in prac-

tice, even taking into account the detailed non-linear

behaviour of electrostatic transducers.

6 Conclusions

Analysis of MEMS filters based on arrays of coupled res-

onant beams has been reviewed, and the factors preventing

effective operation of large arrays have been identified.

Near-ideal results can be obtained, providing synchroni-

sation is retained using correct mechanical design, and

desynchronization caused by electrostatic transducers is

minimised. Alternative filter characteristics including notch

and comb responses have been proposed, based on arrays

containing resonant cavities for acoustic slow waves, and

the expected responses have been verified. The devices do

require an additional tuning voltage, which may be

inconvenient. However, in further simulations (not shown

here) it has been verified that main effect of using identical

tuning voltages on all beams is a slight shift in cavity

resonance.

(a) (b)

Fig. 7 a Frequency response of second-order notch filter with N = 2, as predicted using the SMM; b variation of resonant frequency x0
1 with

spring position x1, as predicted using the LEM and SMM

(a) (b)

Fig. 8 a Voltage dependence of terminal voltage tuning coefficient b, and b frequency response of second-order notch filter with N = 2, as

predicted using the FEM
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A simple procedure for selection of design parameters

has been developed, by using results obtained from a

lumped element model to identify basic layout parameters

and a stiffness matrix model to improve dynamical mod-

elling. These allow accurate simulation using coupled

Multiphysics methods (which offer improved electrostatic

modelling) without the need for lengthy design iteration.

The results are consistent and suggest that high-perfor-

mance filters can be constructed. It is also likely that other

functionality including three and four port operation can be

obtained from coupled beam arrays. However, complex

fabrication processes will be required to realise the

nanostructured electrode gaps and coupling springs needed

for good performance, and to enable simple connection to

tuning electrodes internal to the beam array.
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