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Semiconductor plasmons have long held out a promise for terahertz generation, but competitive

plasmonic mechanisms have yet to be found. Here, we introduce amplifying terahertz mirrors:

planar interfaces for two-dimensional electron channels that amplify plasmons in the presence of

electron drift. In contrast to existing formulations, we develop a rigorous mode matching technique

that takes the complete mode spectrum into account. Mirrors are characterized by plasmon

reflection and transmission coefficients whose values can increase with drift. Amplitude and power

coefficients are determined, and conditions are found for their values to exceed unity. Resonators

based on different combinations of amplifying mirrors are investigated, and an asymmetric

configuration (consisting of two different electron channels confined between conducting planes)

whose roundtrip gain can exceed unity is identified. The unusual conditions needed for oscillation

are examined in detail and the general advantages of asymmetric arrangements are highlighted.

Finally, the potential of mode matching as a universal tool for plasmonics is discussed. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4766924]

I. INTRODUCTION

The most urgent problem of terahertz science is the need

for more effective sources, and while existing methods of gen-

eration, such as photoconductive switching and photomixing,1

are being actively refined, intensive search for alternatives is

under way. Terahertz generation by semiconductor plasmons

is attracting increased attention; recently studied plasmonic

mechanisms include emission in grating-coupled systems,2

plasmon-phonon interactions,3–5 and transit-time instabilities.6

The current interest in plasmonic generation dates back

to the pioneering study by Dyakonov and Shur of plasmons

in two-dimensional channels of field-effect transistors.7 Con-

fined between the transistor’s source and drain, the plasmons

become unstable and lead to oscillations under specific

boundary conditions. Dyakonov and Shur postulated them as

absence of ac potential at the source and of ac conduction

current at the drain and showed that the reflection coefficient

at the drain exceeded unity in the presence of electron drift.

Subsequent theoretical studies considered electron diffusion,8

more general boundary conditions,9 non-uniform chan-

nels,9,10 etc. Other geometries, e.g., gate-less electron chan-

nels8,11 and cylindrical transistors,12 were also proposed.

The majority of these studies adopted the original

approach of Dyakonov and Shur that essentially reduces a

two-dimensional problem to a single dimension. The approach

is to ignore spatial variation of the electromagnetic quantities

outside the channel and to formulate boundary conditions

only on the channel. Simplicity is its great advantage, often

allowing problems to be solved analytically. More rigorous

studies, though not concerned with instabilities, were con-

ducted by Ryzhii, Satou, and co-authors,13–15 who formulated

boundary conditions on the whole surface of the contacts by

treating them as, for example, perfectly conducting planes.13

Here, we present a rigorous analysis of planar plasmonic

interfaces and discuss their properties in the presence of

drift. The first interface is between two different two-

dimensional channels, Fig. 1(a), and the second one is

between a channel and a perfectly conducting plane, Fig.

1(b). As will be shown, the amplitude and power of the plas-

mon transmitted through or reflected from an interface can

exceed that of the incident plasmon. In other words, the

interfaces act as amplifying plasmonic mirrors. Resonators

comprising such mirrors can have the roundtrip gain exceed-

ing unity and may lead to terahertz oscillations.

To study the interfaces, we have developed a mode

decomposition technique whose rigor and capabilities by far

exceed those of the standard one-dimensional approach. The

technique is described in detail in Sec. III, but the need for it

can be stated already here. The dispersion curves of plasmons

propagating in opposite directions are identical without but

different with electron drift, see Fig. 2. The channel with drift-

ing electrons becomes a non-reciprocal, non-bidirectional16

waveguide. The plasmons propagating in opposite directions

have different wavenumbers and, hence, decay lengths, as

shown schematically in Fig. 1. Due to this difference, a plas-

mon incident on a perfectly conducting plane gives rise not

only to a reflected plasmon but also to other, non-plasmonic,

modes required to match the field at the interface. For the

interface between two channels, matching the fields solely by

plasmons is, naturally, impossible even in the absence of drift.

Transmission and reflection of non-drifting plasmons can be

studied by the mode matching techniques developed in

Refs. 17–20. However, to attack the problem of drifting plas-

mons, we had to develop an alternative formulation.

Section II describes the configuration with a single

electron channel. Section III describes transmission and

reflection of plasmons by single interfaces, while Sec. IV

concentrates on resonators comprising several interfaces.

Section V draws conclusions.a)Electronic mail: osydoruk@imperial.ac.uk.
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II. TWO-DIMENSIONAL CHANNELS

The configuration consists of a two-dimensional channel

occupying the plane x¼ 0, see Fig. 1, and having a constant

electron density n0. Electrons can drift along the z-axis with

the drift velocity v0 whose sign depends on the drift direc-

tion. The channel is sandwiched between two conducting

planes placed symmetrically at a distance w from it. The

main role of the planes is to prevent radiation from escaping

from the interaction region. However, they can also be used

as gates controlling the electron density. Dielectric with a

relative permittivity ed surrounds the channel.

As usually done, we analyze the configuration under

harmonic perturbations in two steps. First, we describe the

electron dynamics by the hydrodynamic equation of motion

and derive the current and electron density in the channel.

We then couple them to Maxwell’s equations by boundary

conditions on the channel. At the heart of this approach lies

a linearization procedure, carried out as follows. The

total electron density in the channel is the sum of the con-

stant (dc) and harmonically varying (ac) components,

n0 þ n expðjxtÞ, where x ¼ 2pf and f is the frequency. The

electron velocity is, analogously, v0 þ v expðjxtÞ.
Assuming that the amplitudes of the ac components are

much smaller than their dc counterparts, we neglect all prod-

ucts of small ac terms. For example, the conduction current

density will be equal to

eðn0 þ ne jxtÞðv0 þ ve jxtÞ � en0v0 þ ðen0vþ env0Þe jxt;

where positive sign is taken for the electron charge e. Here,

J0 ¼ en0v0 is the dc current density and

J ¼ en0vþ env0 (1)

is the amplitude of the linearized ac current density. Analo-

gously, we obtain the linearized ac hydrodynamic equation

of motion in the form:

jxvþ v0

@v

@z
¼ eEzjx¼0

m
; (2)

where Ez is the amplitude of the z-component of the electric

field; m is the electron effective mass.

For interaction to occur, the electric field needs a compo-

nent along the channel. Therefore, we considered TM waves

with the electric field components Ex and Ez and the magnetic

field component Hy. The longitudinal and transverse spatial

variations of the fields have the form exp½�jðkxxþ kzzÞ�,
where kx and kz are wavenumbers in the x and z directions. So-

lution of Maxwell’s equations in the dielectric demands

k2
x þ k2

z ¼ edx
2=c2; (3)

where c is the light velocity in vacuum.

The standard boundary conditions on the channel are

Ezjx¼þ0 ¼ Ezjx¼�0;

Exjx¼þ0 � Exjx¼�0 ¼ en=ðe0edÞ;
Hyjx¼þ0 � Hyjx¼�0 ¼ J:

(4)

The boundary conditions on the conducting planes above

and below the channel are Ezjx¼w ¼ Ezjx¼�w ¼ 0. Solution of

Maxwell’s equations subject to these boundary conditions

yields for x 2 ½0;w�

Hy ¼ A
cos kxðx� wÞ

cos kxw
;

Ex ¼ A
kz

xe0ed

cos kxðx� wÞ
cos kxw

;

Ez ¼ �A
kx

jxe0ed

sin kxðx� wÞ
cos kxw

;

J ¼ 2A;

v ¼ 2A
x� kzv0

en0x
;

n ¼ 2A
kz

xe
;

(5)

where A is a constant. The waves obey a dispersion relation

in the form

FIG. 2. Dispersion curves for non-drifting and drifting plasmons. Whereas

non-drifting plasmons (black lines) have the same dispersion for opposite

directions, drifting plasmons (orange lines) propagating in opposite direc-

tions have different wavenumbers.

FIG. 1. Interfaces between two different electron channels (a) or between a

channel and conducting plane (b) can act as amplifying mirrors for terahertz

plasmons. Field matching at the interface solely by plasmons is impossible

due to their different decay lengths.
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X2
p

kx tan kxw

ðx� kzv0Þ2
¼ �1; (6)

where X2
p ¼ e2n0=ð2me0edÞ. Without the tangent term and

for v0 ¼ 0, Eq. (6) reduces to the standard dispersion relation

of a two-dimensional electron channel,21 which has been

confirmed experimentally, see, e.g., Refs. 22–24. Channels

in the presence of drift have also been studied experimen-

tally, and changes of the dispersion relation due to the Dopp-

ler term kzv0 were identified.24,25 Deriving Eq. (6), we

ignored electron collisions and diffusion which implies low-

temperature operation. As has been found experimentally,24

the presence of dc current and power dissipation does not

increase the lattice temperature significantly. At high drift

velocities, however, heating of electrons can occur, leading

to deviations from the dispersion relation Eq. (6).24 Fortu-

nately, the effects considered in this paper (in contrast to, for

example, the plasmon-optical phonon instability5) do not

require high dc velocities.

Equation (6) has infinite number of generally complex

solutions for kx and kz at a single frequency. The solutions

can be separated into three groups: plasmons, waveguide

modes, and evanescent waves. Plasmons have real values of

kz and imaginary values of kx, and their field amplitudes

decay exponentially away from the channel. Without drift,

two plasmons propagate in opposite directions with the same

transverse field distributions. In the presence of drift, up to

four plasmon modes can propagate.5,8,29 Dispersion curves

of two of them are shown in Fig. 2. These plasmons will

play a major role in the discussion to follow. The other two

plasmons have much higher wavenumbers and are reminis-

cent of the slow and fast space-charge waves propagating on

vacuum electron beams.26 Although we later include these

high-wavenumber plasmons in numerical calculations, they

have low amplitudes and do not influence the qualitative pic-

ture of plasmon transmission and reflection. The waveguide

modes have real values of both kx and kz and trigonometric

transverse variations of the fields. The third group of evanes-

cent waves comprises waves with complex wavenumbers.

To analyze the dispersion relation further, we defined

the parameter values in Eq. (6) as follows. For the effective

mass and the dielectric constant, we took values correspond-

ing to GaAs, m ¼ 0:067m0 and ed ¼ 12:8 at terahertz fre-

quencies.27 The dc electron concentration is n0 ¼ 1011 cm�2,

the drift velocity is v0 ¼ 5� 106 cm=s in the positive

z-direction, and the dielectric thickness is 100 nm. As

expected, solution of the dispersion relation for these param-

eters yields four plasmons, two of which are shown by

circles on the horizontal axis of Re k-Im k diagram in Fig. 3.

The plasmon propagating along the electron drift (positive

kz) has a smaller wavenumber than the plasmon propagating

against the drift (negative kz), consistent with Fig. 2. The

dielectric is too thin to allow propagation of lossless wave-

guide modes. The densely packed evanescent modes shown

by dots in Fig. 3 merge into continuous lines and have

complex-conjugated wavenumbers for opposite directions.

If the solutions of the dispersion relation without drift,

kð0Þz , are known, the solutions for weak drift can be found by a

perturbation technique as follows. Since the drift velocity is

small, jkð0Þz v0j � x, we can expand kz in the presence of drift

in a Taylor series and retain only the first two terms, so that

kz ¼ kð0Þz þ dkz; (7)

where jdkzj � jkð0Þz j. Substituting Eq. (7) into Eqs. (3) and

(6) and ignoring the higher-order terms in the series expan-

sions, yields

dkz ¼ �
2kð0Þx

2x

k
ð0Þ
x

2X2
pwþ x2

x2w

X2
p

� 1

 ! v0 : (8)

In Sec. III B, we use Eq. (8) to obtain an analytical expres-

sion for the reflection coefficient of a plasmon incident on a

conducting plane.

According to the ac kinetic power theorem,26,28 the total

ac power carried by a mode can be written as

P ¼ Re

ðw

0

ExH�y dxþ mv0

2e
ReðvJ�Þ; (9)

where asterisk denotes complex conjugation. The first term

in the equation denotes electromagnetic power due to the

fields, and the second one, kinetic power due to the move-

ment of electrons. As substituting Eq. (5) into Eq. (9) shows

any evanescent mode with complex wavenumber kz carries

electromagnetic and kinetic power of equal magnitude in op-

posite directions. Thus, its total power is zero. On the other

hand, plasmons, having real wavenumbers, are able to carry

power. Their kinetic power flows in the direction of drift,

whereas the direction of the electromagnetic power flow

coincides with the propagation direction. Power relations for

plasmons are discussed in detail in Sec. III.

III. AMPLIFYING MIRRORS

This section discusses transmission and reflection of

drifting plasmons by the planar interfaces of Fig. 1. As al-

ready stated in Sec. I, a single plasmon incident on an inter-

face will, in general, excite an infinite number of reflected

and transmitted waves. The fields, electron density, velocity,

FIG. 3. Mode spectrum of a two-dimensional channel at a single frequency

(1 THz). The system supports two plasmons propagating in opposite direc-

tions with different propagation constants (circles on the horizontal axis)

and infinite number of evanescent modes with complex propagation con-

stants (dots merging into continuous lines). There are no waveguide modes

due to the small dielectric thickness (w¼ 100 nm).
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and current on both sides of the interface can be presented as

superposition of individual waves. Their amplitudes are then

determined from the interface boundary conditions. We

approach the mode decomposition problem separately for

the two interfaces.

A. Interface between two electron channels

The first interface, see Fig. 1(a), is between two chan-

nels with different dc electron densities, denoted as n
ð1Þ
0 and

n
ð2Þ
0 , but equal electron masses. The interface is abrupt with

the density jump at z¼ 0. In the presence of drift, the dc cur-

rent density is conserved, so that

n
ð1Þ
0 vð1Þ0 ¼ n

ð2Þ
0 vð2Þ0 ; (10)

thus, determining the ratio of the drift velocities vð1Þ0 and vð2Þ0 .

The same dielectric surrounds both channels.

If a plasmon is incident from the left channel, the elec-

tric field component to the left of the interface is

Eð1Þx ðxÞjz¼0 ¼ E
ð1Þþ
x1 þ

X
a

RaEð1Þ�xa : (11)

Here the superscripts þ and � denote the propagation direc-

tion. The numerical subscript a denotes the mode number.

Plasmons have a ¼ 1, and the rest of the modes are sorted by

increasing jIm kzj. The summation runs from 1 to 1. The

amplitude of the incident plasmon is taken as 1, and Ra are

the mode reflection coefficients.

The right channel will propagate transmitted waves, so

that

Eð2Þx ðxÞjz¼0 ¼
X

a

TaEð2Þþxa ; (12)

where Ta are the mode transmission coefficients. Expressions

analogous to Eqs. (11) and (12) can be written for all other

ac quantities. Relations between the ac quantities at the inter-

face are given by the boundary conditions. Outside the chan-

nel, the interface is a continuous dielectric, and the standard

dielectric boundary conditions apply

Eð1Þx ðxÞjz¼0 ¼ Eð2Þx ðxÞjz¼0;

H
ð1Þ
y ðxÞjz¼0 ¼ H

ð2Þ
y ðxÞjz¼0:

(13)

Substituting Eq. (13) into the second and third equations

of Eq. (4), the boundary conditions for the current and

the electron densities at the interface can be determined

as29

nð1Þjz¼0 ¼ nð2Þjz¼0;

Jð1Þjz¼0 ¼ Jð2Þjz¼0:
(14)

The boundary conditions for the ac velocity can be found by

substituting Eqs. (13) and (14) into Eq. (1) as

vð1;2Þjz¼0 ¼
2

en
ð1;2Þ
0

Hð2;1Þy

���
x¼0

z¼0

� 2e0edv
ð1;2Þ
0

en
ð1;2Þ
0

Eð2;1Þx

���
x¼0

z¼0

: (15)

Substituting Eqs. (11) and (12) and their equivalents for

the other ac quantities into the boundary conditions yields at

z¼ 0

H
ð1Þþ
y1 þ

X
a

RaH
ð1Þ�
ya ¼

X
a

TaH
ð2Þþ
ya ;

E
ð1Þþ
x1 þ

X
a

RaE
ð1Þ�
xa ¼

X
a

TaE
ð2Þþ
xa ;

J
ð1Þþ
1 þ

X
a

RaJ
ð1Þ�
a ¼

X
a

TaJ
ð2Þþ
a ;

(16)

together with

vð1Þþ1 þ
X

a

Rav
ð1Þ�
a ¼ 2

en
ð1Þ
0

X
a

TaHð2Þþya jx¼0

� 2e0edv
ð1Þ
0

en
ð1Þ
0

X
a

TaEð2Þþxa jx¼0 (17)

and

2

en
ð2Þ
0

�
H
ð1Þþ
y1 jx¼0 þ

X
a

RaHð1Þ�ya jx¼0

�
� 2e0edv

ð2Þ
0

en
ð2Þ
0

�
�

E
ð1Þþ
x1 jx¼0 þ

X
a

RaEð1Þ�xa jx¼0

�
¼
X

a

Tav
ð2Þþ
a : (18)

The standard approach to solving mode equations is to

rely on mode orthogonality. One has to be careful, however,

when adopting the formulations developed for dielectric and

metallic waveguides. Even for passive plasmonic wave-

guides, the mode-orthogonality conditions may differ from

those in dielectric waveguides.30 Here, the situation is further

complicated by the presence of drift. Fortunately, the prob-

lem of mode orthogonality, like that of mode power, was

considered in the theory of electron beams some time ago.31

The unconjugated form of the orthogonality condition can be

written as

ðw

0

�
Eð1;2Þxa H

ð1;2Þ
yb þ E

ð1;2Þ
xb Hð1;2Þya

�
dx þ mvð1;2Þ0

2e

�
�

Jð1;2Þa vð1;2Þb þ J
ð1;2Þ
b vð1;2Þa

�
¼ 0; (19)

for a 6¼ b. If v0 ¼ 0, Eq. (19) reduces to the standard ortho-

gonality condition for the fields.32 Its conjugated form also

holds and is related to the expression for mode power Eq. (9).

The present problem further distinguishes itself by the

choice of the basis functions. In a reciprocal waveguide, for

every mode with wavenumbers ðkz; kxÞ, there is a mode prop-

agating in the opposite direction with the same transverse

variation, ð�kz; kxÞ. As a result, two identical bases are con-

structed from the modes propagating in opposite directions.

In our non-reciprocal, non-bidirectional waveguide, modes

propagating in opposite directions are mutually orthogonal,

and are, therefore, able to form two different bases. Having

tested both, we obtained the best numerical accuracy when

using the basis of modes propagating in positive z-direction

for the left waveguide and of modes propagating in the nega-

tive z-direction for the right one.
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Numerically, we formulated the problem as follows. We

multiplied the first two of Eqs. (16) by E
ð2Þ�
xb and H

ð2Þ�
yb

(b ¼ 1; 2;… is a mode number), respectively, added, and

integrated them over the transverse coordinate. To the result,

we added the third of Eqs. (16) and (18) multiplied by

mvð2Þ0 vð2Þ�b =ð2eÞ and mvð2Þ0 J
ð2Þ�
b =ð2eÞ, respectively. Due to

mode orthogonality in the right waveguide, we were then

able to eliminate all terms containing transmitted modes,

resulting in infinite number of equations of the form:

F
ð1Þþ
b þ

X1
a¼1

RaF
ð1Þ
ab ¼ 0; (20)

where, using Eq. (5)

F
ð1Þ
ab ¼ 2

ðw

0

�
Hð1Þ�ya E

ð2Þ�
xb þ Eð1Þ�xa H

ð2Þ�
yb

�
dxþ mvð2Þ0

e
Jð1Þ�a vð2Þ�b þ 2e0edv

ð2Þ
0

en
ð2Þ
0

J
ð2Þ�
b

H
ð1Þ�
ya jx¼0

e0edv
ð2Þ
0

� Eð1Þ�xa jx¼0

 !" #

¼ 2

xede0

1

k
ð1Þþ
za � k

ð2Þ�
zb

x� k
ð1Þþ
za vð1Þ0

Xð1Þp

 !2

�
x� k

ð2Þ�
zb vð2Þ0

Xð2Þp

 !2
2
4

3
5þ 2vð2Þ0

e0edxXð2Þ
2

p

2x�
�

kð1Þþza þ k
ð2Þ�
zb

�
vð2Þ0

h i
: (21)

To obtain F
ð1Þþ
b , we set a ¼ 1 and replaced the superscript

ð1Þ� with ð1Þþ in Eq. (21).

Repeating the above calculation for the basis set

ðHð1Þþyb ;E
ð1Þþ
xb ; J

ð1Þþ
b ; vð1Þþb Þ and using mode orthogonality in

the left waveguide, we were able to eliminate all reflected

modes, so that

N
ð1Þþ
1 d1b ¼

X1
a¼1

TaF
ð2Þ
ab ; (22)

where

N
ð1Þþ
1 ¼ 4

ðw

0

E
ð1Þþ
x1 H

ð1Þþ
y1 dxþ 2mvð1Þ0

e
J
ð1Þþ
1 vð1Þþ1

¼ 4k
ð1Þþ
z1

e0edx cos2

�
k
ð1Þþ
x1 w

� w

2
þ

sin
�

2k
ð1Þþ
x1 w

�
4k
ð1Þþ
x1 w

2
4

3
5

þ 4vð1Þ0

e0edxXð1Þ
2

p

�
x� k

ð1Þþ
z1 vð1Þ0

�
; (23)

d1b is Kronecker’s delta; and F
ð2Þ
ab can be obtained from

Eq. (21) by changing k
ð1Þþ
za to k

ð1Þþ
zb ; k

ð2Þ�
zb to k

ð2Þþ
za and inter-

changing Xð1Þp with Xð2Þp and vð1Þ0 with vð2Þ0 . Limiting the num-

ber of modes, we truncated the sums in Eqs. (20) and (22),

resulting in two independent matrix equations that can be

solved numerically.

Appropriate parameters are needed for numerical mod-

els. Our main interest is in the effect of the electron drift,

and we varied therefore the electron drift velocity in a wide

range. For the remaining parameters, we set the value of fre-

quency at 1 THz and chose the dc electron density in the

channels as n
ð1Þ
0 ¼ 1011 cm�2 and n

ð2Þ
0 ¼ 1012 cm�2. The

dielectric thickness was w¼ 100 nm, and the dielectric

constant was ed ¼ 12:8, as used in Fig. 3. We estimated the

numerical accuracy by observing conservation of electro-

magnetic power (see discussion below). For several hundred

modes, the relative error of electromagnetic power conserva-

tion was of the order of 10�4.

First, we considered plasmon incident in the left wave-

guide (with n
ð1Þ
0 ¼ 1011 cm�2). For weak drift, the variation

of the plasmon reflection and transmission coefficients is

slow and approximately linear with drift velocity, see

Fig. 4(a). The absolute values of both coefficients increase if

the drift velocity is positive (coincides with the incidence

direction) and decrease if the drift velocity is negative. The

variation remains slow at high positive drift velocities (the

maximum dc current density of 0.1 A/cm corresponds to

the dc drift velocity in the left waveguide of about

6� 106 cm=s), but both jRj and jTj decrease rapidly when

the drift velocity is negative.

The coefficients R and T characterise the amplitudes but

not the powers of the reflected and transmitted plasmons.

The power reflection and transmission coefficients are given

by Rp ¼ Pð1Þ�=Pð1Þþ and Tp ¼ Pð2Þþ=Pð1Þþ, where the inci-

dent, Pð1Þþ, reflected, Pð1Þ�, and transmitted, Pð2Þþ, powers

are given by Eq. (9). At zero drift velocities, the absolute val-

ues of power reflection and transmission coefficients are 0.49

and 0.51, respectively, see Fig. 4(b). As expected, the sum of

the transmitted and reflected powers is equal to the incident

power. In the presence of drift, this relationship breaks

down.

For negative drift velocities, the interface amplifies the

plasmon power. The powers of both the incident and

reflected plasmons increase, and their sum exceeds that of

the incident power, see Figs. 4(b) and 4(c). Moreover, the

reflected power alone can exceed the incident power if the

drift velocity is sufficiently large, see Fig. 4(b). For positive

drift velocities, the situation reverses, and the interface

absorbs power. The transmitted and reflected plasmons carry

less power than in the absence of drift, and their sum is

smaller than the power of the incident plasmon.

The total power carried by a plasmon is the sum of its

electromagnetic and kinetic powers, see Eq. (9). These

powers transform differently at the interface. The electro-

magnetic power is determined by the fields Ex and Hy. Since

these are continuous at the interface, the electromagnetic
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powers are equal in both waveguides. It is, therefore, the

jump in the kinetic power that causes the total power to be

amplified or absorbed at the interface. From Eq. (9), the ki-

netic power is ðmv0=2eÞReðvJ�Þ, and since the current den-

sity J is continuous at the interface, the change of the kinetic

power is due to the change of the dc and ac electron

velocities.

Next, we considered plasmon incident in the right wave-

guide (with n
ð2Þ
0 ¼ 1012 cm�2). The absolute values of the

amplitude reflection and transmission coefficients increase

with positive and decrease with negative drift velocities, see

Fig. 4(d). Without drift, jRj is equal to that of the plasmon

incident from the opposite direction. The power of the trans-

mitted plasmon grows with negative and decays with posi-

tive drift velocities, while the power of the reflected plasmon

does the opposite, see Fig. 4(e). Their sum is equal to unity

without drift, larger than unity for negative drift velocities

and smaller than unity for positive drift velocities, see

Fig. 4(f).

Thus, the power of the plasmon incident on the interface

from either direction is amplified when the drift velocity

points from the channel with higher to the channel with

lower dc electron density. The effect is stronger for higher

drift velocities and when the plasmon is incident in the chan-

nel with lower electron density. The power of the transmitted

or reflected plasmon is larger with drift than without it if the

propagation direction coincides with the drift direction.

The only non-attenuating waves in our configuration,

plasmons determine the distributions of ac quantities far

from the interface. When the plasmon is incident from the

left, only the transmitted plasmon is present in the right

waveguide away from the interface. The absolute values of,

for example, Ex and Hy field components are constant in the

z-direction and decay in the x-direction, as shown in Fig. 5

for J0 ¼ 0:05 A=cm. The field distributions in the left wave-

guide are given by superposition of the incident and reflected

plasmons. In the vicinity of the interface, on the other hand,

evanescent modes play a role. As shown in Fig. 5, these

modes extend to about 100 nm in the left waveguide and

200 nm in the right one distorting the field distributions.

B. Interface between an electron channel and a
conducting plane

The second interface is between a two-dimensional

channel and a perfectly conducting plane, see Fig. 1(b). The

standard interface boundary condition is the absence of the

tangential component of the electric field

Exjz¼0 ¼ 0: (24)

Due to different decay lengths of the incident and reflected

drifting plasmons, evanescent modes will be excited at the

FIG. 5. Distributions of electric and magnetic fields established when a drift-

ing plasmon is incident from the left on a two-channel interface, placed at

z¼ 0. Far from the interface, the distributions show interference between the

incident and reflected plasmons and the reflected plasmon. Close to the inter-

face, up to about 100–200 nm, evanescent waves distort the field patterns.

FIG. 4. Amplitude and power reflection and transmission coefficients of

plasmons against the dc current density. The plasmons can be amplified: the

amplitude (a) and (d), and the power (b) and (e), coefficients can exceed

those in the absence of drift, and the combined power of the reflected and

transmitted plasmons (c) and (f), can exceed that of the incident plasmon.

Plasmons are incident from the left in (a)–(c) and from the right in (d)–(f).
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interface to satisfy the boundary condition, so that the above

equation takes the form:

Eþx1jz¼0 þ
X

a

RaE�xajz¼0 ¼ 0: (25)

This is the only electrodynamic boundary condition given for

a conducting plane, and the relationships between the other

ac quantities, constituting the orthogonality condition Eq.

(19), are not known in advance. As a result, our approach to

solving Eq. (25) numerically differed from that of Sec. III A

as follows. Multiplying Eq. (25) by E�xbjz¼0 and integrating

the result over the transverse coordinate x, we obtained an in-

finite system of equations in the form:

Fþ1b þ
X

a

RaF�ab ¼ 0; (26)

where

Fþ1b ¼ �
v0

wX2
p

2x� ðkþz1 þ k�zbÞv0

kþz1 þ k�zb
; (27)

F�ab ¼ �
k�zb
kþz1

v0

wX2
p

2x� ðk�za þ k�zbÞv0

k�za þ k�zb
; (28)

for a 6¼ b and

F�aa ¼
k�za
kþz1

1

cosðk�xawÞ
w

2
þ sinð2k�xawÞ

4k�xa

� �
: (29)

Limiting the number of modes, we reduced Eq. (26) to a ma-

trix equation that can be solved numerically for Ra.

In addition to the numerical solution of Eq. (25), we

obtained an approximate analytical one as follows. Assum-

ing weak drift and using a perturbation technique, we have

already obtained an analytical approximation for the wave

numbers, Eqs. (7) and (8). The same argument can be

applied to the fields, so that

E6
xa ¼ Eð0Þ6xa þ dE6

a ; jdE6
a j � jEð0Þ6xa j; (30)

where E
ð0Þ
xa is the field in the absence of drift. In addition, we

can write for the reflection coefficients

Ra ¼ Rð0Þa þ dRa; jdRaj � jRð0Þa j: (31)

The values of the reflection coefficients without drift are

R
ð0Þ
1 ¼ 1 and R

ð0Þ
a ¼ 0; a 6¼ 1.

Substituting Eqs. (30) and (31) into the boundary condi-

tion Eq. (25) and ignoring products of small terms dRa

� dE�a , we get X
a

dRaEð0Þþxa ¼ dEþx1 þ dE�x1: (32)

Due to mode orthogonality in the absence of driftðw

0

Eð0Þþxa E
ð0Þþ
xb dx ¼ 0; a 6¼ b; (33)

so that Eq. (32) yields

dRa ¼

ðw

0

ðdEþx1 þ dE�x1ÞE
ð0Þþ
xa dxðw

0

�
Eð0Þþxa

�2

dx

: (34)

Expanding the expression for Ex, see Eq. (5), we get dEþx1

¼ dE�x1 and

dEþx1 ¼ dkð0Þz E
ð0Þþ
x1

�
� k

ð0Þ
x1

k
ð0Þ2
z1

þ w tan
�

k
ð0Þ
x1 w

�

�ðx� wÞtan
�

k
ð0Þ
x1 ðx� wÞ

��
: (35)

Using Eq. (35), the integrals in Eq. (34) can be found analyti-

cally. For calculations, we chose the same parameter values

as in Sec. III A.

Similar to the two-channel interfaces, the conducting

plane can act as an amplifying mirror. The absolute value of

the plasmon reflection coefficient, jRj, exceeds unity for

negative drift velocities (drift away from the plane), see

Figs. 6(a) and 6(c). For positive drift velocities, jRj < 1. The

effects are stronger for the smaller dc electron density of

1011 cm�2, see Fig. 6(a). The analytical and numerical results

agree for weak drift in Fig. 6(a) and coincide for the whole

range in Fig. 6(c). The powers of the reflected plasmons fol-

low the same trend, see Figs. 6(b) and 6(d): they are ampli-

fied upon reflection if the incident plasmons propagate

against the drift.

FIG. 6. Amplitude and power reflection coefficients of plasmons incident on

a conducting plane exceed unity when the drift is directed away from the

plane. Amplification is larger for small dc electron density (a) and (b).
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Far from the interface, the spatial distributions of the ac

quantities are given by interference of the incident and

reflected plasmon, see Fig. 7 showing the distributions of jHyj
and jExj for n0 ¼ 1011 cm�2 and J0 ¼ 0:05 A=cm. Close to

the plane, evanescent waves distort the field distributions, as

they did for the two-channel interfaces (compare with Fig. 5).

IV. RESONATORS AND OSCILLATORS

Since individual mirrors amplify plasmons, resonators

made of them could lead to plasmonic generation. This sec-

tion discusses two- and three-mirror Fabry-Perot resonators.

Their properties will be determined solely by plasmons if the

evanescent waves excited at one end of the resonator do not

reach the opposite end. Hence, we assumed that the resona-

tors were longer than 200 nm, the distance up to which the

evanescent waves extended in our numerical examples, see

Figs. 5 and 7.

Three different two-mirror resonators can be made of

the mirrors considered in Sec. III: a channel confined

between two conducting planes, Fig. 8(a), a channel confined

between two channels with a different dc electron density,

Fig. 8(c), and a channel confined between a conducting plane

on one side and another channel on the other, Fig. 8(e). The

quantity of most interest to us is the resonator roundtrip gain,

G, equal to the product of the reflection coefficients of the

plasmons propagating inside the resonator; oscillations occur

if jGj > 1.

For the resonator formed by the two conducting planes,

Fig. 8(a), drift has no effect on the roundtrip gain at low drift

velocities, see Fig. 8(b), even though the reflection coeffi-

cients of the individual mirrors change with drift. It happens

because the drift direction is opposite for the two mirrors.

Electrons flow towards the right mirror, as in Fig. 8(a), and

the reflection coefficient decreases from unity, see Figs. 6(a)

and 6(c). On the other hand, electrons flow away from the

left mirror making the reflection coefficient increase. The

increase and decrease of the reflection coefficients compen-

sate each other, as could also be anticipated from Eqs. (31)

and (34). At high drift velocities, the roundtrip gain drops by

2.5% due to excitation of the high-wavenumber plasmons.

The behavior of the resonators of the second type,

Fig. 8(c), depends on the relationship between the dc electron

densities. When a channel with higher electron density

(1012 cm�2) is sandwiched between channels with lower den-

sity (1011 cm�2), the roundtrip gain increases with drift, see the

dashed line in Fig. 8(d). For the inverse density relationship,

jGj first slightly grows and then decays with the drift velocity.

For both configurations, jGj changes within 10% of its value

without drift and remains far below the oscillation threshold.

Analogously, the relationship between the dc electron

densities influences the properties of the resonator shown in

Fig. 8(e). If the resonating section comprises the channel

with the lower density, the roundtrip gain grows with nega-

tive and decays with positive drift velocities, see Fig. 8(f).

The opposite occurs for the resonating section with the

higher density. For the former configuration, the roundtrip

gain is dominated by reflection from the conducting plane

(see Fig. 6(a)), whereas for the latter one, this reflection coef-

ficient differs little from unity (see Fig. 6(c)), and the round-

trip gain is determined mainly by the two-channel interface.

The maximum roundtrip gain is about 0.9, still falling short

of the oscillation threshold.

Closed at the right and open at the left, the configuration

of Fig. 8(e) can be seen as a compound reflector for plas-

mons incident from the left. The total reflection coefficient is

FIG. 7. Distributions of electric and magnetic fields established when a drift-

ing plasmon is incident on a conducting-plane interface, placed at z¼ 0. The

incident and reflected plasmons form the field patterns away from the inter-

face, while close to it, the evanescent waves play additional role, compare

with Fig. 5.

FIG. 8. Two-mirror resonators (a), (c), and (e), comprising the amplifying

two-channel and conducting-plane interfaces. All of them have roundtrip

gain (b), (d), and (f), smaller than unity. Here and in following figures, solid

lines denote resonating sections with n
ð0Þ
1 ¼ 1011 cm�2 while dashed lines

denote sections with n
ð0Þ
2 ¼ 1012 cm�2.
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R ¼ Rþ12 þ
Tþ12T�21Rþ2 e�jðkþ

2
�k�

2
Þl

1� R�21Rþ2 e�jðkþ
2
�k�

2
Þl ; (36)

where l is the length of the resonating section. If the length is

chosen properly, the total reflection coefficient can exceed

that of the individual mirrors. For example, jRj goes up to

2.3 for J0 ¼ �0:05 A=cm if the middle section has the dc

electron density of 1011 cm�2, see Fig. 9(a). However, if the

drift is in the opposite direction (J0 ¼ 0:05 A=cm), the reflec-

tion coefficient is less than unity. The situation reverses, in

agreement with Fig. 8(f), if the resonating section has the dc

electron density of 1012 cm�2 the jRj > 1 if J0 > 0, see

Fig. 9(b), although the effect is less pronounced.

This compound mirror can be used to build more sophis-

ticated resonators. Combining it with a conducting plane, we

obtained the resonator of Fig. 10(a). It can be seen as com-

prising two coupled resonators, whose roundtrip gains can be

found by multiplying the reflection coefficients of the form

Eq. (36) by the reflection coefficient of one of the conducting

planes. Assuming that the left resonator has the dc electron

density of 1011 cm�2, the right resonator the density of

1012 cm�2 and comparing Figs. 6(a) and 9(b), we see that the

absolute value of both reflection coefficients and, hence, of

the roundtrip gain can exceed unity. The proper phase of G
can be achieved by choosing the lengths of the sections.

Assuming these are equal and range from 200 to 500 nm,

Figs. 10(b) and 10(c) show the roundtrip gain for the two res-

onators on the complex plane. Both resonators can rise above

the oscillation threshold (albeit at different lengths) when the

drift velocity is directed to the right. For the opposite direc-

tion of drift, both resonators are below threshold. Although

these results are not definitive, they clearly suggest advanta-

geous properties of asymmetric configurations over symmet-

ric ones: the former can allow oscillation to occur, while the

latter apparently cannot. For field-effect transistors, analo-

gous conclusions were reached by Dyakonov and Shur in

Ref. 7. In contrast to their work, however, we consider struc-

tural asymmetry rather than asymmetry introduced by exter-

nally controlled boundary conditions.

V. CONCLUSIONS

As has been shown, drifting terahertz plasmons propa-

gating along two-dimensional electron channels can be

amplified by planar interfaces. Two such interfaces were dis-

cussed: one between a channel and a perfectly conducting

plane and the other between two different channels. The

conducting-plane interface has larger plasmonic reflection

coefficients that exceed unity when the dc drift velocity

points away from the plane. The results may have practical

applications in amplification and generation of terahertz radi-

ation. Particularly, Fabry-Perot resonators formed by the

amplifying interfaces may have potential as terahertz oscilla-

tors. While the roundtrip gain of two-mirror resonators was

below threshold, it rose above it for the three-mirror

resonator.

Analyzing the interfaces, we were able to consider the

whole mode spectrum—both plasmonic and non-plasmonic

modes—by developing a mode-decomposition technique ap-

plicable in the presence of electron drift. In contrast to other

approaches, this technique considers field distributions in the

whole available space and uses rigorous electrodynamic

boundary conditions. It is an excellent tool for design of

plasmonic devices and its significance extends beyond the

interfaces discussed here. In particular, it could be employed

for the plasmonic configurations of recent experimental in-

terest, such as field-effect transistors with continuous or peri-

odic gate, source and drain contacts.
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