
the results. The waveguide presents a lowest transmission point
around 14.3 GHz, suggesting a behavior similar to that of a
band-reject filter.

To show the potential application of the 3D-method to inte-
grated optics, the fifth example presents the TE10-mode reflection
coefficient of a DFB structure (inset) designed to operate at 1.5 �m
(see Fig. 5). A mesh with 44,437 tetrahedral elements was used,
generating 588,168 unknown variables. The total time interval was
240 fs. The time step �t was 0.02 fs. The simulation time was
9059 s. It is important to point out that the 2D analysis is unsuit-
able to model such a structure. This is due to the fact that the 3D
method takes into account the whole wave scattering produced by
the grating, which is partially neglected by the 2D calculations.

5. CONCLUSION

In this article, a new set of 3D-orthogonal vector basis functions
was presented. These new basis functions originated from the
Whitney’s edge elements, preserving the same characteristics as
those of conventional basis functions. The formulation allows for
diagonal matrices to naturally appear without the use of the lump-
ing method. Thus, the resulting system of equations can be solved
directly from simple diagonal matrix inversion. To validate the
formulation proposed here, eigenvalue problems of cavities com-
posed of homogeneous and nonhomogenous media were analyzed
and propagation characteristics of some structures using the time-
domain full-band method in 3D for complex slow varying field
amplitudes were investigated. All numerical results are in good
agreement with those published previously in the literature. At the
moment, other applications in time domain are under analysis,
mainly related to photonic devices.
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ABSTRACT: Subwavelength focusing by an ensemble of magnetically
coupled metamaterial elements is studied theoretically for the case when
all the dimensions are small relative to the electromagnetic wavelength.
It is shown that in contrast to expectation a focus can be placed in any
desired position for any transmitter-lens configuration by the appropri-
ate tuning of the receiver. A mathematical proof is provided and two
examples are shown demonstrating a focal width of �/60. © 2007 Wiley
Periodicals, Inc. Microwave Opt Technol Lett 49: 2228–2231, 2007;
Published online in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/mop.22689
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1. INTRODUCTION

Ever since the publication of Veselago’s flat lens [1] and Pendry’s
perfect lens [2], the subject of subwavelength imaging and focus-
ing has been widely investigated. Maslovski et al. [3] suggested
that a negative index lens is not necessary for imaging and it is
sufficient to rely on the excitation of two specified surfaces. At
optical frequencies focusing and imaging by classical lenses are

Figure 5 TE10-mode reflection coefficient of a DFB reflector (inset) as
a function of wavelength
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strongly related to each other. However, there is a fine distinction
between them when the dimensions are all small relative to the
wavelength as pointed out by Freire and Marques [4, 5] whose lens
consisted of two planes of magnetically coupled resonant ele-
ments. They found, scanning the space behind the lens by a small
detector, that the power received was maximum at a particular
point. This point is not a focus in the optical sense because the field
is not a maximum there, but it could be regarded as a focus in
another sense due to the fact that the power extracted by the
receiver is higher there than that at any other point. The mecha-
nism is matching the receiver to the transmitter [5]. In the exper-
iments of Freire and Marques the transmitter-lens-receiver posi-
tions were those postulated by Pendry but that relationship is by no
means unique.

The aim of the present article is to show that, wherever the
positions of the transmitter and lens are, a focus can always be
placed in an arbitrary position by adjusting the impedance of the
receiver. We provide a general treatment of the problem in Section
2, proceed with examples of focusing in Section 3, and draw
conclusions in Section 4. The mathematical proofs are relegated to
Appendices A and B.

2. GENERAL FORMULATION

The general model is shown in Figure 1. We have N � 2 meta-
material elements, the transmitter, the receiver, and the N elements
of the lens, which can have arbitrary positions and orientations.
The self-impedances of the elements are: ZT, ZR, and Zi (i � 1. . .
N) where the subscripts T, R, and i refer to the transmitter, the
receiver, and the elements of the lens. Their respective positions in
space are at (xT, yT, zT), (xR, yR, zR), and (xi, yi, zi). The mutual
impedances are characterized by Zij (i, j � 1. . . N; i � j), the
elements of the lens matrix, ZTLi and ZRLi (i � 1. . . N), elements
of row vectors related to the transmitter and receiver respectively,
and ZTR, a scalar. Note that all the mutual impedances are assumed
to be purely imaginary which implies that retardation is neglected,
i.e. all dimensions are small relative to the electromagnetic wave-
length. The elements of the lens are assumed to be lossless. The
transmitter and the receiver have impedances of ZT � RT � jXT

and ZR � RR � jXR, the latter to be determined from the condition
that for a voltage V0 applied to the transmitter the power absorbed
in the receiver should be maximum. The main steps of the analyt-
ical optimization are indicated in Appendix A. The optimum value
of the receiver impedance is given by the expression

RR
�opt� � jXR

�opt� � ZRLZ�1ZRL
T �

�ZTR � ZTLZ�1ZRL
T �2

RT � jXT � ZTLZ�1ZTL
T (1)

where Z�1 is the inverse of the impedance matrix of the lens and
the superscript T means the transposed of a vector.

Once the optimum load impedance pertaining to the (xR, yR, zR)
point has been found it follows that moving the receiver out of that
point can only lead to lower extracted power (see Appendix B for
a rigorous proof). Hence (xR, yR, zR) must be the focal point.

We wish to emphasize here that this focal point can be put
anywhere in three-dimensional space subject to the condition that
all dimensions are small relative to the electromagnetic wave-
length. It follows then clearly that the focal width must be sub-
wavelength. The potential application of this new phenomenon is
the ability to recognize a predetermined position by the fact that
the received power is maximum in that point.

3. TWO EXAMPLES OF FOCUSING

It is beyond the scope of the present paper to pose additional
conditions e.g. to find the optimum transmitter-lens-receiver con-
figuration for realizing a desired power distribution in the focal
region. We shall, however, demonstrate the possibility of specify-
ing the focal point in two examples. For simplicity, we drop the
third dimension and assume that all the elements are in the (x,
y)-plane.

In our first example, the lens consists of two parallel layers of
capacitively loaded loops. Each layer is build up by five elements
in a planar arrangement as can be seen in Figure 2(a). The radius
of the elements is r0 � 5 mm and the distance between them in a
layer is d � 2.1r0 � 10.5 mm. The separation between the layers
is h � 2r0 � 10 mm. The transmitter and receiver are two metallic
loops identical to the elements of the lens. The transmitter is placed
at the (0, 0) point at a distance l from the lens. We chose the
operating frequency to be 500 MHz. The self-inductance of the
lens elements and that of the transmitter of 12.2 nH is compensated
by loading them by 8.3 pF capacitors. The transmitter has an
internal resistance of 50 �. The mutual inductances between the
transmitter, receiver, and lens can be calculated using expressions
available for the loops [6].

We place then the receiver at three different positions and for
each position find the corresponding optimum impedance. Ini-
tially, the receiver is placed symmetrically to the transmitter at the
distance f � l in front of the lens [see Fig. 2(a)]. In this configu-
ration the separation between the lens layers is twice larger than
the distance between the transmitter/receiver and the lens, i.e.
obeys the relation used in Refs. 4 and 5. Then, the receiver is
moved along the y-axis on the distances f � 1.5r0, 2r0 away from
the lens. The values of optimum impedance corresponding to each
position of the lens are given in Table 1.

The results for the extracted power, when the receiver with
optimum loading is translated parallel to itself from its initial
position, are shown in Figures 2(b)–2(d) for all three positions of
the receiver. The power is plotted using contour plots relative to
the maximum received power of �V0�2/�4RT�. It can be clearly seen
that focusing of the received power is possible not only for the
symmetrical “h/2 � h � h/2” configuration but also for the other
two. The position of the focus shifts together with the receiver
when the later is moved away from the lens. Moreover, the
maximum of the received power is independent of the position of
the receiver and has a value of �V0�2/�4RT� for all three cases.

For the second example (Fig. 3) we chose quite a different lens
configuration. It consists now of two parallel axially arranged
arrays with the same element size but of seven elements. The

Figure 1 Schematic presentation of the configuration in the general case.
The transmitter, receiver, and lens are at arbitrary positions and have
arbitrary orientations. The coupling between the transmitter and the lens is
ZTL and that between the receiver and lens is ZRL. The transmitter and
receiver are coupled to each other via the mutual impedance ZTR
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distance between the elements in an array is d � 0.5r0 � 2.5 mm
and the separation between the arrays is h � 2.1r0. The arrays are
placed symmetrically relative to the y-axis [see Fig. 3(a)]. Simi-
larities to the first example are the choice of resonant frequency at
500 MHz, of the purely resistive impedance of the transmitter as
50 � and of the position of the transmitter at the point (0, 0). The
distance from the transmitter to the lens is equal to l � 0.5r0.
Analogously to the previous example we place the receiver into

three different positions on the y-axis, at the distances f � 0.5r0,
1.0r0, 1.5r0. The corresponding values of the optimum impedance
are given in Table 2. The power extracted from the receiving loop
as it is moved parallel to itself from its initial optimum position is
shown in Figures 3(b)–3(d) in the same manner as in Figures

Figure 2 (a) Schematic presentation of the focusing with a two layered
lens, (b–d) contour plots of the normalized extracted power corresponding
to three different positions of the receiver, f � r0, 1.5r0, 2r0. [Color figure
can be viewed in the online issue, which is available at www.
interscience.wiley.com]

TABLE 1 Values of the Optimum Impedance for the
Configuration of Figure 2 Corresponding to Three Different
Positions of the Receiver, f � r0, 1.5r0, 2r0

Distance, f/r0 Optimum Impedance (�)

1 0.96 � j0.40
1.5 0.22 � j0.34
2 0.06 � j0.29

Figure 3 (a) Schematic presentation of the focusing with two parallel
axial arrays, (b–d) contour plots of the normalized extracted power corre-
sponding to three different positions of the receiver, f � 0.5r0, 1.0r0, 1.5r0.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com]

TABLE 2 Values of the Optimum Impedance for the
Configuration of Figure 3 Corresponding to Three Different
Positions of the Receiver, f � 0.5r0, 1.0r0, 1.5r0

Distance, f/r0 Optimum Impedance (�)

0.5 0.58 � j0.34
1.0 0.21 � j0.05
1.5 0.08 � j0.02
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2(b)–2(d) in the first example. There are clear maximums for each
case corresponding to the different positions of the receiver.

The examples we have given relate to a small number of
elements. The aim was merely to show the potential of the method
proposed. Our numerical techniques, developed for magnetoinduc-
tive waves [7], could cope with several thousand elements.

4. CONCLUSIONS

We have shown that the power extracted from the receiver may (i)
reach its maximum and (ii) be focused in an arbitrary pre-selected
point independently of the actual arrangement of the metamaterial
elements provided that the impedance of the receiver is tuned to
the optimum value. Applications can be expected in RF problems
where there is need to identify a point in space.

APPENDIX A

Denoting the voltage applied to the transmitter by V0 we can write
equations for the currents in the elements in the matrix form

� ZT ZTL ZTR

ZTL
T Z ZRL

T

ZTR ZRL ZR

��IT

I
IR

� � �V0

0
0
�, (A1)

where ZT and ZR are the impedances of the transmitter and re-
ceiver, respectively; IT and IR are the currents flowing into them;
I is the N-element column-vector of the currents in the elements of
the lens and 0 is a column-vector of N zeros.

The current in the receiver is, from Eq. (A1),

IR �

�
ZTR � ZRLZ�1ZTL

T

�ZR � ZRLZ�1ZRL
T ��ZT � ZTLZ�1ZTL

T � � �ZTR � ZRLZ�1ZTL
T �2 V0

(A2)

and the current in the transmitter

IT �

�
ZR � ZRLZ�1ZRL

T

�ZR � ZRLZ�1ZRL
T ��ZT � ZTLZ�1ZTL

T � � �ZTR � ZRLZ�1ZTL
T �2 V0.

(A3)

The power extracted from the receiver, PR � 1/2�IR�2ReZR, de-
pends on its impedance: PR � PR�RR, XR�. Since the elements of
the lens are lossless, ZRLZ�1ZRL

T , ZTLZ�1ZTL
T , and ZRLZ�1ZTL

T are
purely imaginary. Finding the derivatives of PR, �PR/�RR, and
�PR/�XR, and equating them to zero, we find the following rela-
tionship for the values of the optimum resistance, RR

�opt�, and reac-
tance, XR

�opt�

Z1 �
R3

2

Z2
*, (A4)

where

Z1 � ZR
�opt� � ZRLZ�1ZRL

T

Z2 � ZT � ZTLZ�1ZTL
T , (A5)

R3
2 � � �ZTR � ZRLZ�1ZTL

T �2

which yields Eq. (1).
The power extracted from the receiver in the optimum case is

equal to that absorbed by the resistive load of the transmitter and
has the value

PR
�max� � PT

�max� � �V0�2/�4RT�. (A6)

APPENDIX B

The optimum value of the impedance of the receiver gives a focus
in the chosen point if �PR/�u � 0 �u � x, y, z�. The power
depends on the coordinates indirectly via couplings ZRL

� ZRL�x, y, z� and ZTR � ZTR�x, y, z� which change as the re-
ceiver is moved off from its initial position. We can then write for
the power extracted from the receiver using Eq. (A2)

PR �
1

2

R3
2R1

2�R1R2 � X1X2 � R3
2�2 � �X1R2 � X2R1�

�V0�2. (B1)

Finding the derivatives of Eq. (B2) by each of the coordinates, u
� x, y, z, and equating them to zero gives

�R3

�u
	�R3

�opt��4
�R1
�opt��2 � X1

2� � R3
4
�R1

�opt��2 � �X1
�opt��2��

�
�X1

�u
R3�R3

�opt��2
�R3
�opt��2X1 � R3

2X1
�opt�� � 0, (B2)

where R3
�opt�, R1

�opt�, and X1
�opt� are the values of R3, R1, and X1 as

obtained from Eq. (A5) under optimum conditions.
It can be seen that when R3 � R3

�opt�, R1 � R1
�opt�, and X1

� X1
�opt�, i.e. the receiver is at the optimum position, then Eq. (B3)

holds. This means that the derivatives of the power extracted from
the receiver by the coordinates are zero, �PR/�u � 0, and the
optimum position is a focus.
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