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Abstract
A complete analysis of the translational and rotational modes of a model
lateral suspension is presented. The derived formulae quantify
spurious-mode resonant frequencies for cross-axis translation and rotation,
and on-axis translation, and can provide very simple expressions for the
rejection ratios in terms of the geometry of the suspensions. It is shown that
the introduction of intermediate frames, coupling equivalent points of the
lateral suspension either side of the suspended mass, can provide much
improved dynamics. To investigate the derived relationships, suspensions
have been fabricated using through-wafer deep reactive-ion etching (DRIE).
Using analysis of the suspension dynamics under the rastered beam of a
scanning electron microscope, the various modes of the suspension have
been visualized and quantified. These observations are in good agreement
with the derived formulae, taking into account the actual profile of the
beams fabricated in DRIE. Further finite element analysis across a broad
range of suspensions is consistent with the derived formulae. A design
heuristic is provided for rapidly optimizing micromachined lateral
suspensions by incorporating intermediate frames.

1. Introduction

For many mechanical systems, both sensors and actuators, it
is important to confine the motion of the prime moving part
to one direction. Flexures are very often used to produce
smooth and controllable motion with minimum hysteresis. In
microelectromechanical systems (MEMS), with their adverse
scaling of frictional forces with reduced mechanism size,
flexures are most often the kinematic link of choice. However,
flexures provide imperfect guided motion: unwanted modes
will always be present in off-axis degrees of freedom and
performance in the compliant direction is limited by additional
modes with frequencies above the fundamental. This work
establishes a design approach for lateral suspensions machined
in silicon wafers, with particular reference to the high-aspect
ratios achievable using deep reactive-ion etching.

Lateral suspensions have been often utilized in
MEMS to produce resonant structures, from early surface-
micromachined comb-driven resonators [1, 2], through

commercial devices such as the analog devices accelerometer
series [3, 4] and more recently in deep reactive-ion-
etched (DRIE) accelerometers [5–7], polymer accelerometers
[8, 9] and gyroscopes [10]. Optical devices employ DRIE
lateral suspensions for alignment, both rotational [11] and
translational [12].

In all these devices performance will be enhanced by
maximizing the separation of the fundamental and other
unwanted modes, giving a maximum clean bandwidth for the
suspension [13, 14]. The behavior of the fundamental mode of
lateral suspensions can be analyzed in terms of a one-degree-
of-freedom (1DOF) system [1, 2], which neglects all potential
spurious modes. Finite element analysis (FEA), which is able
to extract any number of spurious modes, has been applied
to the uniaxial suspension of the analog devices accelerometer
[15]. Analytic approaches and FEA have been used to optimize
the design of a dual-axis suspension [16].

In this work a canonical folded-cantilever lateral
suspension of the simplest symmetric design is first
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(a)

(b)

Figure 1. Schematic of lateral suspension showing (a) a single suspension unit illustrating the model geometry and critical dimensions and
(b) the overall geometry of the suspension.

considered. A complete set of analytic expressions is derived
for the six degrees of freedom (6 DOF). Further modes due
to the finite mass of the suspension are then included. Under
some rather non-restrictive assumptions it is shown that the
spurious-mode rejection ratios can be well estimated using
simple multiples of the aspect ratios of the suspensions.
Next, additional suspension units are included to lower the
fundamental frequency and the introduction of intermediate
frames coupling portions of this suspension is explored as a
novel approach for enhancing the performance. A full set of
analytical equations is presented for the off-axis modes of a
suspension incorporating such frames. This analysis is applied
to a suspension fabricated for low-frequency excitation. The
effects of non-ideal fabrication of the structures due to
overetching of the sidewalls of the suspension are quantified.
Hence the introduction of intermediate frames is demonstrated
and quantified as path to improve the performance of lateral
suspensions.

2. Design

2.1. Lateral suspensions

The lateral suspension is shown schematically in figure 1.
Geometrically, the suspension is an extrusion of a two-
dimensional pattern. Physically, the depth of the extrusion

is given by the thickness of the etched layer, which in this
work is the full wafer thickness. The suspension consists of
two springs either side of a platform/proof mass connected
to an external fixed frame. The ideal suspension would be
solely compliant along the x-axis with maximum stiffness to
translations along the other two axes and rigidity to rotation
about all axes, that is to roll about the x-axis, pitch about the y-
axis and yaw about the z-axis. It is assumed that the suspended
mass is perfectly rigid, justifiable if the second moment of
area of the proof mass along any axis is much greater than
the smallest second moment of area of a suspension element.
It is further assumed, at least initially, that the suspension
is massless, which is reasonable when considering cross-
axis dynamics. A massive suspension will be later treated
as a perturbation on the massless solution. Under these
assumptions the analysis of such a suspension involves the
solution of the equations of motion for a 6DOF system [17]:

Mü + Cu̇ + Ku = 0 (1)

where u is the coordinate vector, u = [x, y, z, θx, θy, θz]T , M
is the inertial matrix which, as well as the diagonal components
(m,m,m, Ixx, Iyy, Izz), where m is the suspended mass and Iij
are the moments of inertia, will in general have symmetric off-
diagonal products of inertia Ijk, C is a symmetric matrix of the
damping terms and K is a symmetric stiffness matrix. The six
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simultaneous equations for the general case become separable
in their coordinates if there are three planes of symmetry to the
suspension [18]. Such a suspension of point group mmm has
no coupling between motion in each coordinate—all the off-
diagonal terms in M and C are zero. This decoupling not only
greatly simplifies analysis but is necessary if the suspension
is used for transduction. Hence, this work considers only
such center-of-gravity systems, so called as symmetry implies
that the elastic forces of the suspension are directed through
the center of the suspended mass. In addition, the system is
further simplified by neglecting damping as the aim of this
work is to optimize the design in terms of compliance. The
resulting six separable equations are

[m m m Ixx Iyy Izz]





ẍ

ÿ

z̈

α̈

β̈

γ̈





− [kx ky kz kα kβ kγ ]





x

y

z

α

β

γ




= 0, (2)

which have the customary normal-mode solution, ui =
ai sin(ωt + φ) where normal-mode frequencies of

ωi =
√

Kii/Mii (3)

with ai and φ are set by the initial conditions. The spring
constants, and hence the frequencies of the normal modes,
determine the performance of the suspension. To optimize, the
frequency ratio of the cross-axis modes to the on-axis mode,
ωi "=x/ωx , should all be as high as possible. As there are often
opposing effects on the various rejection ratios ωi "=x/ωx for
a particular design parameter, an optimum suspension design
will in general have its two lowest cross-axis-mode frequencies
approximately equal.

In addition to the symmetry, there are further constraints
on the design of the suspension. It should be manufacturable
in DRIE (i.e., formed by the projection of a two-dimensional
structure, with some requirements on minimum feature size
and separation). A minimal area (and hence cost) should be
required for fabrication. The suspension should give sufficient
throw for any required motion in the compliant direction.
Suspension beam spacings should be chosen to control
squeeze-film damping (often required to be either critical or
minimized). The general design solution is a suspension that is
sinuous, maximizing its length perpendicular to the compliant
direction, while maintaining rigidity to cross-axis forces by
minimizing its overall size along the compliant direction.

2.2. On-axis compliance

Folded cantilever beams have been a frequent design choice
to best accommodate these constraints in lateral suspensions
[9, 12, 19–23]. A cantilever has a spring constant dependent
on I, the bending constant in the compliant direction which is
given by the second moment of area of the beam. The beam
profile achieved by DRIE can be different from the model

rectangular geometry [24–27] and so I is best maintained as the
cross-sectional parameter in the analysis. A folded cantilever
consisting of beams with length l and Young’s modulus E has
a spring constant of 6EI/l3 if the ‘elbow’ at the fold is taken
to be rigid to torques about the z-direction. This assumption
is valid for most reasonable elbow geometries.

A series of n folded cantilevers each of spring constant
k will have a summed spring constant of k/n. As well as
softening the suspension, the use of multiple units improves
the linearity as the deflection of each cantilever is a lower
multiple of the beam thickness. However, a simple series of
folded cantilevers lacks symmetry in the plane perpendicular
to both the compliant and cantilever direction and to avoid the
dynamic and analytical problems of cross-coupling between
the axes mentioned earlier, the unit of suspension is taken as a
mirror pair of folded cantilevers, which reintroduces the plane
of symmetry to the resulting center-of-gravity system. The
cantilever pairs are linked at their central attachment points
as shown in the schematic of figure 1(a). This results in
increased stiffness to rotation about the z-axis compared to an
unconnected pair for multiple suspension units. The planar
geometry of each unit can be characterized by the values of
the beam length l, beam width w, beam spacing (taken beam
axis to beam axis) s, linkage length width ws, and linkage
length, taken here to be (s−w)/2 to give a unit dimension in
the compliant direction of 2s. The detailed elbow geometry
is left undefined. There are two important geometric ratios
defining the suspension; the beam cross-sectional aspect ratio,
w/t; the suspension ratio of the beam spacing to the beam
length, s/l. The simplest suspension consists of one unit on
each side of the proof mass (figure 1(b)). Such a suspension
satisfies the required symmetry conditions and the six spring
constants can be solved separately for motion along and about
each axis.

The canonical status of this suspension is evident in
its application in a number of designs, e.g. [28–32]. A
detailed analysis of this suspension is therefore justified in
order to set a rational design methodology. One obvious
approach, optimization through FEA, has already been applied
to this suspension design in order to optimize a particular
feature of its application [15] but FEA does not produce
general design rules. The analytical formulae provided in
this work should provide a more heuristic approach to lateral
suspension design. In deriving these analytical formulae,
FEA (ANSYS, Inc., Canonsburg, PA) was applied to elements
of the suspension to ensure that all the important modes of
deflections were included, and also to crosscheck numerically
the analytical expressions. In order to produce reasonable
FEA simulation run times and node numbers the suspension
was taken as a simple extrusion, with an effective beam width
to try to take into account the effects of the etch profile.
The extrusion was performed on an initial 2D meshing to
produce monoclinic elements, rather than triclinic elements,
and the mode shapes and frequencies were calculated using
the ANSYS implementation of the block Lanczos method.

In the first instance, the minimal suspension consisting
of a single suspension unit either side of the proof mass is
considered. In the compliant direction the spring constant of
the total suspension will be given by

kx = 24EIx

nl3
. (4)
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To maximize the compliance along this direction for a
suspension fabricated in an anisostropic crystal such as silicon,
the beams should be orientated to minimize E. For silicon this
corresponds to the 〈1 0 0〉 directions [33].

2.3. Cross-axis translational compliance

Cross-axis translational compliance of the complete
suspension is determined by the spring constants in the y and
z directions, which in turn are derived by considering the
deflections of the suspended mass due to a test force applied
at the centroid of the mass in the required direction.

The deflection in the out-of-plane z direction, often the
most important deflection to minimize, is considered first. The
linkages are assumed perfectly rigid. If a force Fz is impressed
in the z direction at the centroid of the proof mass, this will
result in a force Fz/4 on the end face of the beam nearest
the proof mass. Balancing forces and torques for each beam
implies that all the vertical forces are Fz/4, the twisting torques
are given by T = Fzs/8, and the end torques are Fzl/4. The
total deflection in the z direction is the sum of the deflection
at the elbow, 'elbow, as a result of the twisting of the beams
from the torque T and the two cantilever deflections, 'beam

, of
the beams as a result of the impressed forces and torques.

This torque will produce a constant twist along each beam
[19], and produce a resulting deflection at the elbows given by

'elbow = Fzls
2

8GJ
(5)

for small loads where G is the relevant shear modulus for the
beam direction, and J is the torsion constant, which depends
only on the cross-sectional dimensions of the beam. The beam
deflection will be given by Fzl

3/(48EIz) where the elbow is
considered as completely rigid. The rigidity of the elbow
about this axis is much more difficult to maintain compared
to the rigidity about the z-axis for deflections in the compliant
x direction. If the elbow has no rigidity each beam acts as a
single cantilever with a maximum angle of deflection at the
elbow and the beam deflection is Fzl

3/(12EIz). Hence an
elbow-compliance factor, c, which depends on the rigidity of
the elbow and varies between a value of 1 and 4, is introduced
into the analysis:

'beam = cF l3

48EIz

. (6)

Figure 2 shows this compliance factor for some representative
geometries as determined by FEA. Where present the elbow
cross bar is half the beam spacing s from the end on the
elbow. It is evident that to minimize the z-axis deflection
some webbing of the elbow is required. A semicircular elbow
geometry with a cross bar, unfilled, represents a reasonable
compromise between good stiffness and low suspension mass.

The spring constant for deflections in the z direction is
given by

1
kz

= ls2

8GJ
+

cl3

24EIz

. (7)

The inverse square of the rejection ratio for the z mode is
therefore

kx

kz

= 3
EIxs

2

GJl2
+

cIx

Iz

. (8)

Figure 2. The values of the compliance from FEA are shown for a
variety of representative elbow geometries, with 4 corresponding to
completely compliant, and 1 completely rigid. A beam aspect ratio
of 1:20 was simulated.

Figure 3. Schematic showing decomposition of the rotational
compliance into translational and rotational components.

Considering the y-axis compliance of the suspension, a
compressive axial force F equal to Fy/4 is applied to the face of
the beam nearest the proof mass. The end torque to the beams
will be T = Fs/2. The end-deflection angle of each beam, and
hence the rotation of the elbow, θ , produces a deflection of the
proof mass of sθ , giving a spring constant in the y direction of

ky = 8EIx

ls2
. (9)

The rejection of the y mode is therefore given by l/(
√

3s).

2.4. Rotational compliance

The rotational spring constants about the y and z axes, kβ
and kγ , can be decomposed into contributions from the
effective translational springs with additional torques due to
the effective torsional springs. Figure 3 shows the geometry
for the y-axis, where h is half the length of the suspended mass.
For this geometry, for a torsional spring constant of kzr , the
rotational spring constant will be given by

kβ = kzh
2 + kzr

! kzh
2 (10)

The corresponding frequency ωβ of rotation of the suspended
mass about the y-axis is given from [3] by
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ωβ =
√

kβ

Iyy

. (11)

Neglecting for the moment the torsional contribution of the
suspension, this gives for Iyy = 1/3mh2 (as h & t)

ωβ =
√

3kz

m
. (12)

Hence the ratio of the frequency of the rotational mode about
the y-axis to the translational mode about the z-axis is

ωβ

ωz

=
√

3. (13)

Similarly for rotation about the z-axis, again neglecting
torsional effects,

ωγ =

√
3ky

m(1 + g2/h2)
and

ωγ

ωy

=
√

3
√

1 + g2/h2
,

(14)

where g is the half width of the proof mass. Therefore
maximizing the off-axis translational-mode frequencies
will automatically maximize the off-axis rotational-mode
frequencies, simplifying the design approach.

Considering (10), the additional torsional contribution
will cause the rotational-mode frequencies to be increased.
Summing appropriately the torsion of all the beams, the
equivalent spiral spring will have an angular spring constant
of

kzr = GJ

2l
. (15)

For a large-aspect-ratio beam geometry, (23) will give

kβ = 8GJ

2ls2

(
1 +

s2

16h2

)
(16)

and as s ' h, the second, torsional term can be neglected.
The rotational mode about the x-axis requires separate

consideration. The angular deflection consists of a
contribution from the twisting of the linkages about their x-
axes and a more complex contribution from a combination of
twisting and bending of the beams. Taking the twisting of the
linkages first, as there are two linkages for each spring unit of
the suspensions on each side of the suspended mass, each of
length (s−w)/2, the torsional spring constant kα,link will be

kα,link = 2GJs

s − w
, (17)

where Js is the torsion constant of the linkage. The torsional
compliance of the linkages can be made very low by increasing
the width of the linkage. The compliance due to the distortion
of the beams will then dominate. For a total external torque
of τ , each beam will experience a torque T = τ/4 on its
connecting face to the linkage to the proof mass. This torque
will be opposed by a combination of a torque U and moment
Fl provided by the elbow. The external torque can therefore
be regarded as being distributed between the bending torque
U and force F so that the resulting deflection and twist of the
beams cause a pure pivot of the suspension unit about this
center axis. The resulting torsional spring constant due to the

distortion of the beams for a single suspension unit each side
of the suspended mass, kα,beam, can be solved as

1
kα,beam

= 1
4EIz

(

1 − 3

4 + 3EIzs2

GJl2

)

. (18)

The total compliance will be the sum of the compliances
due to the torsion of the linkages derived from (17) and (24):

1
kα

= 1
kα,link

+
1

kα,beam
. (19)

The linkage width should therefore be chosen to restrict
the contribution of the torsion of the linkage to the total
compliance. The condition kα,link & max kα,beam for a
comparatively stiff linkage corresponds, for s & w, to

ws &
[

2
E

G

(
t

w

)2
s

l

]1/3

w. (20)

As the beam aspect ratio and suspension aspect ratio will often
be comparable, and certainly no more than fifty each, condition
(20) will be met for a linkage of width, ws, greater than about
ten times the beam width, w.

For a moment of inertia about the x-axis of

Ixx = 1
3mg2 (21)

the square of the rejection ratio for this mode will be given by
(
ωα

ωx

)2

=
{

4EIx(s − w)g2

GJsl3
+

4Ixg
2

Izl2

[

1 − 3

4 + 3s2EIz

l2GJ

]}−1

.

(22)

The analytical expressions for all six modes are shown in
table 1.

2.5. Effect of suspension mass

Up to this point the suspension has been considered as
massless. However, the mass of the beams will both reduce the
frequency of the fundamental and produce additional modes
in all degrees of freedom. The frequency will be reduced
according to Rayleigh’s method [17], to

ωx =
√

kx

m + 33
140ms

, (23)

where ms is the total mass of the suspension. For most
suspension designs, m & ms, and the mass-loading effect is
very small. Corresponding reductions will be seen for the other
modes. If the suspension mass is comparable to the suspended
mass, m in table 1 should be replaced by m + 33

140ms .
The most important additional modes are in the x

direction, as they will be excited by the same signals as
the fundamental. In general, an analytical solution is not
obtainable. One can split the suspension into a series
of discrete masses separated by massless springs. Unless
the number of elements is low, the resulting analysis gives
little physical insight. Alternatively the suspension can be
considered as having both a continuously distributed mass and
spring constant. This approach gives simpler results, more
amenable to design optimization. Treating the spring as a
uniformly distributed mass is self-consistent if the resulting
modes have periodicities that are much greater than the
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Table 1. Expressions for the fundamental and lowest spurious modes for a lateral suspension with single suspension unit either side of the
proof mass for the general case, rectangular beam cross sections, and assuming equal beam and suspension aspect ratios.

Mode, ω2
i

ω2
x

ω2
i

for rectangular beam cross

i sections, E/G = 3, and rigid, width less ω2
x

ω2
i

, with

links and elbows, and square proof mass s/l = w/t = R
x 24EIx

ml3
1 1

x1 π 2 m
ms
ω2

x
2
π2

w
h

2
π2

t
h
R

y 8EIx
mls2 = l2

3s2 ω
2
x 3 s2

l2
3R2

z 1
mls2
8GJ + mcl3

24EIz

= ω2
x

3EIx s2

GJl2
+ cIx

Iz

s2

l2
+ w2

t2 2R2

α
{

4EIx (s−w)g2

GJs l3
+ 4Ixg2

Izl2

[
1 − 3

4+ 3s2EIz

l2GJ

]}−1
ω2

x 4 w2

t2

(
1 − 3

4+ 1
4

s2

l2
t2

w2

)
∼R2

β 3ω2
z

1
3

(
s2

l2
+ w2

t2

)
2
3 R2

γ 3
1+g2/h2 ω

2
y 2 s2

l2
2R2

periodicities in the distribution of the mass of the spring along
the compliant direction. For the suspension geometry under
consideration this implies that the mode periods should be
much greater than s, the spring spacing.

Consideration of the mass of the suspension introduces
additional on-axis modes with the displacement in the x
direction of the suspensions on either side either symmetric or
antisymmetric about the suspended mass [34]. The symmetric
mode has a node at the suspended mass and is therefore
relatively benign to the overall dynamic performance.
However, the antisymmetric mode drives an oscillation of the
suspended mass, the amplitude of which is proportional to
ms/m. The ratio of the frequencies of the first harmonic ωx1 to
the fundamental to first order in ms/m for both modes is

ωx1

ωx

≈ π

√
m

ms

. (24)

In summary, consideration of the mass of the springs
reveals a small reduction in the fundamental frequency
(which can normally be neglected) and additional on-axis
normal modes, both symmetric and antisymmetric about the
suspended mass. The lowest frequency antisymmetric mode
is of particular concern as motion of the suspended mass will
occur. Both the amplitude and frequency of this mode depend
on the ratio m/ms, linearly and to the square root respectively,
and hence it is important to minimize the mass of the springs
as far as possible.

2.6. Estimators for the rejection ratios of the spurious modes

By making some reasonable approximations, it is possible to
achieve some very simple expressions for the rejection ratios
of all the spurious modes. First, the beam cross sections
are assumed to be rectangular. Second, the ratio of Young’s
modulus to the shear modulus, E/G, is assumed to be 3, which
corresponds to an incompressible solid (for silicon [1 0 0] E/G
is 2.56 [33]). Third, it is assumed that the linkages and elbows
are completely rigid (c = 1 and 1/kα, link = 0) and of zero
width. In this case the suspension mass will be 8lw. Fifth,
the suspension is assumed to extend the width of the proof
mass so that l = g. Last, the proof mass is assumed to be
square. Under these conditions, the rejection ratios are shown

in the final column of table 1. Further, if it is assumed that the
suspension and beam aspect ratios are equal, s/l = w/t = R,
the simple multiples shown in the final column are obtained.

2.7. Introduction of frames for multiple suspension units

It is very often desirable to reduce the fundamental frequency
of a lateral suspension as far as possible. For instance, below
the fundamental frequency, the displacement of the proof mass
due to an applied acceleration is inversely proportional to the
square of the fundamental frequency, and so to maximize
the sensitivity, if used in an accelerometer, the fundamental
frequency of the lateral suspension should be minimized. For
a given device area this can be achieved by either reducing the
width of the beams or adding additional suspension units on
either side of the proof mass. There is a limit to how thin the
beams can be fabricated due to inherent process limitations
and so the addition of suspension units may be required. The
spring constant for the fundamental mode for n suspension
units either side of the proof mass is given by

kx = 24EIx

nl3
. (25)

There is a considerable price, though, to be paid for reducing
the fundamental frequency by this route: the rejection ratio
drops precipitously for most of the off-axis modes. Figure 4
shows the rejections ratios as the number of suspension units
increases from FEA of a model lateral suspension. The
ordering of the rejection ratios for one suspension unit agrees
well with the rules of thumb established in the last column
of table 1, with the full analytical values of the first column
within ±7% of the FEA. As the number of units increases, the
FEA rejection ratio drops as approximately 1/n for y, z and
β; as 1/n0.6 for γ ; as 1/

√
(n) for x1; and is independent of n

for α.
The reduction in the rejection ratios of the y, z and β

modes can be explained by considering that the translational
compliance of an elastic member increases with the cube of the
length of the member, so that while from [25] the fundamental
frequency drops inversely as the square root of n, the cross-axis
frequencies fall as 1/n3/2 and so the rejection ratio will scale
as 1/n. The γ mode depends more on the twisting compliance
of a member, which increases with the square of the length,
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1

10

100

1 10
Number of suspension units, 

fy/fx

fz/fx

fx1/fx

fγ/fx

fβ/fx

fα/fx

Figure 4. Log–log variation as calculated by FEA of the rejection
ratio for the spurious modes as the number of suspension units is
increased from 1 to 6. Three fits for the rejection ratio are shown:
for x1, 1/

√
(n); for α, independent of n; for z, 1/n.

Figure 5. Schematic of a suspension with a intermediate frame
between two suspension units.

and hence the rejection ratio might be expected to be inversely
proportional to the square root of n, reasonably close to the
1/n0.6 seen. For the x1 mode, the mass of the suspension is
proportional to n, and so the rejection from (24) will fall as
the inverse square root. Like the fundamental, the α mode
frequency is inversely proportional to n and so there is no
change in the rejection ratio with additional suspension units.

In order to overcome the considerable shortcoming of
this drop in the rejection ratios, it is necessary to decouple
the additional suspension units, so the off-axis compliances
add linearly rather than scale as the cube or square of the
units added. Intermediate frames can be introduced into the
suspension to increase the cross-axis rigidity. Figure 5 shows
a schematic of a suspension with a single intermediate frame.
These frames are symmetric about the suspended mass and
couple together the two sets of springs on either side of the
proof mass. As they join parts of the suspension that move
synchronously in the fundamental node, they have very little
effect on the fundamental frequency. However, by imposing

Table 2. Expressions for the fundamental and lowest spurious
modes for a lateral suspension with multiple (n) suspension units
either side of the proof mass and incorporating intermediate frames.

Mode, i ω2
i

X 24EIx
mnl3

Y 8EIx
mnls2 = l2

3s2 ω
2
x

Z 1/n

mls2
8GJ + mcl3

12EIz

= ω2
x

3EIx s2

GJl2
+ 2cIx

Iz

α
{

4EIx (s−w)g2

GJs l3
+ 4Ixg2

Izl2

[
1 − 3

4+ 3s2EIz

l2GJ

]}−1
ω2

x

β 3
[
1 + (n − 1) (s+f/2)

h

]
ω2

x

γ
3
[
1+(n−1)

(s+f/2)
h

]

1+g2/h2 ω2
y

x1 3 m+nmspring
m+n(mspring+mframe)

ω2
x

additional boundary conditions on the cross-axis modes the
frames can greatly increase the frequencies of these modes.
The effect of the frames is first analyzed assuming they are
massless and perfectly rigid.

Stiffening in the z direction is first considered. The
suspension can be subdivided into n sets of one unit each by
introducing n-1 frames between each unit. The total deflection
will be the sum of the deflections from each set, with the
corresponding spring constant from (7) is given by

1
kz

= n

(
ls2

8GJ
+

cl3

24EIz

)
. (26)

The rejection ratio is therefore unaffected by the introduction
of additional spring units. The beneficial effect on the y-axis
rejection ratio is identical.

The cross dependence of the rotational rigidities to the
translational rigidities produces a corresponding increase in
rotational rigidity with the introduction of frames for rotations
about the y and z axes. For rotation about the y and z axes, there
is a further stiffening as the elastic forces are applied further
away from the rotation axis as the number of suspension units
increases. The relevant forces for the three-suspension-unit
case are shown in figure 6, where the very weak torsional
contribution has been neglected as per (28). The overall
rotational spring constant will be given by

1
kβ

= 1
kzh2

+
1

kz(h + 2s + f )2
+

1
kz(h + 4s + 2f )2

, (27)

where f is the width of the frames. For n spring units this gives,
for s ' h,

(
ωβ

ωx

)2

= 3
[

1 + (n − 1)
s + f/2

h

]
(28)

giving a better rejection ratio as n increases. There will be
a similar stiffening due to the increased moment arm for in-
plane rotations as spring units are added. The corresponding
rejection ratio will be given by

(
ωγ

ωx

)2

=
3

[
1 + (n − 1) s+f/2

h

]

1 + g2/h2
. (29)

The frames have no effect on rotation about the x-axis
as they introduce no additional constraints for this motion.
The results for all the modes for n spring units and (n−1) are
summarized in table 2.
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Figure 6. Schematic showing the effective disposition of the spring elements for rotation about the y-axis for three suspension units and two
intermediate frames. The torsional spring contributions have been ignored.
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Figure 7. Log–log variation as calculated by FEA of the rejection
ratio for the spurious modes of a suspension incorporating
intermediate frames as the number of suspension units is increased
from 1 to 6. Fits for the rejection ratio are shown: for x1, 1/

√
(n);

for α.

The frames will have a detrimental effect on harmonics
along the x-axis due to the increased mass of the suspension.
The first harmonic, from (24), will have a frequency of

ωx1

ωx

= π

√
m

ms + mf

(30)

for a total frame mass of mf. Therefore the frames should
be made as light as possible while maintaining sufficient
rigidity. This result is appended to table 2. In figure 7 an
FEA calculation of an identical suspension to that modeled
in figure 4 is shown. By including intermediate frames into
the design, all modes except for x1 maintain or, in the case

Figure 8. SEM image of a 5 mm die lateral suspension consisting of
two spring units and an intermediate frame. The continuous 40 µm
wide halo etch used to fabricate the suspension is evident.

of α or γ , slightly improve their rejection ratio as additional
suspension units are added, in agreement with the analytical
formulae of table 2.

3. Experimental details and results

Various suspension geometries have been fabricated (e.g.,
figure 8) using DRIE to investigate the validity of these
dynamic formulae and corrections due to the beam cross-
sectional profile. The important parameters for the suspension
design analyzed are shown in table 3. Figure 9 shows
the details of the suspension corner. The elbows of each
suspension unit incorporate lateral webbing to improve the
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Figure 9. SEM of the corner of a 20 mm die lateral suspension showing the two suspension units and a mass-relieved intermediate frame.

Table 3. Parameters for the three suspension designs tested.

A B C Source

E (GPa) 122 Si 〈1 0 0〉 [33]
G (GPa) 72 Si 〈1 0 0〉 [33]
t (µm) 528 SEM profile
w (µm) 24 31 Mask, nominal
Ix (µm4) 2.64 × 105 5.72 × 105 SEM profile
Iz (µm4) 2.38 × 108 2.96 × 108 SEM profile
J (µm4) 1.06 × 106 2.29 × 106 SEM profile
C 1.20 1.20 Mask and FEA as from figure 2
n 1 2 3
l (mm) 8.32 8.32 8.21 Mask, nominal
s (µm) 627 516 426 Mask, nominal
g × h (mm) 8.96 × 6.03 8.84 × 6.03 8.84 × 6.03 Mask, nominal
m/(ms + ms) 42 31 20 Mask and SEM profile from figure 16
ws (µm) 100 100 140 Mask

rigidity in the z direction. The intermediate frame has been
relieved to attempt to minimize the on-axis spurious modes.

DRIE does not produce perfectly rectangular beam cross
sections [24–27]. In general DRIE causes some bowing in of
the profile causing the beam to be thinner midway through the
wafer. As will be seen, this effect of the etch can be appreciable
but it can also be readily quantified if the profile is known.
Previous work has analyzed this effect for bending of folded
cantilevers in the compliant direction if the deviation from
the rectangular profile is small [35], but the approximations
made are not applicable to the more pronounced etch profiles
observed in this work. We have used SEM data from cross
sections of the micromachined beams to numerically calculate
the second moments of area and the torsional constants of the
beams Ix, Iy and J.

The beam profile and sidewall quality are strongly
dependent on the etch geometry. Therefore to ensure that
the beam profiles remained as uniform as possible across the
wafer both within and between different suspension dies, a
‘halo’ mask was used where etching occurs in a trench of

the same width, in this case of 40 µm, across the wafer. The
suspensions were etched in nominal 500 µm thick wafers in an
STS inductively coupled plasma DRIE. Process parameters are
detailed in [27]. Before the etch reached the bottom surface
the wafers were mounted on a handle wafer using vacuum-
compatible thermally conductive grease (Cool Grease, AI
Technology, Princeton Junction NJ, USA). Footing damage
was reduced by the prior evaporation of a 500 nm layer of
aluminum on the backside of the wafer.

The rigidity of the suspensions was determined using an
SEM as a vibrometer [34] and also with an optical microscope
to measure the out-of-plane sag. SEM was performed in a
LEO VP 1400 (Leica Electron Optics) operated at 30 kV.
The dynamic response of the suspension to an external impulse
was imaged in the SEM by aligning the fast-scan direction of
the beam raster to the compliant x-axis. The suspensions were
excited by either an impulse from the stage drive or an external
impulse on the microscope column. The scan speed of the
raster was then adjusted so that the time period, or several time
periods of the dynamics of interest corresponded to the frame
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Figure 10. SEM for the determination of the in-plane dynamics for
the fundamental and first on-axis spurious mode of the lateral
suspension.

acquisition time. For resonant-frequency determinations,
frame acquisition times of 50 ms to a few seconds were
appropriate. Images were taken at UHV, which for the
very high quality factors of the suspensions (up to 40 000
[34]) ensured that a very-nearly-constant-amplitude sinusoid
was evident in the image. Figure 9 shows the fundamental
mode imaged in the SEM evident as a small-amplitude wave
in the edge position of the proof mass. Spurious modes
with deflections in the compliant direction can be imaged

(a)

(b) (c) (d )

Figure 11. (a) Overall geometry, and amplitude plots |Xi(x, y)| with profiles of the on-axis displacement Xi for (b) the fundamental mode, i =
x, (c) the on-axis first spurious modes, symmetric (i = x1s, unbroken line in profile plot) and asymmetric (i = x1a, dashed line in profile plot)
and (d) the in-plane rotation mode, i = γ . The locations for best imaging the individual modes are shown in (a).

as superimposed higher frequencies. Figure 10 shows the
first on-axis harmonic of frequency ωx1 with an antinode
at the intermediate frame. One considerable advantage of
this technique is that the spurious-mode rejection ratio can
be immediately measured as the number of spurious-mode
oscillations corresponding to one fundamental oscillation.

By orienting the scan and the suspension with respect to
the incident electron beam, modes along multiple axes can
be visualized. Several modes can contribute to oscillations
in any one SEM image. Identification of the modes and
determination of the rejection ratios is most easily performed
if only one spurious mode (plus the fundamental if visible) is
contributing to the imaged oscillation. Taking first the beam in
the z direction with the scan parallel to the compliant direction
to visualize oscillations along the x-axis, the total oscillation
X(x, y, t) will be a sum of the displacements of all modes, i,
that contribute to the overall displacements in the x direction

X(x, y, t) =
∑

i

Xi(x, y) cosωi t . (31)

In figure 11 the values of |X(x, y)| are shown plotted for
the modes with displacement components in the x-direction,
namely the fundamental x0, the on-axis mode due to the finite
suspension mass x1, and the rotation about the z-axis γ . From
these the best locations for SEM imaging to separate the modes
can be identified (see figure 11(a)), namely at the center of the
suspension for the first on-axis spurious mode and at the corner
of the proof mass for the rotation about the z-axis. Figure 12
is an SEM to determine ωγ/ωx from the two superimposed
modes along the edge of the proof mass. Also evident in this
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Figure 12. SEM for the determination of the in-plane rotation
frequency. Also evident are the superimposed x, x1 and γ modes
toward the suspension elbows.

image is the superposition of all the X modes that occur toward
the elbows of the suspension. Rotating the scan by 90◦ to the
y-axis allows visualization of the additional y mode as well as
the γ mode (figure 13).

(a)

(b) (c)

Figure 13. (a) Overall geometry, and amplitude plots |Yi(x, y)| with profiles of the on-axis displacement Yi for (b) the in-plane cross-axis
mode, i = y, and (c) the in-plane rotation mode, i = γ . The locations for best imaging the individual modes are shown in (a).

Finally the suspension can also be visualized with the
electron beam very nearly along the y-axis (figure 14) if the
rigidity in the y-direction is sufficient to prevent interference
between the frames. For this viewing angle the displacement
can only be visualized in the z direction as a function of x:

Z(x, t) =
∑

i

Zi(x) cosωi t . (32)

The z, α and β modes all produce Z displacements
(figures 15(c) and (d)) with the first two modes being
indistinguishable. The fundamental also produces a visible
deflection which allows for direct determination of the
rejection ratios. The x-mode deflection is due to the small
tilt of the beam direction off the y-axis of one or two degrees
providing a component of the proof-mass weight in the z-
direction. As the fundamental is excited this component
produces a varying z-deflection as the suspensions on each side
of the proof mass stiffen and soften, alternately compressing
and expanding to produce an effective decrease and increase
in s.

Clean excitation of the rotational modes of the suspension
is not always achievable, with translational modes sometimes
swamping the rotational vibration amplitudes. Therefore a
complete determination of all the modes from such a study of
the dynamics in the SEM is not always possible.

As well as imaging the modes dynamically in the SEM,
it is also possible to determine the frequencies of the three
translational modes (x, y and z) from the sag under gravity
of the suspension along these axes. Such determinations
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Figure 14. SEMs taken with the suspension tilted with the electron beam close to the y-axis. The main image is taken with the scan
direction along the x-axis, while the two insets show the dynamics close to the corner of the proof mass and midway along the proof mass,
both with the scan direction along the z-axis.

(b) (c) (d )

(a)

Figure 15. (a) Overall geometry and amplitude plots |Zi(x)| with profiles of the on-axis displacement Zi for (b) the fundamental, i = x, and
(c) the indistinguishable i = z and i = α modes, and (c) the i = β The locations for best imaging the individual modes are shown in (a).

provide an independent check on the dynamically determined
frequencies and allow an ambiguous determination of the z

mode, which is indistinguishable from the α mode in the
dynamic images. In general the sag 'i along any axis i will
be given by

'i = g cos θi

ω2
i

, (33)

where g is the gravitational acceleration, θ i is the angle between
the i-axis and the gravitational vector and ωi is the angular
frequency of the translational mode. Applying (33), the

x- and y-mode frequencies could be determined from static
images in the SEM and the z mode frequency from focus-
depth measurements in an optical microscope. The results of
these determinations for the three suspensions are shown in
table 4.

Figure 16 shows a composite SEM of a cross section of a
beam together with a plot of the numerical profile. It is evident
that as well as bowing throughout the etch, undercutting is
occurring for a few tens of microns below the resist. Using
this measured profile, the bending and torsional constants for
this beam can be derived.
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Figure 16. Profile of a suspension beam determined from the cross-sectional SEM.

Table 4. Comparison for the three designs between the spurious-mode values as predicted from the analytical expressions (Form), FEA and
observed (Obs).

A (n = 1) B (n = 2) C (n = 3)

Form FEA Obs Form FEA 9.4 ± Form FEA Obs

fx (Hz) 11.4 11.4 10.7 ± 0.3 8.1 8.1 7.9 ± 0.1 9.9 9.9 10.3 ± 0.2
fx1/fx 34.5 36 42 ± 2 17.5 14.2 15.7 ± 0.2 14 11.4 12.5 ± 0.5
fγ/fx 7.5 8.3 8.5 ± 0.3 9.1 9.5 10.5 ± 0.5 10.9 10.9 11.5 ± 0.3
fy/fx 7.7 7.2 6.8 ± 0.4 9.3 8.8 9.4 ± 0.3 11.1 10.5 11.3 ± 0.2
fz/fx 10.1 8.3 9.5 ± 0.5 11.5 10.2 11.9 ± 0.2 11.1 11.1 11.5 ± 0.2
fβ/fx 19.3 15.7 – 23.5 20.5 19.2 ± 0.2 23.5 23.5 –
fα/fx 14.9 10.4 – 12.4 13.6 – 14.3 14.3 –

4. Discussion

The etch profile as measured has an appreciable effect on
the dynamics of the suspension. Using numerical integration
from the measured beam profiles, Ix and J are just 43 ± 4%
of their nominal value assuming a rectangular profile with the
beam width of the DRIE mask. Iz is less sensitive to the etch
profile at 80% of nominal, as the bending constant along the
z-axis is mostly determined by the top and bottom parts of
the cross section which are least reduced by the overetching.
The effect of the etch profile on the bending and torsion
constants is incorporated into table 3. From these results an
effective beam width, weff, for the FEA can be derived to give
the same Ix

(
=1/12tw3

eff

)
and J

(
= 1/3tw3

eff

)
for a rectangular

beam, as both vary as the cube of the width. However, it is not
possible in general to simultaneously match Iz, which will vary
linearly with the beam width. Hence, we would expect there
to be some error in the FEA of the z, α and β modes due to the
incorrect value of Iz. For the suspensions studied, however,
the total FEA error happens to be rather small, as the cube
of the Iz correction factor (80%)3 is 51% which is reasonably
close to the Ix and J correction factor of 43 ± 4%.

The analytical, FEA and observed mode frequencies are
generally in very good agreement. Some observed values
could not be determined due to the difficulty in cleanly exciting
the rotational modes. Inconsistencies in the FEA results due
to the incorrect value of Iz are not very evident, as would be
expected from the above discussion.

The agreement between analytical, FEA and observed
values provides confidence in formulae for the lateral
suspensions developed in this work. Further calculations
of model suspensions show excellent agreement of FEA
and analytical results across a broad range of unfabricated
geometries. For example, FEA shows that the best rejection
ratio for rotation about the compliant axis is indeed twice the
beam aspect ratio, as predicted from [22]. The analytical
formulae have the advantage of allowing the immediate
characterization of a suspension design and giving a heuristic
approach to optimization.

Hence as far as the dynamics of the suspension are
concerned, a non-ideal etch profile, if properly incorporated
into the design, causes few problems. As the both Ix and J are
equally affected by the etch profile, and Iz is increased relative
to Ix, a bowed etch profile improves the cross-axis rejection.
Furthermore such a profile reduces the mass of the suspension
for a given stiffness, improving the rejection of the first on-
axis spurious mode. In addition, if conductors are to be routed
along the suspension to structures on the suspended mass, a
bowed profile has the advantage of a greater surface width
being available for a given stiffness of suspension. Hence
the optimum beam profile will not in general be rectangular,
but will incorporate some overetching, resulting in the beam
cross section tending to approach a classical I-beam geometry.
Any deviation of mirror symmetry of the beam profile about
the center of the wafer can result in cross coupling between
modes, a large effect in some suspension geometries [36]. For
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the geometry of the lateral suspension of this work the only
allowed cross coupling into the compliant direction will be
from rotation about the y-axis, and as this coupling takes place
due to torsional effects which will be negligible, from (16), for
l & s, the overall effect of any asymmetry in the profile can be
neglected.

The introduction of intermediate frames into lateral
suspensions has been demonstrated as beneficial to cross-axis
rejection in the out-of-plane direction. Intermediate frames
should help reject all other modes. The price to be paid for
the introduction of the frames is in the lowering of the first
compliant-axis harmonic due to the increased mass loading.
In this work the mass loading has been minimized by using a
relieved structure for the intermediate frames, although at the
expense of some loss in torsional strength. There is scope for
further optimization of the exact intermediate frame structure.
However, at least for the design space of the suspensions
in this work, the extra cross-axis stiffness introduced by the
intermediate frames outweighs the deterioration of the on-axis
dynamics and frames should be incorporated between each
suspension unit. In addition to intermediate frames, webbing
at the elbows of the suspensions can greatly reduce the out-
of-plane bending with little loss of compliance in the on-axis
direction. Again, there is scope for optimization of the detailed
structure here.

A design heuristic can now be developed and applied for
lateral suspensions. The analytical formulae of tables 1 and 2
can be used to first determine the lowest frequency spurious
mode of a candidate design. Examination of the parameters
will then lead to possible variations on the geometry to push
up the rejection ratio of this mode. In general, as the
lowest frequency spurious mode is thus pushed away from
the fundamental, other spurious modes will be lowered in
frequency. For instance, the introduction of frames will
improve the rejection of many of the modes but will push
down the frequency of the first spurious on-axis mode due
to the increase in the suspension mass. The widest separation
between the fundamental and first spurious value will therefore
occur as the two lowest spurious modes have the same
frequency. The three suspensions studied give an example
of this approach for an increase in the number of frames (see
table 4). As the number of suspension sets increases from
one, to two, to three, the lowest rejection ratio is raised while
the other spurious-mode rejection ratios decrease. For three
suspension sets several modes have a very similar rejection
ratio of about (11), representing a near optimum design for a
clean bandwidth.

Particular design or performance constraints may cause
one mode to be preferentially rejected. An example may
be if the out-of-plane z-axis deflection should be minimized
to allow for minimum gaps between the suspension and
any sandwiching structures. In this case maximizing the
rejection of one specific mode may be preferable to overall
maximization of the clean, spurious-mode-free, bandwidth
above the fundamental.

5. Conclusions

Folded-cantilever structures have been shown to incorporate
several desirable features; in particular for the mirror-pair

design studied here, the separation of the modes in each degree
of freedom. A complete analysis of the important modes
of a folded-cantilever suspension has been performed using
elastic beam theory, yielding some very simple formulae for
all the spurious modes under a relatively non-restrictive set of
assumptions. The resulting formulae have been verified for
both fabricated suspensions and shown to produce consistent
results to FEA over a broader range of model suspensions. A
design heuristic for lateral suspensions has been presented.
The achieved cross-axis rigidities correspond to an order-
of-magnitude frequency ratio between the fundamental and
spurious modes of the suspension, corresponding to spring
constants two-orders-of-magnitude higher for both the cross-
axis translational and rotational modes. Non-ideal etch profiles
are shown to have a large effect on the suspension compliance.
This effect has been shown to be quantifiable and to ensure
that the design goals of the suspension are met it is important
that the beam profile is known and predictable. The bowed
overetched profile, which most commonly occurs in through-
wafer DRIE, has been shown to have a number of beneficial
effects on the dynamic performance of the suspension.

In order to improve the rejection of unwanted modes
two design features have been demonstrated: the inclusion
of webbing at the suspension elbows and intermediate
frames coupling portions of the suspension. The latter are
particularly effective in increasing the cross-axis rigidities
of a lateral suspension and their deleterious effects have
been quantified and demonstrated. Although the design has
focused on high-aspect-ratio beam geometries, the analytical
expressions derived in this work will be applicable to surface-
micromachined suspensions.
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