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Abstract: This paper gives a numerical analysis of nonlinearities due to rigid, elastic mechanical end-stops in a 
vibrating energy harvester. Both an eigenvalue problem approach and time domain simulations are used. We 
consider two rigid end-stops limiting the motion of a proof mass. The dynamics are linear between the impacts 
which cause strong nonlinear behavior. Even though the output power varies little with change in acceleration 
amplitude, we find that there can be drastic changes in the proof mass motion with change of amplitude. In a wide 
range of acceleration amplitudes the phase space trajectories are very complicated and have periods much longer 
than the period of the vibration, some appearing chaotic. Only in a small range of amplitudes do we find simple 
periodic motion. 
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INTRODUCTION 

Vibration energy harvesters are gaining popularity 
as a possible alternative to batteries [1]. Vibration 
energy harvesters can operate linearly or nonlinearly 
depending on device type and the amplitude of proof 
mass motion. Nonlinearities in the stiffness of the 
structure can be designed in order to improve 
performance [2, 3]. Nonlinearities can also appear as 
side effects of otherwise required design features, for 
example impacts of the proof mass on end-stops 
limiting the motion [4]. 

Even if the proof mass moves according to linear 
equations of motion between end-stops, the behaviour 
changes abruptly as it hits the end-stops. The non-
linearity of the proof mass motion in energy harvesters 
that include end-stops have been studied both by 
simulation and experiments [3, 4].  

Contrary to previous works that consider more 
compliant end-stops, this paper presents a numerical 
analysis of nonlinearities due to highly rigid, elastic 
mechanical end-stops in an energy harvester. The 
motion is treated as linear evolution between impacts 
with discontinuities in the velocity at the end-stops 
impacts. The dynamics are analyzed using both an 
eigenvalue problem approach and transient 
simulations.  

MATHEMATICAL ANALYSIS 
Linear equations of motion 
 In equilibrium, the total force on the proof mass 
and the voltage across the electrical load in an energy 
harvester must be zero. When the harvester is excited 
by vibrations, we will have deviations of the state 
variables from their equilibrium values depending on 
the strength of the excitation signal. The linear 
equations of motion of the proof mass in an energy 
harvester under sinusoidal excitation can be expressed 
with the proof mass’ position x , its velocity v and the 
transducer charge q as state variables and with the 

driving force proportional to the package acceleration 
a = cosA t , where A is the peak acceleration 
amplitude,  is the angular driving frequency and t is 
the time. For our purposes, it is more convenient to 
include the package acceleration and an auxiliary 
quantity b = sinA t  into the state variables to make 
the system autonomous. The equations of motion are 
then given by 

x v                                 (1)                    
2

2 0 0
0v

k
x q v a

Q
     


              (2) 

 0 0q kx q
r r
                        (3) 

a b                              (4) 

b a                               (5) 
where, Q is the open circuit quality factor of the device, 
k is the electromechanical coupling factor, 0 is the 

open circuit angular resonance frequency, K is the 
spring stiffness, C is the transducer capacitance,  

KC  , the load resistance R is contained in 

0r CR  and acceleration amplitude  2 2A a b  . 

 For further analysis the linear system of eq. (1) to 
(5) is transformed into dimensionless form. We then 
use a dimensionless time (phase angle) 0t  , 

frequency 0/   , amplitude 2
0

ˆ / sA A X and 
dimensionless state variables  
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where, ±Xs denotes the positions of the end-stops, i.e. 

sx X .  



 

Linear evolution  

 With ˆˆ ˆ ˆ ˆ ˆ   
T

u x v q a b as the state vector, 

eq. (1) to (5) read 
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 Then, a linear evolution of the system from 1   
to 2   is given by  
 

     2 2 1 1
ˆˆ ˆ u U u                   (13) 

where, 

   ˆ ˆexpU L                          (14) 

   
Nonlinearities at impacts 

 The nonlinearity due to rigid mechanical end-stops 
will be an abrupt change of the velocity. If we have an 
impact at the 1 , this change in velocity can be modeled 

as    1 1ˆ ˆ  v ev  where e is the coefficient of 

restitution and the superscript +(-) denotes a time 
infinitesimally after (before) 1 . For an elastic impact, 
e=1. Thus, the state vector change at impacts is given 
by 
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Eigenvalue problem 

 Fig. 1 shows the end-stops model, where end-
stops are placed at x̂ =-1 and x̂ =+1 limiting the 
motion of proof mass to this range. If the motion 
pattern (i.e. the sequence of impacts per cycle of 
motion) is known, all possible solutions can be found 
from an eigenvalue problem. Here we consider, as an 
example, the case where the motion is such that we get 
one impact on each end-stop during a cycle of motion. 

Let  =0 be the time of impact at ˆ 1 x  and 
assume that at some intermediate time 1 , we have 

another impact at x̂ =+1 and then the next impact at 
x̂ =-1 at time 2 2 /   , thus completing one cycle of 
motion. 

 
Fig. 1: Model of rigid end-stops. 

 If the state vector is initially  ˆ 0u  = 0u , the 

sequences of linear evolutions and impacts up to the 
time just after the second impact at x̂ =-1 at time 

2   are given by 
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                   Now, if the period of motion is equal to the 

period of the vibration, we must have  2 0ˆ  u u in 

(18). Therefore an admissible u0 must be an 
eigenvector of the matrix    2 1 1

ˆ ˆSU SU    with 

eigenvalue 1. We can therefore find candidate 
solutions by choosing 1 , solving the eigenvalue 
problem and choosing a linear combination of 
eigenvectors corresponding to the eigenvalue 1 such 
that eq. (17) represents a real valued state vector with 
x̂ =+1.  The final result must be checked against 
unphysical solutions where the proof mass motion 
extends outside the limits of the end-stops. The 
package acceleration amplitude is then calculated from 
the state vectors. 

It is possible to conduct similar analysis for other 
types of motion, but it quickly becomes complicated 
when there are several impacts per period of motion 
because that gives several unknown impact times and a 
new eigenvalue problem has to be formulated for each 
case. Therefore we also did transient simulations based 
on eq. (13) and eq. (15) in the following sections. This 
is similar to the technique used in [5].                    

NUMERICAL ANALYSIS 
 Using eq. (17) to eq. (20), MATLAB code was 
developed to find all possible solutions using the 
eigenvalue problem describing the time evolution of 
state vectors during one cycle of motion. For the 
numerical analysis, model parameters are taken from 



 

[4] with e=1(lossless impact), r=1,  =1(on-resonance 
operation), Q=350 and k2=0.006.  
 The corresponding time between impacts vs. 
vibration (package acceleration) amplitude is shown in 
fig. 2. The unphysical solutions are then discarded 
based on a check of the displacement at intermediate 
times. For a normalized amplitude of 1, there is a 
single solution in which the first impact is at the mid-
point of the cycle. As the amplitude increases this 
splits into two solutions with opposite asymmetry of 
the times between impacts. 
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Fig. 2: Time between impacts versus acceleration 
amplitude. 

 Fig. 3 shows one cycle of motion at acceleration 
amplitude 1.0056 contained in the region of physical 
solutions in Fig. 2. The velocity discontinuities due to 
impact on the end-stops are evident. 
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Fig. 3: Proof mass velocity v̂  and displacement x̂  and 

package acceleration â  at amplitude Â= 1.0056. 
The instantaneous output power is given by 

  21ˆ ˆ ˆP kx q
r

                           (21) 

The average output power can be found by averaging 
eq. (19) over a period of motion. When the end-stops 
are not impacted, normalized average output power 
can be calculated from the linear model using  
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There exists a gap in vibration amplitudes between 
the range that gives linear motion and the range 

obtained from the eigenvalue problem described in the 
previous section. This gap indicates that solutions with 
other motion patterns must be present. In order to look 
into these patterns and complete the set of solutions, 
the system is simulated starting from an arbitrary state 
until the initial transients have decayed. 

Fig.4 shows the average output power for the 
linear model, for the end-stops model calculated from 
the eigenvalue problem and for the system simulated 
for a larger numbers of vibration cycles. For the 
amplitude |Â |= 0.00658, the proof mass barely hits the 
end-stops. The amplitude is given by  
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Fig. 4: Average output power versus acceleration 
amplitude. 

In order to better understand what is happening on 
increasing amplitude, we have plotted phase space 
trajectories projected into the x-v plane in Fig. 5-8. Fig. 
5 shows the time evolution for an amplitude slightly 
above the one that is necessary to achieve impacts. 
Cyclic motion is found but the period of motion is 
considerably longer than the period of the driving 
force. For slightly larger amplitude, the phase space 
trajectory becomes very complicated, possibly chaotic 
like in [6], and we are not able to observe any 
repeating pattern, see fig. 6.  

Upon further increase of the acceleration 
amplitude, the motion pattern simplifies. Fig. 7 shows 
the phase space trajectory for Â=0.7. Here, periodic 
motion is clearly present. In this case the period is 
twice the period of the driving force and a stopper is 
hit once per period of that force. Increasing the 
amplitude further, we get into the range of solutions 
that we determined by the eigenvalue problem. Here 
we have the same period in the response as in the 
driving force and each end-stop is hit once per cycle. 

We note that while the details of the motion 
change considerably with change in acceleration 
amplitude when impacts occur, the output power is 
only weakly dependent on the amplitude. Therefore the 
consequences of impacts on the performance while 
operating continuously are minor. Since the number of 
impacts per period of the driving force can change 
considerably with amplitude, it is an interesting 



 

question for further investigation if the same effect is 
seen when the load is switched during operation. If so, 
it may be a challenge to utilize the end-stops as 
mechanical switches for power conversion circuitry. 
The simulation approach used in this paper can be used 
to analyze that situation too, provided the switching 
can be treated as instantaneous. 

 

 
Fig. 5: Phase space trajectory in x-v plane for Â=0.07. 
. 

 
Fig. 6: Phase space trajectory in x-v plane for Â=0.10. 
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Fig. 7: Phase space trajectory in x-v plane for Â=0.70. 
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Fig. 8: Phase space trajectory in x-v plane for 
Â=1.0056. 

CONCLUSION 
A numerical analysis of impact behaviour due to 

rigid, elastic end-stops was presented in detail. We 
considered two rigid end-stops limiting the motion of 
the proof mass. For periodic motion with one impact 
on each end-stop during a period of vibration, an 
eigenvalue problem approach was used to study the 
motion of the proof mass for different amplitudes of 
sinusoidal excitation. It was found that this simple 
motion is atypical and that there are solutions with 
complicated trajectories in phase space. The period of 
motion for these solutions can be very different from 
the period of the driving force, if periodic at all. The 
main effect of end-stops on output power is to give 
saturation behaviour when operating in continuous 
mode. If the end-stops are utilized as switches for 
power conversion circuitry, the situation may be very 
different because then there has to be predictable 
switching on every cycle. The simulation approach 
used here can be used to analyse that situation and is 
an interesting topic for future work. 
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