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Metamaterials made up of resonant elements containing lossy metallic conductors will invariably

give rise to Johnson noise. A model based on nearest neighbor interaction of magnetically coupled

elements is shown to predict the propagation of noise waves and the excitation of resonances in

regular arrays. The power spectral density (PSD) of the noise is calculated for rectangular arrays of

different dimension. It is shown that the effect of coupling is to alter the PSD, leaving the noise

bandwidth unaltered. The implications for passive and active devices are examined using the

simple model of a lossy one-dimensional interconnect with distributed parametric amplification,

and it is shown that the improvements to the noise factor offered by amplification are limited.
VC 2011 American Institute of Physics. [doi:10.1063/1.3600071]

I. INTRODUCTION

Following some seminal investigations,1,2 artificial

media with novel electromagnetic properties such as nega-

tive permittivity or permeability have attracted considerable

interest. The media (collectively known as metamaterials)

are based on arrays of electrically resonant structures. Exam-

ples of resonant elements include split-ring resonators

(SRRs) and ‘Swiss rolls’.2–4 Periodic circuits provide models

for such media,5 and it is simple to show that coupling

allows the propagation of lattice waves; for example magne-

toinductive4,6 and electroinductive7 waves. Applications

include interconnects,8 near-field imaging devices9 and

cloaks of invisibility.10 However, RF metamaterials are

inherently lossy. Conductors and dielectric materials are dis-

sipative sources of propagation loss, while scattering from

disorder in periodic lattices can also give rise to effective

attenuation. As a result, methods of overcoming loss such as

parametric amplification are being actively considered.11,12

Here, we focus on the effect of conductors. In addition

to attenuation, such elements must give rise to electrical

noise, and this aspect has so far escaped significant attention.

However, because noise may have profound implications for

practical applications it deserves consideration. Since the ob-

servation of thermal noise in conductors by Johnson13 and its

theoretical explanation by Nyquist,14 electrical engineers

have attempted to minimize its effect on lumped-element cir-

cuits.15,16 The propagation of ‘noise waves’ in distributed

circuits has also been noted.17,18 Noise must clearly propa-

gate as a wave in any coupled metamaterial. Using the spe-

cific example of multi-dimensional magnetoinductive (MI)

media,19 we show in this paper how the power spectral den-

sity (PSD) of the noise can be found by adding together the

contributions of noise waves or noise resonances. We then

show how magnetic coupling alters the PSD in arrays of dif-

ferent dimension. In each case, we provide exact analytical

solutions, rather than representative averages. Finally, we

examine the implications for the noise factor of simple pas-

sive and active metamaterial links, and show that the

improvements offered by amplification are limited.

A. Infinite one-dimensional arrays and noise waves

We first follow Pierce15 and consider a single lossy L-C
resonator containing a voltage source V(x)¼V0 exp(jxt) at

angular frequency x¼ 2pf as shown in the inset to Fig. 1. If

the voltage arises from Johnson noise in the resistor R, the

average value of V0V0* in a small frequency interval df is

4KTRdf, where K is Boltzmann’s constant and T is absolute

temperature (assumed constant throughout this paper).

Assuming the current also varies as I¼ I0 exp(jxt), its modu-

lus square is I0I0*¼ P0V0V0*=R2, where P0 (the normalized

power spectral density of the noise for the 0-dimensional

case) is:

P0ðxÞ ¼ 1=f1þ Q2ð1� x2
0=x

2Þ2g (1)

Here, x0¼ 1=H(LC) is the angular resonant frequency,

Q0¼x0L=R is the quality factor and Q¼Q0x=x0. This

analysis shows that the reactive elements add no noise, but

instead form a filter that alters the noise PSD from its origi-

nal flat distribution. Figure 1 shows the frequency variation

of P0, for Q0¼ 100. There is a single peak at x¼x0, with a

monotonic reduction on either side. Substituting for V0V0*

we get I0I0*¼ P04KTGdf, where G¼ 1=R is the conduct-

ance. The noise bandwidth may be found by comparing this

result with the standard expression for a flat noise distribu-

tion (I0I0*¼ 4KTGB) to get B¼ 0$
1 P0(f) df. This integral

was performed analytically by Pierce,15 who obtained a

bandwidth B¼ x0=4Q0. These results represent well-known

benchmarks, and our interest is whether they also hold in

coupled arrays or not.

Sets of identical elements may be arranged in 1D, 2D

and 3D arrays, as shown in Figs. 2(a)–(c).19 Obviously there

are many possible arrangements but here we restrict our-

selves to rectangular arrays with rectangular unit cells. We

assume magnetic coupling between nearest neighbors, and
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begin by considering 1D arrays consisting of an infinite set

of identical lossy L-C resonators with lattice spacing a. With

no voltage sources, the circuit equation for the nth element is

(Rþ jxLþ1=jxC)Inþ jxM(In-1þ Inþ1)¼ 0, where M is the

mutual inductance between elements. Assumption of the

wave solution In¼ I0 exp(�jnka) leads to the dispersion

equation 1� x0
2=x2 � j=Qþ j cosðkaÞ ¼ 0 (Ref. 6). Here,

j¼ 2M=L is the coupling coefficient, and k is the propaga-

tion constant. Positive and negative values of M lead to for-

ward and backward waves, over the range 1=H(1� jj j) �
x=x0 � 1=H(1� jj j). Finite Q-factors render the propaga-

tion constant complex (so that k¼ k0 � jk00) and allow out-of-

band propagation.

To find the effect of noise, we assume an array with n

extending from minus to plus infinity, containing to start

with a single noise source of amplitude V0 in element zero.

For forward-waves, the resulting equations may be solved by

assuming the solution In¼ I0 exp(�j j n j ka), i.e., noise

waves propagating away from the source on either side. It is

simple to show that I0¼V0=fRjQ sin(ka)g, and hence that

the modulus-square of the current in the nth element is:

InI�n ¼ ðV0V�0=R2Þ expð�2jnjk00aÞ=fj2Q2j sinðkaÞj2g (2)

Similarly, the response in element n for a noise source in ele-

ment n0 is:

In;n0 I�n;n0 ¼ ðV0V�0=R2Þ expð�2jn
� n0jk00aÞ=fj2Q2j sinðkaÞj2g (3)

Equation 3 implies that elements n and n0 are in equilibrium,

since their effects on each other balance. The overall

response n0R I0,n0I0,n0* in (say) element zero can be found by

summing independent contributions from all noise sources to

get I0I0*¼ P1V0V0*=R2, where P1 (the PSD of the noise for

a 1D lattice) is:

P1ðxÞ ¼ 1=fj2Q2 tanhðk}aÞj sinðkaÞj2g (4)

P1 may be evaluated following numerical solution of the lossy

dispersion equation. Figure 3 shows its frequency variation,

for Q0¼ 100 and different values of j. For small j, we

recover the PSD of an isolated element (P0). However, as j
increases, the results are entirely different. The peak value of

P1 decreases and the frequency range of significant noise

increases to include the whole MI band. Within the band, the

PSD is approximately flat, but there are small peaks at the

band edges. The same results are obtained for negative j.

Clearly, coupling does alter the spectral distribution of noise.

However, numerical integration of P1 still yields the previous

result (B¼x0=4Q0), implying that the equivalent noise band-

width is unchanged, despite the introduction of coupling.

B. Finite one-dimensional arrays and noise
resonances

We now consider the excitation of resonances in finite

arrays by noise waves. In the loss-less case, the spatial

resonances supported by a finite 1D array may be found by

imposing periodic boundary conditions. Assuming the array

extends from n¼ 1 to N, we obtain k�a¼ �p=(Nþ 1),

with �¼ 1 … N, and eigenfrequencies x� given by x2
0=x

2
� ¼

1þ j cosfvp=ðN þ 1Þg. The associated current distributions

can be written in normalized form as j�n¼Hf2=(Nþ 1)g
sinf�p=(Nþ 1)g and represented as N-element eigenvectors

j�. In the lossy case, it can be shown that the result of excita-

tion by a set of voltages (written as an N-element vector V)

is the current distribution given by the vector I:20

I ¼ ð1=RÞ vR< V; jv > jv=f1þ jQðx2
0=x

2
v � x2

0=x
2Þg (5)

FIG. 2. (a)–(c) Regular arrays of magnetically coupled resonators of differ-

ent dimension.

FIG. 3. 1D magnetically coupled resonator array (inset), and its normalized

power spectral density of noise (main figure), for Q0¼ 100 and different val-

ues of j.

FIG. 1. Lossy L-C resonator with internal noise voltage source due to the re-

sistor R (inset) and its normalized power spectral density of noise (main

figure).
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Here,<V, j� > is the inner product of V and j�. This result

implies that each mode will be excited by an amount that

depends on the correlation between its shape and the excita-

tion pattern and also on the closeness of its resonance to the

operating frequency. It is valid for arbitrary MI systems with

identical elements, but is especially valuable in regular

arrays when j� and x� are known. Using Eq. (5), the

response at element n to a noise source at element n0 is:

In;n0 I�n;n0 ¼ ðV0V�0=R2ÞfvRjvn0 jvn=kvgflRjln0 jln=k
�
lg (6)

Here k� ¼ 1þ jQðx0
2=x�

2 � x0
2=x2Þ. Summing the effect

of all noise sources, we then obtain:

InI�n ¼ ðV0V�0=R2Þn0RfvRlRjvn0 jvn jln0 jln=kvk
�
lg (7)

Changing the order of the sums, and using the orthonormal-

ity of the modes we then obtain:

InI�n ¼ ðV0V�0=R2ÞfvRjvn
2=kvk

�
vg (8)

Comparison with previous results shows that the noise PSD

must be P1 ¼ vRjvn
2=kvkv � , or:

P1ðn;xÞ ¼ f2=ðNþ 1ÞgvRsin2ðnvp=ðNþ 1Þg=
f1þ Q2ðx2

0=x
2
v � x2

0=x
2Þ2g

(9)

Before proceeding, we note that this result could have been

obtained somewhat differently. In previous analysis we have

assumed that the noise sources are all applied separately.

However, for excitation by all the sources simultaneously,

we obtain:

InI�n ¼ ð1=R2ÞfvRlR< jv;V > < V�; jl >jvnjln=kvk
�
lg (10)

Here V is an n-element vector containing elements V0, and

we have reversed the order of the first inner product. Since

the noise voltages must be un-correlated, the outer product

of V and V* is V0V0* i, where i is the identity matrix. In this

case, it can be seen that Eq. (8) is obtained directly.

Equation (9) is an alternative to Eq. (4), and predicts

that the noise PSD must actually depend on position in a fi-

nite array. Figure 4 shows the frequency variation of P1 for

infinite arrays (smooth curves) and finite arrays with N¼ 15

(oscillatory curves), calculated both at the center and at the

edge of the array. In each case, Q0¼ 100 and j¼ 0.1. For

small N, individual noise resonances may now be distin-

guished. As N rises, the size and period of the oscillations

decreases, and the variation at the array center tends to the

result for an infinite array. Peaks in the limiting PSD may

then be ascribed to the crowding of resonances near the ban-

dedge. The variation at the array edge is entirely different,

with a peak rather than a trough at the band center. This

result is due to the local environment of elements at the

edge, which sample noise from a different set of sources.

Similar calculations may be carried out for 2D and 3D

arrays, to obtain double and triple sums, respectively.

C. Infinite multi-dimensional arrays

When the array is large, the PSD near the center must be

approximately uniform, and the summation must tend to an

integral. Making use of the fact that the resonances are at

regular intervals in k-space, it is simple to show that the rele-

vant integral is:

P1ðxÞ ¼ ð1=pÞ
0

ðp

dkva=f1þ Q2ðx2
0=x

2
� � x2

0=x
2Þ2g (11)

Comparison with Eq. (1) suggests the noise spectrum in the

array is the average in k-space of the PSDs of a set of equally

weighted noise resonances. The integral may be evaluated

by eliminating the resonant frequency term using the loss-

less dispersion relation to get:

P1ðxÞ ¼ ð1=pÞ
0

ðp

dkv a= f1þQ2ð1þjcosðkvaÞ�x2
0=x

2Þ2g

(12)

Despite their dissimilar appearances, numerical evaluation

shows that Eq. (12) predicts exactly the result of Eq. (4). The

approach may be extended to higher dimensions very simply.

For example, for a 2D array with coupling coefficients jx

and jy in the x- and y-directions and equal lattice spacing a,

we obtain the double integral:

P2ðxÞ ¼ ð1=p2Þ
0

ðp

0

ðp

dkva dkla=f1þQ2ð1þ jx cosðkvaÞ

þ jy cosðklaÞ � x2
0=x

2Þ2g (13)

Similarly, addition of a coupling term jz in the z-direction

allows the 3D PSD to be found as:

P3ðxÞ ¼ ð1=p3Þ
0

ðp

0

ðp

0

ðp

dkva dkla dkoa

= f1þ Q2½1þ jx cosðkvaÞ þ jy cosðklaÞ
þ jz cosðkoaÞ � x2

0=x
2�2g (14)

FIG. 4. Power spectral density of noise PSD in 1D magnetically coupled

resonator arrays, for Q0¼ 100 and j¼ 0.1. Smooth lines — infinite array;

oscillatory lines — finite array with N¼ 15.
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Figure 5 compares the PSDs obtained for 1D, 2D and 3D

arrays, assuming jx¼�0.1, jy¼�0.1 and jz¼ 0.1 and

Q0¼ 100. The results clearly depend strongly on the dimen-

sion of the array.

D. Noise factor of passive interconnects

Internal noise must affect the performance of metamate-

rial interconnects. We illustrate the likely effects with the

example of a passive linear MI array, used to link a voltage

source VS with output impedance RS to a load RL as shown

in Fig. 6(a). We assume that source and load are matched,

and that the array is operated at mid-band. The available sig-

nal power at the input is SI ¼ VS0
2=4RS (Ref. 21). Since RS

will provide a source of noise VSn0 such that

VSn0VSn0*¼ 4KTBRS, the available noise power is

NI¼VSn0VSn0*=4RS¼KTB. The input signal-to-noise ratio

(SNR) is therefore:

SINI ¼ VS0
2=4KTBRS (15)

Ignoring losses, the MI interconnect has a real impedance at

mid-band, given by Z0¼x0M. Clearly, Z0 may be matched to

RS by choosing x0M¼RS and the signal will then propagate

from source to load without reflection. Including propagation

losses, but ignoring any small reflections, the output signal

power is SO¼ðVS0
2=4RSÞ expf�2ðN� 1Þk00ag. For small

losses, k00a � 1=fjQ sin(k’a)g, so k00a � 1=jQ at mid-band.

If the line is impedance matched, jQ¼ 2RS=R, so

SO¼ðVS0
2=4RSÞ expf�ðN� 1ÞR=RSg. Similarly, the output

noise power NOS due to RS is NOS¼KTB

expf�(N� 1)R=RSg.
With no other sources of noise, the SNR is unchanged.

However, each resistor R in the resonant elements will gen-

erate additional noise, which lower the SNR. To find these

contributions, we turn again the solution for central excita-

tion of an infinite line, namely In¼ I0 exp(�jjnjka) where

I0¼V0=fRjQ sin(ka)g. This result implies that each noise

source will generate a wave propagating away on either side.

At mid-band, I0¼V0=2RS, where V0V0*¼ 4KTBR. Ignor-

ing propagation loss, the power delivered to the load from

element n is therefore InIn*RS¼KTB(R=RS). Including

propagation loss, and assuming the earlier value of k00a, this

result modifies to NOn¼KTB(R=RS) expf�(N� n)R=RSg.
Clearly, each element produces a similar contribution, and

these must be summed to obtain the total noise NOE as

NOE¼KTB(R=RS) nR expf�(N� n)R=RSg. The total noise

delivered to the load is then NO¼NOSþNOE. Evaluating the

sum above, the output SNR can be found as:

SO=NO¼ðV2
S0=4KTBRSÞ=½1þðR=RSÞexpfðN�1ÞR=RSg

�f1�expð�NR=RSÞg=f1� expð�R=RSÞg�
(16)

The noise factor F¼ (SI=NI)=(SO=NO) is then:

F ¼ 1þ ðR=RSÞ expfðN� 1ÞR=RSg
f1� expð�NR=RSÞ=f1� expð�R=RSÞg (17)

If N¼ 1, this result reduces to F¼ 1þR=RS, the noise factor

of a single resistor of value R. If N= 1, it can be written

as F¼ 1þRN=RS, where RN is an equivalent resistance given

by:

RN ¼R expfðN� 1ÞR=RSgf1� expð�NR=RSÞg=
f1� expð�R=RSÞg

(18)

These results contain only N, R and RS, suggesting that the

noise factor cannot be improved by alteration to the reactive

parameters of the magneto-inductive link. If NR=RS is small,

RN � NR, suggesting that F will increase linearly for small

N. The upper curve in Fig. 7 shows the variation of F with

N, for R=RS¼ 0.02 (corresponding to RS¼ 50X and R¼ 1X,

typical of experimental lines). The noise factor initially

increases linearly with N, but the rate of increase soon starts

to rise and the noise factor rapidly becomes poor in this

example.

FIG. 5. Power spectral density of noise PSD in infinite magnetically

coupled resonator arrays with different dimension, for Q0¼ 100 and

jx¼�0.1, jy¼�0.1, jz¼ 0.1.

FIG. 6. (a) Passive and (b) active magneto-inductive arrays used to connect

a source and a load.
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E. Noise factor of active interconnects

The relatively poor performance of a passive intercon-

nect suggests that it would be useful to know the effect on

the noise factor of amplification. Given the interest in the use

of distributed parametric processes to overcome loss in meta-

materials, we focus on this example. Specifically, we assume

amplification in each loop via a separate varactor-based

three-frequency amplifier.12,22 If the loop capacitance is

adjusted to compensate for insertion of the varactor, such an

amplifier can be represented as a negative resistance �RA.

Its noise arises from two sources, the series resistance of the

varactor and down-converted idler noise. Because both are

Johnson-type, we shall assume that they can be represented

as a single noisy resistor RAn. A simple model for a MI link

with distributed amplification is therefore as shown in Fig.

6(b). In this case the previous analysis can be re-used, replac-

ing R by R0 ¼RþRAn to calculate noise and R by

R00 ¼R�RA to calculate attenuation. The modified noise

factor is then:

F ¼ 1þ ðR0=RSÞ expfðN� 1ÞR00=RSg
� f1� expð�NR00=RSÞg=f1� expð�R00=RSÞg (19)

The lower curves in Fig. 7 show the variation of F with line

length N for an amplified MI waveguide with background

losses defined by R=RS¼ 0.02. We assume that amplification

is noiseless, so that RAn=RS¼ 0, and show results for differ-

ent values of RA=RS up to 0.1. Bearing in mind that the oscil-

lation threshold for a single loop is reached when

RA=RS¼R=RS¼ 0.02, the level of amplification needed to

improve F is significant, even when the amplification process

itself is assumed to be noise-free. The explanation of this

poor result is that distributed amplification must amplify all

the noise, even the cable noise. This result implies that dis-

tributed parametric processes may indeed overcome distrib-

uted loss, but make little impact against any noise associated

with the loss. The only solution is the standard one of a high-

gain front-end amplifier,21 so that the source noise remains

dominant.

II. CONCLUSIONS

The arrangement of magnetically coupled resonant ele-

ments in an array has been shown to have a fundamental

effect on the power spectral density of Johnson noise arising

from lossy conductive elements. The PSD is modified by cou-

pling and by the dimension of the array, and is significantly

different at the edge of an array and at the center. The effects

can be explained in terms of noise waves and the resonances

excited by such waves in a highly consistent manner. This

simple analysis has considered only rectangular unit cells

with magnetic coupling between nearest neighbors, and it is

to be expected that further variations will be found when dif-

ferent unit cells and coupling mechanisms, different array

shapes and non-nearest neighbor effects are considered.

Clearly the generation of internal noise must have an

impact on performance in any application in which a meta-

material is imposed between a source and a load (for exam-

ple, RF interconnects or near-field imaging devices). While

losses may clearly be improved by internal amplification, the

possible improvements to signal-to-noise ratio are limited

(and often extremely so) and this aspect may be crucial in

measurement systems. Noise may also be significant in

applications that merely involve a source and a metamaterial.

One such example is the use of a metamaterial invisibility

cloak, where the emission of noise with a characteristic spec-

tral signature might represent an advertisement of the pres-

ence of the metamaterial.
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