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Abstract

A simple model of near-field pixel-to-pixel image transfer using magneto-inductive arrays is presented. The response of N-
dimensional rectangular arrays is first found as an excitation of eigenmodes. This analytical method involves approximating the
effect of sources and detectors, and replaces the problem of solving large numbers of simultaneous equations with that of evaluating
a sum. Expressions are given for the modal expansion coefficients, and in the low-loss case it is shown that the coefficient values
depend only on the difference in reciprocal frequency space of the operating frequency from the resonant frequency of each mode.
Analytic expressions are then derived for quasi-optical quantities such as the spatial frequency response, point-spread function and
resolving power, and their implications for imaging fidelity and resolution are examined for arrays of different dimension. The
results show clearly that there can be no useful image transfer for in-band excitation. Out-of-band excitation allows image transfer.
Provided the array is larger than the expected image by at least the size of the point spread function, the effect of the array boundaries
may be ignored and imaging is determined purely by the properties of the medium. However, there is a tradeoff between fidelity and
throughput, and good imaging performance using thick slabs depends on careful choice of the operating frequency. The approximate
analytic method is verified by comparison of exact numerical solution of the full set of coupled equations, and the conditions for its
validity are identified.
© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Following seminal work by Veselago [1] and Pendry
et al. [2], considerable interest has been shown in the
properties of artificial materials that can have negative
values of permittivity and permeability by virtue of their
physical arrangement as well as their constituents. These
‘metamaterials’ often involve periodic lattices of reso-
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nant elements, which may or may not be coupled to their
neighbours. One application is near-field imaging, in the
‘perfect lens’ geometry proposed by Pendry et al. [3–7].
This arrangement consists of a slab of negative index
material, and allows image transfer with a resolution
below the diffraction limit by amplification of the evanes-
cent waves that can exist in such materials. Although the
idea suffers from some performance limitations [8,9],
experimental confirmation has been provided using a
thin layer of silver, which has a negative permittivity
at optical frequencies [10,11]. Since then, analogous
devices based on photonic crystals have been proposed
[12–14], and operation has been extended to microwave
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frequencies using arrays of split-ring resonators (SRRs)
and wires [15–20].

Near-field imaging of a slightly different kind,
involving pixel-to-pixel image transfer or ‘canalization’,
has also been demonstrated at RF frequencies with
entirely magnetic metamaterials such as ‘Swiss rolls’,
resonant structures formed from a spiral roll of metal-
coated dielectric film [21–23]. Arrays of Swiss rolls
can be coupled together magnetically and hence sup-
port magneto-inductive (MI) waves [24–27]. Near-field
images and the appearance of spatial resonances have
both been explained in terms of these waves [28].

Considerable efforts have been made to develop anal-
ogous MI lenses based on pairs of stacked planar arrays
of SRRs by Freire and Marques [29–32] for applications
in magnetic resonance imaging (MRI) [33,34]. Initially,
their operation was explained in terms of the ampli-
fication of evanescent fields. However, emphasis has
subsequently been placed purely on magneto-inductive
effects. It has been convincingly demonstrated that exci-
tation of resonances should be avoided, that imaging may
be obtained between the pass-band of the coupled slab
system, that the transfer function is not flat and that in-
plane coupling reduces fidelity. These conclusions have
been verified using detailed calculations involving solu-
tion of the full set of coupled equations [35,36]. Similar
predictions and experimental demonstrations have been
made using near field imaging systems based on mean-
der resonators [37] and more general transmission-line
media [38,39], with extensions to the optical regime
using arrays of metal nanospheres [40].

Pixel-to-pixel image transfer using non-magnetic
metamaterials based on arrays of parallel metallic wires
has also been extensively investigated [41–43], and
extension to optical frequency using periodic metal-
dielectric slabs [44] and metallic nanorods has again
been proposed [45]. Key advantages of continuous wires
over media formed from resonant elements include the
very wide potential bandwidth and low loss of the wires,
and the ability to form curved image transfer devices
very simply [46]. Wire-medium ‘endoscopes’ are there-
fore also under investigation as image relays in MRI
[47–49].

When considering metamaterial imaging devices,
there is often difficulty in reconciling an effective
medium approach (in which the properties of the medium
are derived from a weighted average of those of the
elements) with a full model (involving a microscopic
description of each element). The effective medium
approach can work extremely well when large numbers
of small elements are present, but is difficult to apply to
experimental arrangements involving the intermediate

Fig. 1. Magneto-inductive near-field pixel-to-pixel imaging systems
based on (a) 1D, (b), (c) 2D, and (d) 3D rectilinear arrays.

numbers of elements that can realistically be manufac-
tured. In this case, boundary effects can be significant
and small arrays exhibit complex standing-wave reso-
nances that degrade imaging performance. Furthermore,
the number of elements in practical devices is still nor-
mally large enough to present difficulties in modeling,
since the overall response must be determined by solving
many coupled equations. Simulations are carried out on
a case-by-case basis, and little exists in the way of perfor-
mance criteria or design rules. For example, Fig. 1 shows
several arrangements for near-field imaging, in which
signals from a source S are to be transferred to a detector
D by a metamaterial array, which might be one- (Fig. 1a),
two- (Fig. 1b and c) or three-dimensional (Fig. 1d). All
have received attention in the previously cited literature.
However, it is not clear which dimension of array is best,
how large the array should be, how the elements should
be arranged, or what the likely performance will be.

The aim of this paper is to provide a simple method of
estimating the response of general N-dimensional rect-
angular lattices used for pixel-to-pixel imaging, and of
presenting the result in terms of conventional perfor-
mance parameters such as the transfer efficiency, spatial
frequency response and point spread function. The dis-
cussion is focussed on magneto-inductive devices, and
coupling to electromagnetic radiation is ignored, but it
is hoped that the approach may be applicable to other
types of metamaterial and other operating regimes. In
Section 2, a general method of estimating the response
of a magneto-inductive array is developed, in terms of
excitation of a spectrum of eigenmodes. The method
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replaces the problem of solving large numbers of simul-
taneous equations with that of evaluating a simple sum,
and may therefore be useful in tackling the large-scale
problems associated with metamaterial imaging devices.
In Section 3, examples are presented for 1D arrays, for
which the eigenmodes have simple analytic forms, key
optical parameters are deduced and the effect of loss
is examined. Comparable results are presented in Sec-
tion 4 for arrays of higher dimension, and the difference
between thin sheets and thicker slabs is highlighted. In
Section 5, the approximate analytic method is verified
by comparison with numerical solution of the full set of
coupled equations, and its regime of validity is discussed.
Conclusions are presented in Section 6.

2. Modal excitation theory

In this section, we present a general theory for the
excitation of a magneto-inductive array that allows its
response to be found as an expansion of eigenmodes.

2.1. Linear imaging system

We illustrate the approach using the example of a 1D
arrangement of magnetically coupled elements (Fig. 1a),
now shown in more detail in Fig. 2a and in the equiva-
lent circuit of Fig. 2b. This arrangement was previously
considered in [36]. Here resonant elements containing
inductors L (with accompanying resistors R) and capac-
itors C are coupled to nearest neighbours via mutual
inductances M. In pixel-to-pixel imaging, the nth res-
onant element is also coupled to a source consisting
of a voltage source VSn, an inductor LSn and a resistor
RSn via a mutual inductance MSn and then to a detector
consisting of an inductor LDn and a resistor RDn via a
mutual inductance MDn. We make no assumptions as to
the signs or magnitudes of the mutual inductances, and
require only that the elements in the MI array are identi-
cal. The sources and detectors may, however, vary, or be
resonant. More complex arrangements (in which neigh-
bouring sources or detectors are coupled, or non-nearest
neighbour coupling is allowed) are clearly possible, and
the array may be finite. However, we neglect these
complications, since they do not affect the following
argument.

2.2. Governing equations

Assuming that the current amplitudes in the nth
source, element and detector are ISn, In and IDn, respec-
tively, the governing equations away from the ends of

Fig. 2. (a) Arrangement and (b) equivalent circuit of a 1D magneto-
inductive imaging system.

the array at angular frequency ω can be found from
Kirchhoff’s law as:

ZSnISn + jωMSnIn = VSn(
jωL + 1

jωC
+ R

)
In + jωM(In−1 + In+1)

+ jωMSnISn + jωMDnIDn = 0

ZDnIDn + jωMDnIn = 0

(1)

here ZSn = jωLSn + RSn and ZDn = jωLDn + RDn are the
impedances of the nth source and detector. If the sources
and detectors are resonant, the reactive contributions to
ZSn and ZDn can be cancelled at specified frequencies,
increasing the relevant currents.

These equations can be collected together and writ-
ten in matrix form, as V = ZI, where Z is a matrix of
impedances and V and I are vectors containing voltages
and currents (see e.g. [35,36]). This approach allows a
complete solution to be found for the unknown currents
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by inverting the impedance matrix, as I = Z−1V. How-
ever, it is intensive in computer time and provides limited
physical insight. Here we adopt a perturbation approach
common in quantum mechanics that allows analytic
results to be deduced very simply. The method involves
first reducing the number of equations by absorbing the
effect of the sources and detectors into equations describ-
ing the resonant elements, and then finding approximate
solutions to this reduced set in terms of the array eigen-
modes.

We start by re-arranging the upper and lower equa-
tions in (1) to give:

ISn = (VSn − jωMSnIn)

ZSn

IDn = −jωMDnIn

ZDn

(2)

Substituting into the central equation in (1) we obtain:(
jωL + 1

jωC
+ R + �Zn

)
In

+ jωM(In−1 + In+1) = USn (3)

here �Zn = ω2M2
Sn/ZSn + ω2M2

Dn/ZDn is an
impedance perturbation arising from coupling between
the nth array element and the nth source and detector,
and USn = −jωMSnVSn/ZSn is a voltage. The results
suggest that the main role of the sources is to impose
voltages in the resonant loops, while that of the detec-
tors is to sample the resulting currents. However, both
sources and detectors alter the impedances of the array.

2.3. Approximate equations

We now consider the case when the impedance per-
turbations are small, a regime previously highlighted
in [31] as being necessary for high-quality imaging.
Several conditions must be satisfied for this approxi-
mation to be valid. Firstly, ω should differ significantly
from ω0 in a high-Q system; however, as we shall show
later, out-of-band operation is required for imaging. Sec-
ondly, the terms �Zn should be genuinely negligible.
Either the sources and the detectors should be physi-
cally smaller than the elements in the array, so that M2

Sn

and M2
Dn are relatively small, or, ZSn and ZDn should be

relatively large; at resonance, this requires sources and
detectors with a low quality factor. In this case �Zn may
be neglected, and Eq. (3) solved directly for the array
response. The lower of Eq. (2) may then be solved for
the detector currents. However, the last step is trivial,
since these currents are simply proportional to those in
the nearby elements. We therefore focus on the first step.

To proceed, we write the approximate version of Eq. (3)
as:(

1 − ω2
0

ω2 − j

Q

)
In +

(κ

2

)
(In−1 + In+1) = ISn (4)

here ω0 = 1/(LC)1/2 is the angular resonant frequency of
the elements, Q = ωL/R is their quality factor (assumed
to be high), κ = 2M/L is the coupling coefficient and
ISn = USn/jωL is an effective source current. Eq. (4) now
represent a set of simultaneous equations, one for each
resonant element, that may be written in matrix form as:

MI = I-S (5)

Here M is a symmetric matrix with diagonal elements
1 − w − j/Q, wherew = ω2

0/ω
2 is the square of the nor-

malised reciprocal frequency, and off-diagonal elements
κ/2, and I and IS are vectors containing the currents In

and ISn. Eq. (5) has the obvious solution I = M−1IS. Here,
however, we re-write it slightly differently, as:(

K- − w − j

Q

)
I- = I-s (6)

here K is a symmetric matrix with unit diagonal ele-
ments and off-diagonal coupling terms, and effectively
describes the loss-less, unexcited system.

2.4. Loss-less eigenmodes

We first assume there is no loss, and no excitation. In
this case, Eq. (6) reduces to:

(K- − w)I- = 0- (7)

The solution of Eq. (7) is a set of eigenvectors jν with
eigenvalues wν. If these are collected together into matri-
ces J (containing the eigenvectors arranged in columns)
and W (containing the corresponding eigenvalues down
the diagonal), Eq. (7) can be rewritten as K J − J W = 0.
This result allows a dyadic spectral expansion of K, as
K = J W J−1.

2.5. Expansion into eigenmodes

We now allow loss and excitation. In this case, a
solution for the unknown currents can be attempted as
a sum of the eigenvectors of the loss-less system, i.e.
as I = ν�aνjν, where aν is the coefficient of the mode
with eigenvector jν. In matrix form this solution may be
written:

I- = J-A- (8)
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here A is a diagonal matrix of expansion coefficients.
Substituting into Eq. (6), and using the results above, we
get:{

JW- J-
−1 −

(
w + j

Q

)}
J-A- = I-s (9)

Pre-multiplying by J−1 we obtain:{
W- −

(
w + j

Q

)}
A- = J-

−1I-s (10)

We now define a new matrix N as N = W − (w + j/Q)i,
where i is the identity matrix. The solution for the expan-
sion coefficients is clearly A = N−1 J−1 IS. However,
since K is symmetric and real, the eigenvectors jν must
form an orthogonal set. If they are also normalised,
J−1 = JT. Since N is diagonal, N−1 is easy to evaluate;
it is simply a diagonal matrix, whose elements are the
reciprocal of the elements of N. Thus, the expansion
coefficient aν can be written down straight away as:

av = 〈I-s, j-v
〉

(wv − w − j/Q)
(11)

here 〈I-s, j-v
〉 = I-S · j

-
∗
v

is the inner product of IS and jν,
and is a measure of correlation between the input distri-
bution IS and the mode jν. Eq. (11) implies that modes
will be strongly excited near their resonant frequency,
given a suitable excitation pattern.

Eq. (11) may be used to find all the mode amplitudes
at any frequency. The resulting mode patterns may then
be summed to find the overall response. Reverting to
angular frequencies, we get:

I- =

∑
v

〈I-s, j-v
〉j
-v

{(ω2
0/ω

2
v − ω2

0/ω
2) − j/Q} (12)

Eq. (12) may be evaluated as a simple sum once the
eigenvalues and eigenvectors are known, and can provide
the overall response obtained with an arbitrary input.
Its form implies that the response will be dominated
by those modes for which the denominator is small and
increasingly dictated by the operating frequency as the
Q-factor rises.

2.6. Generalization to N-dimensions

Matrix equations may still be constructed even when
the array is finite (with M being N × N for an N-
element array), when non-nearest neighbour couplings
are included (by adding further off-diagonal terms), for
2D and 3D arrangements with arbitrary boundary shapes,
and even for aperiodic arrangements. In each case, M

will be symmetric, and K both symmetric and real. Con-
sequently the response of a more complicated array may
always be written as an expansion of eigenmodes, and
Eq. (12) is a general solution. The only difficulty in a
more general case is to identify the modes. However, for
1D, 2D and 3D rectangular arrays with nearest neigh-
bour coupling and rectangular boundaries, these have
simple analytic forms, and the properties of such arrays
may be deduced as a generalization of the results above.
The wave-like nature of the eigenfunctions then pro-
vides a very simple route to determination of the spatial
frequency response.

3. Imaging using 1D magneto-inductive arrays

In this section, we consider the implications of pre-
vious results for imaging. We first establish criteria for
fidelity, and then consider the behaviour of 1D arrays.

3.1. Imaging fidelity

Given that the sources and detectors excite and sam-
ple currents in those elements nearest to them, a perfect
image will be obtained if the source pattern can be trans-
ferred through the array without degradation. We must
therefore define what is meant by perfect fidelity. This is
easiest to do for the linear array of Fig. 2. In this case, per-
fect imaging will be obtained if an excitation pattern IS

can simply be transferred onto the array, where it can be
sampled by the detectors. Clearly, such a pattern can be
expanded as a sum of the array eigenmodes, as IS = ν�aν

jν. Exploiting orthogonality again, the mode amplitudes
aν may be extracted as aν = 〈IS, jν〉. The ‘best’ amplitudes
may therefore be specified exactly. Unfortunately, the
result does not match Eq. (11). Comparison shows that
amplitudes are scaled during the real excitation process
by a factor Sν, given by:

Sv = 1

{ω2
0/ω

2
v − ω2

0/ω
2 − j/Q} (13)

Since Sν is not constant, perfect imaging is never pos-
sible. However, we should still be able to understand the
conditions for reasonable performance.

3.2. In-band excitation

For the linear array, the only free variables are the
coupling coefficients and the normalized operating fre-
quency. We first consider the effect of frequency, starting
with in-band excitation. If the array is excited at a fre-
quency corresponding to one of the eigenmodes (so that
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ω = ωμ, say) and the Q-factor is sufficiently high, Eq.
(11) may be approximated as:

aμ = jQ〈I-s, j-μ
〉

av ≈ 〈I-s, j-v
〉

(ω2
0/ω

2
v − ω2

0/ω
2
μ)

v /= μ
(14)

This result implies that only the mode corresponding
to the excitation frequency will be excited significantly,
with an amplitude that depends linearly on Q. Its ampli-
tude is also determined by the inner product 〈IS, jμ〉,
which expresses its similarity with the excitation pat-
tern. All the other modes will be excited to a certain
extent, but in quadrature with the resonant mode. The
modes whose eigenfrequencies are closest to ωμ will
have the largest amplitude. However, the amplitudes of
non-resonant modes will be comparatively small, and as
Q rises they can increasingly be ignored. This conclusion
has implications for all similar imaging devices, since it
suggests that operation within the frequency band sup-
porting propagating waves will tend to result mainly in
the excitation of resonances. These findings are entirely
in agreement with the literature.

3.3. Out-of-band excitation

Having deduced that fidelity in imaging cannot easily
be combined with resonant gain, we are left with the
possibility of out-of-band excitation. In this case, if the
Q-factor is large enough, Eq. (11) may be approximated
for all modes simply as:

av ≈ 〈I-s, j-v
〉

(ω2
0/ω

2
v − ω2

0/ω
2)

(15)

Now, the coefficient values depend only on the dif-
ference in reciprocal frequency space of the operating
frequency from the resonant frequency of each mode.

Similarly, Sν may be written as:

Sv = 1

(ω2
0/ω

2
v − ω2

0/ω
2)

(16)

Although Sν is presented here as a function of angular
frequency, spatial and temporal frequencies are related
by the dispersion equation. As we will show, Sν must
therefore represent the spatial frequency response (SFR).

3.4. Spatial frequency response

The SFR may be found for a linear array as follows.
If the array is infinite, its eigenmodes are the continuous

Fig. 3. (a) Dispersion diagram for a loss-less 1D magneto-inductive
array with coupling coefficient κ = −0.25; (b) spatial frequency
response, and (c) point spread function, for different values of the
normalised frequency deviation parameter δ.

set of travelling current waves In = I0 exp(±jnka), where
k is the propagation constant at angular frequency ω, n
is an integer and a is the lattice period. In this case, the
loss-less dispersion relation is [24]:

ω2
0

ω2
v

= 1 + κ cos(ka) (17)

Fig. 3a shows a typical dispersion diagram, obtained
from Eq. (17) by assuming a negative coupling coef-
ficient κ = −0.25, which requires the elements to be
arranged in the planar configuration. Propagation is
band-limited, and obtained only over the frequency range
between ω2

0/ω
2
v = 1 + κ and ω2

0/ω
2
v = 1 − κ. The curve

is slowly varying, and flattest near the band edges.
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In this case, S is a continuous function, found by
combining Eqs. (16) and (17) to get:

S(k) = 1

{1 + κ cos(ka) − ω2
0/ω

2} (18)

If, on the other hand, the array is finite, the eigen-
modes are standing waves. For an N-element line, the
allowed modes must satisfy the resonance condition
ka = vπ/(N + 1), where v is an integer with allowed
values 1, 2. . .N. The allowed values of ka are then dis-
crete points on Fig. 3a, and Eq. (18) must be replaced
with the discrete function:

Sv = 1

{1 + κ cos[vπ/(N + 1)] − ω2
0/ω

2} (19)

Eqs. (18) and (19) are clearly analogous. The avail-
ability of analytic forms for the spatial frequency
response now allows a conscious choice of the design and
operating parameters. For a 1D array, these are simply κ

and ω/ω0, respectively.
As we have shown, any useful operation must be out

of band, for example, at frequencies defined by the thick
or thin straight lines in Fig. 3a. In the thick-line case,
the denominator in Eq. (18) is small only when ka/π
is close to unity, i.e. for high spatial frequencies. Con-
sequently, we would expect low spatial frequencies to
be suppressed. Similarly, for the full lines it is small
only at low spatial frequencies. Thus, we cannot simul-
taneously transfer both low and high spatial frequencies,
and must choose one or other. For conventional imaging,
good transmission of low spatial frequencies is required.
We therefore now focus on the full-line cases.

Assuming that the operating frequency lies above the
upper band edge, we may define the angular frequency
used as ω2

0/ω
2 = 1 + κ − δ, where δ is a deviation in

reciprocal frequency space. Each of the thin lines cor-
responds to operation at a particular value of δ, which
increases as the line moves away from the upper band
edge. Using this definition of the operating point, the
spatial frequency response can be written:

S(k) = 1

{δ + κ[cos(ka) − 1]} (20)

Fig. 3b shows the spatial frequency responses
obtained from (20), for the same values of κ and δ as
before. In each case, the response is low-pass. As δ

increases, the peak in response reduces, but the spatial
frequency bandwidth increases, so there is a trade-off
between image brightness and fidelity of reproduction.
The bandwidth also increases if |κ| is reduced, implying
that lateral coupling is inherently deleterious to image
quality, in agreement with earlier conclusions (see e.g.

[32]). Similar spatial responses (with different bright-
ness) can be obtained for different values of κ, provided
δ is scaled appropriately.

Using a small angle approximation for the cosine, Eq.
(20) reduces to:

S(k) = 1

{δ − κ(ka)2/2} (21)

Numerical evaluation shows that Eq. (21) is a good
approximation to Eq. (20), and may be used to obtain
simple analytic estimates of performance.

3.5. Point spread function

In the spatial domain, the response of an imaging
system is described by the point-spread function (PSF).
For a 1-dimensional array, the PSF can be found as the
response to unit excitation of a single element, such as
element zero. Using the symbols Pn instead of In for the
currents (to denote the PSF) we must solve the equations:(

1 − ω2
0

ω2

)
P0 + κ

2
(P−1 + P+1) = 1(

1 − ω2
0

ω2

)
Pn +

(
κ

2

)
(Pn−1 + Pn+1) = 0 for n /= 0

(22)

The general solutions to the lower equation are trav-
elling waves, Pn = P0 exp(−jnka) for n > 0 and Pn = P0
exp(+jkna) for n < 0. Substituting into the upper equa-
tion and making use of the dispersion equation we obtain
P0 = j/{κ sin (ka)}, so that the PSF must be:

Pn = j exp(−j|n|ka)

{κ sin(ka)} (23)

This expression does not at first sight resemble a
conventional point-spread function, since its modulus
appears to be constant. However, we note that ka is purely
imaginary outside the band, i.e. at the temporal frequen-
cies at which useful image transfer can occur. In this
case, we can write ka = −jk′′a, and the PSF becomes:

Pn = − exp(−|n|k′′a)

{κ sinh(k′′a)} (24)

The PSF is therefore bounded as expected, and decays
exponentially on either side of the excitation. The decay
rate is determined by the value of k′′a, which will become
larger at frequencies further from the operating band. Eq.
(24) remains a good approximation for centrally excited
arrays of finite size, provided the decay rate is such that
the current amplitude is small at the array edges. If it is
not, solutions may still be found. For a finite array rang-
ing from n = −A to n = +A, with central excitation, the
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PSF may be found by applying the additional boundary
conditions P−(A+1) = P(A+1) = 0, to get:

Pn = − sinh{[|n| − (A + 1)]k′′a}
(κ{sinh(Ak′′a) − cosh(k′′a) sinh[(A + 1)k′′a]})

(25)

It is worth noting that this response may also be found
as the solution to the problem of an infinite line excited at
regular intervals by point sources with alternating signs.
The use of “image sources” located outside the plane
of a finite array might therefore provide a method of
estimating boundary effects. Eq. (25) reduces to Eq. (24)
when the term exp(−Ak′′a) is negligible, and produces
results that are in exact agreement with the full solution.

If the decay of the PSF is fast enough, the effect
of the array boundaries may be ignored and imaging
performance is determined entirely by the properties of
the medium. To achieve this result, the image should be
placed centrally, and the array should be larger than the
expected image size by at least the width of the PSF.

For compatibility with previous results we now
express the PSF in terms of the deviation δ from the band
edge. Simple manipulation yields cosh(k′′a) = (1 − δ/κ),
allowing k′′a and sinh(k′′a) to be found. Clearly, when
δ is zero, the decay rate of the exponential is zero. The
PSF is then entirely flat and there can be no image trans-
fer at all. As δ increases, the decay rate also increases.
A point-like image can now be transferred to the array
and this image becomes increasingly sharp. However, its
peak amplitude reduces, highlighting again the tradeoff
between image fidelity and brightness. This behaviour
is illustrated in Fig. 3c, which shows the PSF plotted on
a logarithmic scale, for the same values of κ and δ as
before. These results are again in excellent agreement
with numerical calculations in [36].

3.6. Transform relation

In conventional optics, the SFR of an imaging system
is related to the PSF by a transform. We therefore now
show that the linear magnetoinductive array obeys sim-
ilar rules, by expanding the point spread function as a
spectrum of eigenmodes. The algebra is simplest if the
array is first considered to be finite, and its size is then
allowed to tend to infinity. We therefore assume that the
index n ranges from −A to +A, so the total number of
elements is N = 2A + 1. In this case, the normalised eigen-
modes are the cosines

√{2/(N + 1)} cos(nkva), where kva
has the discrete values vπ/(N + 1) as before. Using this

spectrum of modes, the spatial frequency response can
be written as the discrete cosine transform:

Sv =
A∑

n=−A

Pn cos(nkva) (26)

Substituting for the PSF, we get:

Sv = α

A∑
n=−A

exp(−|n|k′′a) cos(nkva) (27)

here α = − 1/{κ sinh(k′′a)}. Allowing A to tend to
infinity, the summation may be evaluated after some
manipulation as S(k) = − 1/{κ[cosh(k′′a) − cos(ka)]}.
Finally, using the dispersion equation we obtain:

S(k) = 1

{1 + κ cos(ka) − ω2
0/ω

2} (28)

Since Eq. (28) is in full agreement with earlier results,
it does indeed appear that the magneto-inductive array
obeys the rules of conventional imaging.

3.7. Loss

We now consider briefly the effect of loss in the res-
onant elements. If the Q-factor is now finite, Eq. (20)
modifies to:

S(k) = 1

{δ + κ[cos(ka) − 1] − j/Q} (29)

Neglect of the final term will cause the largest inac-
curacy at zero spatial frequency, when ka = 0. In this
case, S(k) = 1/{δ − j/Q}. The earlier loss-less formulae
will therefore represent a good approximation if δ � 1/Q.
Since typical experimental Q-factors are of order 100,
significant effects are likely to be seen only for small δ.
We illustrate this point in Fig. 4a, which shows the mod-
ulus of the SFR for κ = −0.25 and δ = 0.01, for lossy 1D
arrays with different values of Q. For Q > 100, there is
little difference in the response. Fig. 4b shows the mod-
uli of the corresponding point spread functions, which
vary exponentially for all Q and simply reduce in peak
amplitude and narrow as Q falls. These results imply that
imaging quality actually rises as losses increase, due to a
reduction in lateral propagation distance. However, this
improvement is counterbalanced by a reduction in image
brightness.

3.8. Resolution

The resolution of the array can be defined in terms
of its ability to form a separated image of two point
objects of equal amplitude. As we have seen, the point
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Fig. 4. (a) Spatial frequency response and (b) point spread function
of a lossy 1D magneto-inductive array, for κ = −0.25 and δ = 0.01 and
different values of Q-factor.

spread function may be written as P(n) = α exp(−|n|k′′a).
A single point object located at n = +nO/2 will there-
fore produce a response I+(n) = α exp(−|n − nO/2|k′′a),
while a similar object at n = −nO/2 will yield I−(n) = α

exp(−|n + nO/2|k′′a). Their combined image can be
found by superposition, as I(n) = I−(n) + I+(n). Fig. 5a
shows the image obtained using a loss-less array, assum-
ing nO = 4 and κ = −0.25, for different values of δ. As δ

rises, the overall amplitude falls, but the relative depth
of the valley at n = 0 between the separate point images
clearly increases.

Adopting a Rayleigh-like criterion, we might define
the two points as being resolved if the height of the valley
is less than a given fraction η of the peak, or if:

2 exp

(−nOk′′a
2

)
< η (30)

The minimum separation between resolvable points
is then:

nO >

(
2

k′′a

)
loge

(
2

η

)
(31)

Using previous results, nO may be obtained in terms of
the reciprocal frequency deviation term δ. Fig. 5b shows
the variation of the minimum resolvable object separa-
tion nO with δ, again assuming κ = −0.25 and different

Fig. 5. (a) Images of two point objects located at n = ±2 obtained using
a loss-less 1D array, calculated assumingκ = −0.25 and different values
of δ; (b) variation of minimum resolvable object separation with δ, for
different values of the separability criterion η.

values of the separability criterion η. Pixel-scale reso-
lution is obtained when δ is approximately unity. While
arbitrary values of δ may clearly be achieved by appropri-
ate choice of wavelength, the reduction in transmission
accompanying such a large value may be inappropriate
for practical application. Consequently, pixel-scale res-
olution may prove an elusive goal, implying the need for
finer-grained metamaterials.

3.9. Source and detector size

The analysis above may be extended to account for
alternative arrangements for excitation and detection.
For example, a single source could be large enough to
couple to multiple elements in the array. In this case,
“point excitation” would result in excitation of each
of these elements, with suitable weighting. The overall
response of the array could then be found by superpo-
sition of weighted point spread functions. Clearly the
effect will be a lateral spread of energy and a widen-
ing of the overall PSF. Similarly, a single detector could
couple to multiple elements. The overall detected signal
could then be found by summation of a set of weighted
contributions. Because each detector will now respond
to several elements, the effect will again be a widening



Author's personal copy

R.R.A. Syms et al. / Metamaterials 5 (2011) 8–25 17

of the PSF.

4. Imaging using magneto-inductive arrays of
higher dimension

In this Section, we extend the analysis to 2D and 3D
arrays, beginning with thin sheets (Fig. 1c) and thin slabs
(Fig. 1b) and finally thick slabs (Fig. 1d). As we shall see,
thin sheets and slabs behave very differently, while thick
slabs combine the major characteristics of each type.

4.1. Imaging using 2D sheets

Fig. 6 shows an imaging arrangement in which a
two-dimensional sheet of magneto-inductive material
containing a set of identical resonant elements is inter-
posed between a set of sources and detectors, which are
coupled to their nearest neighbours in the array as before.
To obtain a symmetric response, elements in the array
must be coupled by equal mutual inductances M in the
x- and y-directions and separated by equal distance a. In
this case M and the corresponding coupling coefficient
κ can only be negative.

The relevant equations are entirely analogous to those
of the 1D case. In an infinite array, the eigenmodes are the
two- dimensional current waves In,m = I0 exp(−jnkxa)
exp(−jmkya), where kx and ky are propagation constants

Fig. 6. Arrangement of a 2D sheet magneto-inductive imaging system.

in the x- and y-directions, n and m are integers denoting
the element position and a is the lattice period. In this
case, the dispersion equation is [25]:

ω2
0

ω2
v

= 1 + κ{cos(kxa) + cos(kya)} (32)

This result implies that the dispersion characteris-
tic is now a symmetric curved sheet, whose uppermost
point lies at ω2

0/ω
2
v = 1 + 2κ. Fig. 7a shows a typical

characteristic, calculated assuming κ = −0.25.
By analogy with previous results, the spatial fre-

quency response S(kx, ky) may also be written down
directly, as:

S(kx, ky) = 1

{1 + κ[cos(kxa) + cos(kya)] − ω2
0/ω

2}
(33)

Since kx and ky are similarly represented, the spatial
frequency response must be equal in x- and y-directions.
In the array is finite, the allowed values of kxa and kya
become a set of discrete points as before. Once again,
high-quality imaging may only be obtained if the oper-
ating frequency lies just above the upper band edge.

Defining the frequency as
ω2

0
ω2 = 1 + 2κ − δ′, where δ′

is a modified deviation in reciprocal frequency space,
the SFR can be written as:

S(kx, ky) = 1

{δ′ + κ[cos(kxa) + cos(kya) − 2} (34)

Fig. 7b shows the spatial frequency response, again
calculated assuming κ = −0.25, and now assuming that
the operating frequency is defined as δ′ = 0.05. The sim-
ilarity of this expression to the earlier 1D result implies
that similar imaging behaviour must be obtained, but at
the slightly different operating point used in two dimen-
sions.

There is currently no exact analytic solution for the
2D PSF. However a useful symmetric approximation is:

Pn,m = −
√

2

π2

exp
(
−
√

2(n2 + m2)k′′a
)

κ
4
√

n2 + m2k′′a
, (35)

Fig. 7c shows the exact PSF, calculated numerically
assuming κ = −0.25 and δ′ = 0.05. The result is again
a symmetric 2D equivalent of the 1D result, suggest-
ing that there is little qualitative difference between the
imaging performance of lines and sheets.

4.2. Imaging using thick 2D slabs

Fig. 8 shows a further arrangement in which a
two-dimensional slab of magneto-inductive material is
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Fig. 7. (a) Dispersion diagram for a loss-less 2D sheet magneto-
inductive array with κ = −0.25; (b) spatial frequency response and (c)
point spread function, for a deviation δ′ = 0.05.

interposed between a set of sources and detectors. Arrays
of this type have previously been considered by a num-
ber of authors. Here, the array is assumed to contain
an arbitrary (but finite) number Nz of lines; sources are
assumed to be coupled to the first line of elements and
the detectors to the last line, and the details of these cou-
plings are as before. Within the array, nearest neighbours
are assumed to be separated by distances ax and az and

Fig. 8. Arrangement of a 2D slab magneto-inductive imaging system.

coupled by mutual inductances Mx and Mz as shown.
There is some freedom to choose the signs of Mx and
Mz; here we assume Mx is negative and Mz is positive,
since this arrangement may easily be extended to three
dimensions.

In an infinite two-dimensional MI array, the loss-less
dispersion equation can again be found by assuming
wave solutions to the circuit equations, as [25]:

ω2
0

ω2
v

= 1 + κx cos(kxax) + κz cos(kzaz) (36)

here κx = 2Mx/L and κz = 2Mz/L are coupling coefficients
in the x- and z-directions, and kx and kz are the corre-
sponding propagation constants.

Here, however, the array is finite in the z-direction,
and this aspect introduces a major qualitative difference
from the 2D sheet. The 2D slab eigenmodes must have
the form of standing waves in this direction and hence
must be written as In,p = I0 exp(−jnkxax) sin(pkzaz),
where n and p are integers denoting the element posi-
tion, kzaz = μπ/(Nz +1) and μ is an integer with allowed
values 1, 2. . .Nz. In this case, the dispersion equation
becomes:

ω2
0

ω2
v

= 1 + κx cos(kxax) + κz cos

[
μπ

(Nz + 1)

]
(37)

When plotted as a function of kxax, the dispersion
relation becomes a set of bands, one for each value of
μ. This conclusion is illustrated in Fig. 9a, which shows
an example characteristic obtained for the parameters
κx = −0.05, κz = 0.5 and Nz = 6. Here there are clearly
six bands. By analogy with previous results, it should
be possible to obtain pixel-to-pixel image transfer using
an operating frequency near the top of any of them.
In [36], this effect was explored numerically for a bi-
layer system, which has just two bands. It was shown
that image transfer could be achieved at frequencies
near the top of either of the bands, provided the cou-
pling coefficient κz was large enough to open a gap
between them.
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Fig. 9. (a) Dispersion diagram for a loss-less 2D slab magneto-
inductive array with κx = −0.05, κz = 0.5 and Nz = 6; (b) point spread
function at input and output, and (c) and variation of peak height
with position in the slab, for a deviation δ′′ = 0.001 above the
upper band.

Even if the bands are separate, they must move closer
together as Nz rises. Since the operating frequency must
be placed increasingly close to the peak of the desired
band to ensure that modes from this band are predom-
inantly excited, the lateral coupling coefficient must be
reduced to ensure a reasonably flat transfer function. If
this can be done, the simplest procedure is to operate
near the top of the upper band, as shown by the hori-
zontal line in Fig. 9a. Operating here, the primary effect
of excitation should be to generate a spectrum of modes
with μ = Nz. In the x-direction, these represent arbitrary
travelling waves, but in the z-direction the current varia-
tion must be the highest order standing resonance of the
slab, and the image at the output should similar to the

pattern impressed at the input.
For the uppermost band, the mathematics is much as

before. The dispersion equation is:

ω2
0

ω2
v

= 1 + κx cos(kxax) + κz cos

[
Nzπ

(Nz + 1)

]
(38)

Consequently, the spatial frequency response for this
band alone must be:

S(kx) = 1

{1 + κx cos(kxax) + κz cos[Nzπ/(Nz + 1)] − ω2
0/ω

2}
(39)

The edge of the this band lies at ω2
0/ω

2 = 1 + κx +
κz cos[Nzπ/(Nz + 1)]. Defining the operating point as
ω2

0/ω
2 = 1 + κx + κz cos[Nzπ/(Nz + 1)] − δ′′, where

δ′′ is a further deviation in reciprocal frequency space,
the spatial frequency response becomes:

S(kx) = 1

{δ′′ + κx[cos(kxax) − 1]} (40)

This expression is clearly analogous to previous
results obtained using single lines, implying that similar
results may be obtained using slabs, but at the slightly
different frequencies that follow from to the replacement
of δ by δ′′.

The analysis above is clearly a simplification, since
the effect of any modes that are excited in other bands
must also be taken into account. If this is done, both the
spatial frequency response and the point spread func-
tion must vary with distance through the slab. Given the
form of the modal expansion coefficients, the most sig-
nificant unwanted modes lie the second highest band, and
their longitudinal variation must lead to some cancella-
tion of the desired modes at the output. To illustrate this,
Fig. 9b shows the variation with n of the modulus of the
point-spread function P(n, p) at the input and output of
the slab, for the parameters κx = −0.05, κz = 0.5, Nz = 6
and δ′′ = 0.001. At the input (p = 1), the current decreases
exponentially on either side of the excitation point. At the
output (p = 6) the peak of the PSF has reduced, primarily
due to the effect of exciting unwanted modes.

Fig. 9c shows the variation with longitudinal posi-
tion p of the modulus of the peak of the point-spread
function. If only modes in the uppermost band were
excited, we would expect this variation to follow a sinu-
soidal standing wave pattern (points labelled ‘Highest
band’), as the image is transferred through the slab. How-
ever, excitation of modes in the second highest band
has introduced asymmetry (points labelled ‘All bands’),
increasing the input amplitude and reducing the output.
The only solution is to move the operating point closer
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Fig. 10. Arrangement of a 3D slab magneto-inductive imaging
system.

to the upper band, so that mode amplitudes are preferen-
tially enhanced in this band. However, this will in turn
degrade the spatial frequency response. Effects of this
type suggest that any potential benefits from the use of
thick slabs (e.g., an increase in image transfer distance)
are likely to be counteracted by a reduction in image
quality.

4.3. Imaging using 3D slabs

Fig. 10 shows a final arrangement in which a
three-dimensional slab of magneto-inductive material is
interposed between a set of sources and detectors. From
previous results, we would expect their operation to be
an amalgam of the behaviour of 2D sheets and slabs.
The dispersion characteristic will split into a stacked set
of curved surfaces, each similar to the single surface
obtained for a 2D sheet. Image transfer may be obtained
by operating at a frequency close to the highest point
of one such surface, and the point spread function for
modes in a single band will then be analogous to that
obtained for a 2D sheet. For the upper band alone, the
spatial frequency response S(kx, ky) is:

S(kx, ky) = 1

{1 + κx[cos(kxax) + cos(kyax)] + κz cos[Nzπ/(Nz + 1)] − ω2
0/ω

2} (41)

The edge of the this band lies at ω2
0/ω

2 = 1 +
2κx + κz cos[Nzπ/(Nz + 1)]. Defining the operating
point as ω2

0/ω
2 = 1 + 2κx + κz cos[Nzπ/(Nz + 1)] −

δ′′′, where δ′′′ is a further deviation in reciprocal fre-

Fig. 11. Point spread function at (a) input and (b) output, for a loss-
less 3D slab magneto-inductive array with κx = κy = −0.05, κz = 0.5 and
Nz = 6, for δ′′′ = 0.001.

quency space, the spatial frequency response becomes:

S(kx, ky) = 1

{δ′′′ + κx[cos(kxax) + cos(kyax) − 2]}
(42)

This result clearly has a similar form to previous anal-
ogous expressions, implying the possibility of similar
image transfer. However, as in a 2D slab, performance
will be degraded by the excitation of modes in any adja-
cent band.

Consequently, we would again expect the point spread
function to alter through the slab. Fig. 11a and b shows
PSFs obtained at the input and output, respectively, of a
thick slab with κx = κy = −0.05, κz = 0.5 and Nz = 6 and



Author's personal copy

R.R.A. Syms et al. / Metamaterials 5 (2011) 8–25 21

δ′′′ = 0.001. At the input (p = 1), the current decreases
exponentially in both directions on either side of the
excitation point. At the output (p = 6), the PSF has a qual-
itatively similar shape. However, the central peak of the
transferred pattern has again reduced significantly and
the PSF has broadened.

We illustrate more general 3D slab imaging perfor-
mance with a single example that highlights the effect
of slab thickness. Fig. 12 shows images obtained at the
output of different loss-less 3D slab magneto-inductive
arrays of a letter ‘M’, defined as a centrally-placed line
object measuring 16 units by 8 units. Each array has
the coupling coefficients κx = κy = −0.05, and κz = 0.5,
and the slab thicknesses are Nz = 2 (Fig. 12a), Nz = 4
(Fig. 12b), and Nz = 6 (Fig. 12c). The operating point
is defined by taking δ′′′ = 0.01. In each case, the image
is successfully transferred; however, there is a steady
degradation in the image brightness and quality as the
slab thickness rises.

4.4. Loss

The effect of finite Q-factor in the 2D and 3D cases
may be found by carrying out a full modal expansion
using Eq. (12), and is again to degrade imaging qual-
ity. For 2D sheets, the effect is highly analogous to that
described in the previous section for 1D lines. For 2D and
3D slabs, the effect is preferentially to reduce the ampli-
tudes of modes in the desired band, so that the effect of
cancellation by modes in other bands is enhanced. As a
result, the thickness of slabs that give acceptable imaging
performance is likely to reduce as losses increase.

4.5. Design rules

Based on the discussion above, design rules for
N-dimensional magneto-inductive near-field imaging
devices may be summarised as follows. Symmetric
arrays should be used to obtain a symmetric response.
Lateral coupling should be minimised to extend the
spatial frequency response as far as possible. The lon-
gitudinal coupling should be maximised and the slab
thickness should be minimised to increase the spacing
between bands. The operating frequency should be cho-
sen to lie just above one of the band edges. Clearly,
even the simplest equation for the spatial frequency
response (e.g. Eq. (18)) contains the operating frequency,
so the near-field MI imaging devices of this type cannot
possibly be achromatic. However, modest narrow-band
performance appears possible, and might be sufficient
for systems such as MRI.

Fig. 12. Images of the letter ‘M’ obtained at the output of loss-less 3D
arrays with κx = κy = −0.05, and κz = 0.5 and (a) Nz = 2, (b) Nz = 4, and
(c) Nz = 6 for δ′′′ = 0.01.

5. Comparison with exact solution

In this section, we consider the accuracy of the
approximate theory in comparison with a full numerical
solution obtained by solving the matrix equation V = Z I
for the array together with sets of sources and detectors
whose effects are no longer negligible.
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5.1. Numerical model

A 1D planar array is assumed in the geometry of
Fig. 2, containing 101 resonant elements numbered −50
to +50 with resonant frequency ω0 and a quality factor
Q. The coupling coefficient κ is assumed to be negative.
Excitation is by a single central source at element zero,
which is only coupled to one element in the array. The
array currents are found using three different approaches,
which cause successively increasing loading �Zn on the
array. Method 1 involves simple calculation of the cur-
rents, with no detectors present, Method 2 uses sampling
by a single detector placed at different locations near
element zero, and Method 3 uses sampling by a set of
fixed detectors spanning the entire array. In each case,
the mutual inductances MS and MD are positive, and
defined in terms of coupling coefficients κS = 2MS/L and
κD = 2MD/L. The sources and detectors are also assumed
to be resonant, but at the operating frequency ω, and have
Q-factors QS and QD.

Many numerical calculations were performed, with
different parameter combinations. The coupling coeffi-
cient κ in the array was fixed at −0.25, while the Q-factor
of the elements was varied from 10 to 1000. The cou-
pling coefficients κS and κD to the sources and detectors
were taken as being equal, and varied from 0.01 to 2,
while the corresponding quality factors QS and QD were
taken as being equal to Q. The operating frequency was
defined in terms of the parameter δ, which was varied
from 0.05 to 2.

5.2. Numerical results

The three approaches were used to find the point
spread function under different conditions, allowing
the following general conclusions to be reached. Out-
of-band, the PSF is always a function that decays
exponentially on either side of the excitation point.
However, the peak amplitude and the decay rate both
depend on the exact arrangement and model param-
eters. For example, using Method 1 with κS = +0.025
and Q = 100, the results in Fig. 3c (which shows the
loss-less PSF) were reproduced almost exactly for all
values of δ, merely provided the currents in the array
are corrected by a constant factor. Similar results were
obtained with Method 2. However, larger discrepancies
were obtained using Method 3, especially for large κS

and Q or small δ, and the decay rate of the PSF was found
to increase significantly. For example, Fig. 13 shows
point spread functions calculated with κS = +0.025 and
Q = 1000, for δ = 0.05 (Fig. 13a), δ = 0.1 (Fig. 13b) and
δ = 0.2 (Fig. 13c). Here, peak amplitudes have all been

Fig. 13. Point spread function of a lossy 1D magneto-inductive array,
for κ = −0.25, κS = +0.025, Q = 1000 and (a) δ = 0.05, (b) 0.1 and (c)
0.2. In each case, four responses are shown, calculated by ignoring all
sources and detectors (approximate theory), including a single source
(Method 1), a single source and a single movable detector (Method 2)
and a single source and a line of fixed detectors (Method 3).

normalised to unity for comparison. In each case, the
approximate solution is in excellent agreement with the
prediction of Methods 1 and 2; however, agreement with
Method 3 is worse for small δ.

5.3. Analytic explanation

These conclusions may be explained using simple
analysis, as follows. Including the effect only of load-
ing by a single source at element zero (Method 1), the
equations that must be solved to find the loss-less PSF
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are modified versions of Eq. (22):(
1 − ω2

0

ω2
− jΔ0

)
P0 + κ

2
(P−1 + P+1) = 1(

1 − ω2
0

ω2

)
Pn +

(
κ

2

)
(Pn−1 + Pn+1) = 0 for n /= 0

(43)

here Δ0 = ΔZ0/ωL is a normalised impedance perturba-
tion due to the source. If (as here) the source is resonant,
Δ may be written alternatively as Δ0 = κ2

SQS/4, so the
normalised perturbation increases with both κS and QS.
Eq. (43) have an analytic solution comparable to Eq.
(23), namely:

Pn = j exp(−j|n|ka)

{κ sin(ka) + Δ0} (44)

The term ka may clearly be replaced with k′′a to obtain
a modified version of Eq. (24). However, the difference
between Eqs. (23) and (44) only lies in the denomina-
tor. Consequently, the PSF must decay exponentially on
either side of the excitation point, at the same rate as
in the unloaded case. Only the amplitude alters, and the
relative magnitude of the change depends on the size
of Δ0 compared with κ sin(ka). The fractional change
will be small if Δ0 is relatively small. For κs/κ = −0.1
(as here), this will be the case if QS < 100 and sin(ka) is
greater than unity. The last condition only requires that
δ is sufficiently large.

When a single detector is used, at the same location
as the source, the effect is simply to modify the value of
Δ0. For example, if κD = κS and QD = QS, Δ0 will double.
Consequently, we would expect Eq. (44) to be valid in
this case as well. As a result, the decay rate of the PSF
will again be unaltered, and only the peak amplitude will
change slightly. If the detector is now moved (Method
2), we would again expect the effect to be small.

When multiple detectors are used with a single source
(Method 3), the effect is to modify Eq. (43) by insert-
ing additional perturbations into all of the equations as
follows:

(
1 − ω2

0

ω2
− jΔ0

)
P0 +

(
κ

2

)
(P−1 + P+1) = 1(

1 − ω2
0

ω2
− jΔ1

)
Pn +

(
κ

2

)
(Pn−1 + Pn+1) = 0 for n /= 0

(45)

For example, if κD = κS and QD = QS, Δ0 = 2Δ1.
Examining Eq. (45), we see that the effect of loading by
a single source and multiple detectors is to insert addi-
tional loss into each element, and that the loss is almost
uniform. However, the resulting perturbation depends

linearly on QS and QD (in contrast to the array, where
similar perturbations are inversely proportional to Q).
Consequently, we would expect any change in the PSF
to mimic that previously shown in Fig. 4b for the case of a
lossy array, and this conclusion is confirmed numerically
in Fig. 13.

Consequently, the approximate theory should give
accurate results for any combination of loss, sources
and detectors, under the following conditions. The Q-
factors of the elements in the array should be relatively
high, the Q-factors of the sources and detectors should
be relatively low, the coupling coefficients between the
sources and detectors should also be relatively small,
and the frequency deviation parameter δ should not be
too small.

6. Conclusions

An approximate but general theory has been pre-
sented for excitation of magneto-inductive arrays of
various dimensions as an expansion of eigenmodes,
avoiding the problem of solving the large number of
simultaneous equations associated with such arrays. The
method allows a simple estimate of the modal expansion
coefficients. Provided the Q-factor is high enough, and
individual modes are not resonant, the coefficient values
depend only on the separation in reciprocal frequency
space of the operating frequency from the resonant
frequency of each mode. For rectilinear arrays, the har-
monic form of the eigenmodes then allows a simple
connection to the spatial frequency response obtained
in imaging. The model has been compared with a full
numerical solution, and has been shown to give good
results provided high-Q arrays are weakly coupled to
sources and detectors with moderate Q-factor.

The approach has been used to estimate the perfor-
mance of magneto-inductive arrays as near-field pixel-to
pixel image-transfer devices. In-plane coupling is shown
to degrade fidelity. When operated in-band, such cou-
pling can lead to the excitation of resonances, which
then dominate the response. Out-of-band, it leads to a
degradation of the spatial frequency response and the
point-spread function. The best results are obtained if the
operating frequency is chosen to lie just above the upper
band edge, and if a single eigenmode can be excited
in the direction of propagation. In this case, the point
spread function is bounded, the effect of the array bound-
aries vanishes and performance is determined purely
by simple properties of the medium and the operating
frequency.

Imaging performance is degraded in thick slabs as
the bands crowd closer together. The lateral coupling
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coefficient should therefore be small (so that the spatial
frequency response is flat) and the longitudinal cou-
pling coefficient should be large and the slab thickness
small (so that the bands are widely separated). In this
case, the form of the array is effectively a set of short,
isolated magneto-inductive ‘wires’, not unlike a wire-
based imaging medium. Although images may clearly
be transferred, the spatial frequency response is strongly
dependent on the operating frequency. Consequently, the
development of arrangements that allow broadband oper-
ation and achromatic performance remains a significant
challenge.

The general analysis presented here should be valid
even when non-nearest-neighbour effects are significant.
In this case, however, the eigenmodes do not have the
same simple form. The results are therefore currently
unknown, and offer additional scope for useful research.
It would be of particular interest to consider whether
alterations to the dispersion diagram (for example, flat-
tening of the ω − k diagram near ω = 0) induced by
second neighbour effects could be used to improve the
spatial frequency response.

Although the method has been used to esti-
mate the response of coupled systems with particular
lattice arrangements, boundary shapes and target func-
tions, it is hoped that it may be useful as a rapid
way of estimating the response of other metamate-
rial systems, or their performance in other potential
applications.
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