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Magneto-inductive waveguides are linear periodic structures consisting of regular arrangements of

L-C resonators coupled together by mutual inductances M. Magneto-inductive cable is a low-loss

flexible variant, based on overlapping inductors and parallel plate capacitors formed by double-sided

patterning of copper-clad polyimide. The properties of cable arrays formed from a set of parallel

magneto-inductive lines are investigated. Numerical solutions are provided for typical arrangements.

Analytic methods are introduced for estimating the coupling between elements in neighboring cables

and the frequency dependence of cross-talk. Theoretical confirmation is provided by experimental

results for cables operating at �100 MHz. Strategies for reducing cross-talk using alternative

element designs that achieve low mutual inductance by cancellation of induced currents are

explored. VC 2011 American Institute of Physics. [doi:10.1063/1.3549147]

I. INTRODUCTION

Magneto-inductive (MI) media are low-frequency meta-

materials consisting of periodic arrays of magnetically

coupled L-C resonators. Linear arrangements form simple

waveguides and devices,1–3 while 2D and 3D arrangements

form bulk media that can exhibit a wide variety of phenom-

ena including negative refraction.4,5 The effects of radiation

and interaction with electromagnetic waves have been

explored.6–8 Propagation losses have been reduced,9 non-

nearest neighbor interactions have been confirmed,10 and

biperiodic structures have been investigated.11–13 Many

applications have been proposed, including delay lines,13

phase shifters,14 couplers and splitters,3,15,16 concentra-

tors,17,18 near-field lenses,19–22 detectors for magnetic reso-

nance imaging,23,24 safe interconnects for internal MRI,25

and data transfer channels.26 Parametric amplification has

been suggested as a method of reducing propagation loss27

and has been demonstrated experimentally.28,29 Planar mag-

neto-inductive waveguides are derivatives of microstrip fil-

ters based on magnetically coupled resonators.30,31 Similar

phenomena have been suggested or observed in other mag-

netically coupled media, including split-ring32–37 and ‘Swiss

roll’38,39 arrays. At higher frequencies, the phenomena have

been rechristened magnetization waves40,41 and magnetic

plasmons.42

Until recently, MI waveguides have suffered from sev-

eral drawbacks. Fabrication of large numbers of carefully

tuned discrete resonators has been tedious. Weak coupling

has led to high propagation losses. Poor coupling to systems

with resistive impedance has led to reflections at input and

output, and local variations in resonant frequency or cou-

pling have also given rise to reflections. Overall system per-

formance has therefore been poor, and measurements of MI

phenomena have often been masked by standing-wave

effects.

A new type of MI waveguide material has been demon-

strated recently that overcomes many of these difficulties.

The waveguide is a flexible cable,43 which uses double-sided

patterning of copper-clad polyimide to form overlapping

inductors and parallel plate capacitors, with the thin substrate

as an interlayer dielectric. High component values allow

operation at low (ca 100 MHz) frequencies, high mutual in-

ductance allows low-loss propagation, and lithographic defi-

nition eliminates variations in line properties. Elements may

be distorted significantly without changing mutual induct-

ance, allowing propagation through bends with low reflec-

tion.44 Finally, an effective broadband method of coupling to

resistive systems has been developed, based on a modified

resonant element.45

Magneto-inductive cables may be configured as a paral-

lel array, to provide multiple signal channels or a coherent

image-transfer system. However, given the weak confine-

ment of the magnetic field, coupling between adjacent lines

must occur. In fact, a cable array will act much like a

coupled optical waveguide array, an arrangement well

known to spread the power in a guide to its neighbors.46–48

Cross-talk between cables may then arise, which is clearly a

disadvantage if a set of lines is to be used to transmit differ-

ent signals.

In this paper, we consider the likely effects and strat-

egies to reduce cross-talk. Although a MI cable array is geo-

metrically similar to a 2D metamaterial, this viewpoint is

different from the conventional one, where transverse cou-

pling effects are tolerated. In Sec. 2, the properties of MI

waveguides and coupled systems are briefly reviewed. In

Sec. 3, analytic formulae that can allow estimation of cross-

talk between coupled lines are presented. In Sec. 4, magneto-

inductive cables are introduced and a simple method for

evaluating the different coupling coefficients in arrays is

demonstrated. In Sec. 5, the modifications to the model

required for cable arrays are described. In Sec. 6, experimen-

tal results are presented for thin-film cables operating at

�100 MHz frequency. In Sec. 7, improved element designsa)Electronic mail: r.syms@imperial.ac.uk
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with the capability of reducing cross-talk are discussed. Con-

clusions are presented in Sec. 8.

II. MAGNETO-INDUCTIVE WAVEGUIDES AND
DIRECTIONALLY-COUPLED SYSTEMS

We begin with a brief review of MI waveguides and

directionally coupled systems.

A. Magneto-inductive waveguides

Figure 1(a) shows a MI waveguide, which consists of a

linear arrangement of L-C resonators coupled together by

mutual inductances M. The period is a, and the current in the

nth element is In. In general, the inductors will contain addi-

tional resistance R, which will give rise to propagation

losses; however, for simplicity, we shall ignore loss. At

angular frequency x, the current in each loop satisfies the

recurrence relation1,2:

ð1� x2
0=x

2ÞIn þ ðj=2ÞðIn�1 þ Inþ1Þ ¼ 0: (1)

Here x0 ¼ 1=ðLCÞ1=2
is the angular resonant frequency

of each loop and j¼ 2M/L is the longitudinal coupling

coefficient. j can be positive or negative, depending on the

physical arrangement of the guide and, when positive, has a

maximum possible value of 2.

The waveguide supports traveling current waves of the

form In¼ I0 exp(� jnka), where k is the propagation con-

stant, and substitution into Eq. (1) yields the dispersion

relation:

1� x2
0=x

2 þ j cosðkaÞ ¼ 0: (2)

For every value of ka, the angular frequency may be found

as x/x0¼ 1/Hf1 þ j cos(ka)g. Equation 2 implies that a

MI waveguide supports waves over a finite range of angular

frequency, such that 1/H(1 þ jjj)�x/x0� 1/H(1–jjj). For

positive j, the waves are of forward type and for negative j
of backward type. The characteristic impedance is Z0¼ jxM
exp(� jka), which has the real value Z0M¼x0M at mid-band

(ka¼p/2).4

B. Directionally-coupled magneto-inductive systems

When MI waveguides are combined in a planar array,

there will be additional mutual inductance between adjacent

lines. The simplest case is a two-line system, formed from a

pair of identical guides arranged parallel to each other so

that adjacent elements in different lines are coupled by mu-

tual inductances M0 as shown in Fig. 1(b). This arrangement

is well known to act as a directional coupler.3,15,16 Assuming

that the currents in the nth elements of lines 1 and 2 are I1,n

and I2,n respectively, the governing equations are3:

ð1� x2
0=x

2ÞI1;n þ ðj=2ÞðI1;n�1 þ I1;nþ1Þ þ ðj0=2ÞI2;n ¼ 0;

ð1� x2
0=x

2ÞI2;n þ ðj=2ÞðI2;n�1 þ I2;nþ1Þ þ ðj0=2ÞI1;n ¼ 0:

(3)

Here j0 ¼ 2M0/L is the broadside (which we take here to

mean exactly transverse) coupling coefficient between the

lines.

More generally, many lines may be coupled together.

For example, Fig. 1(c) shows a semi-infinite MI waveguide

array, centrally fed by a single line. Within the array, (m, n)

denotes the nth element in the mth line, m ranges from minus

to plus infinity, and n ranges from 0 to infinity. The mth line

is again coupled to its neighbors, the m� 1th and mþ 1th

lines, via mutual inductances M0. If the coupling coefficients

are as before, the governing equation for element (m, n) is:

ð1� x2
0=x

2ÞIm;n þ ðj=2ÞðIm;n�1

þIm;nþ1Þ þ ðj0=2ÞðIm�1;n þ Imþ1;nÞ ¼ 0: (4)

For a finite array, the number of equations is simply reduced,

and the equations at the edge of the array are modified to

omit coupling to absent neighbors. Equation (4) can, of

course, be solved in full. For example, simple re-arrange-

ment gives:

Im;nþ1 ¼ �ð2=jÞfð1� x2
0=x

2ÞIm;n þ ðj=2ÞIm;n�1

þ ðj0=2ÞðIm�1;n þ Imþ1;nÞg: (5)

Ignoring reflections, Eq. (5) allows solutions to be found by

iteration. For example, Fig. 2(a) shows results obtained using
FIG. 1. (a) Magneto-inductive waveguide; (b) directional coupler; (c) cen-

trally excited coupled waveguide array.
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the typical coupling coefficients j¼ 0.7 and j0 ¼ �0.007,

and x/x0¼ 1, assuming the boundary conditions for n< 0 of

I0,n¼ exp(�jnka) and Im,n¼ 0 for m = 0 in an array contain-

ing 21 lines. These conditions correspond to excitation by a

current wave of unit amplitude in line 0. Here the results are

plotted as current moduli, for n � 0. Initially, the current in

line 0 is unity, while the current in all other lines is zero.

However, the lines gradually exchange power, and lines fur-

ther from the input are excited as the signals propagate.

Large cross-talk may therefore arise if lines run parallel for

sufficient distance. However, the distances here (determined

by the value of n) are very large.

C. Power conservation and nonnearest neighbor
effects

Note that, as presented, Eq. (5) will not yield a solution

that conserves power. In general, the inclusion of reflected

waves is required; for a full treatment for a two-line system,

see Ref. 15. However, for weakly coupled systems, power is

approximately conserved. The model also neglects nonnear-

est neighbor transverse coupling, which will provide a mech-

anism for a more rapid growth of cross-talk. However,

additional terms may easily be included in the equations to

describe such effects.

III. CROSS-TALK ESTIMATION

We now consider some analytic solutions relevant to

cross-talk estimation. We use two approaches: weakly

coupled continuous and discrete models.

A. Continuous model

We first return to the governing equation for a semi-infi-

nite MI waveguide array. Figure 2(a) has shown that current

amplitudes change slowly with distance if the broadside cou-

pling is weak. We therefore assume solutions for the individ-

ual currents in an array in the form of traveling waves with

slowly-varying amplitudes, as Im,n¼ im,n exp(�jnka) where

im,n is the wave amplitude. With this assumption, Eq. (4)

becomes:

ð1� x2
0=x

2Þim;n þ ðj=2Þfim;n�1 expðþjkaÞ
þ im;nþ1 expð�jkaÞg þ ðj0=2Þðim�1;n þ imþ1;nÞ ¼ 0: (6)

Using the dispersion equation for a linear MI waveguide, we

then get:

jfðim;n�1 � im;nÞ expðþjkaÞ þ ðim;nþ1 � im;nÞ expð�jkaÞg
þ j0ðim�1;n þ imþ1;nÞ ¼ 0: (7)

If the amplitudes im,n are indeed slowly varying, we can

write (im,n� im,n�1) � (im,nþ1� im,n) and Eq. (7) reduces to:

ðim;nþ1 � im;nÞ þ jfj0=2j sinðkaÞgðim�1;n þ imþ1;nÞ ¼ 0: (8)

Approximating the discrete amplitude im,n by a continuous

function im(z), where z¼ na, and assuming that dim/dz
�(im,nþ1� im,n)/a we then get:

dim=dzþ jj0effðim�1 þ imþ1Þ ¼ 0: (9)

Where j0eff¼ j0/f2ja sin(ka)g is an effective transverse cou-

pling coefficient. Equation 9 is the recurrence formula for Bes-

sel functions, and is well known from the theory of coupled

optical waveguide arrays.47 Assuming the boundary condi-

tions on z¼ 0 of i0¼ 1, im¼ 0 for m = 0, it has the solution:

imðzÞ ¼ ð�jÞmJmð2j0effzÞ: (10)

Here, Jm is the mth order Bessel function of the first kind.

These variations can be shown to agree almost exactly with

the results of Fig. 2(a).

FIG. 2. (a) Numerical solution of Eq. (5), for an array of coupled MI wave-

guides with j¼ 0.7, j0 ¼�0.007, x/x0¼ 1, and varying n. The lines show

current moduli for guides near guide 0, which is excited by a wave of unit

amplitude. (b) Approximate variation of cross-coupled current with n, for

small n and different values of x/x0; (c) corresponding variation with ka,

for a nine-element line. In each case j¼ 0.7 and j0 ¼�0.007. Thin lines

show the prediction of the continuous model, thick lines show the discrete

model.
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When the coupling length j0effz is small [i.e., near the

left-hand end of Fig. 2(a)], the solutions may be approxi-

mated as:

i0 � 1; i�1 ¼ iþ1 � �jj0effz;

i6m � 0 for m>1:
(11)

These solutions correspond to linearly increasing wave

amplitudes in the two guides on either side of the input

guide, which carries an undepleted wave. In this regime,

cross-talk increases linearly with distance. The rate is

determined by j0eff, which has a minimum of j0/2ja when

ka¼ p/2 and rises to infinity when ka¼ 0 or p. Conse-

quently, cross-talk will be very high at the band edges.

However, this feature is of limited practical concern, since

operation will almost certainly take place near mid-band.

To illustrate this approximate solution, the thin lines in

Fig. 2(b) show the variation of ji1j with n, calculated using

Eq. (11) for the previous parameters (j¼ þ0.7, j0 ¼ �0.007)

and different values of x/x0. In each case, the variation is lin-

ear. Similarly, the thin line in Fig. 2(c) shows the variation

with ka of ji1j for a 9-element line with the same coupling

coefficients. For a¼ 100 mm, this value of n corresponds to a

1 m cable. The variation is symmetric about ka¼p/2 and

approximately parabolic.

B. Discrete model

To see the effect of the discrete nature of MI wave-

guides, we now develop an alternative model. We again

focus on the regime in which the input wave is hardly

depleted, and only the waves in the adjacent guides are sig-

nificant. Assuming that the wave in line 0 is now fixed at

I0,n¼ exp(�jnka), the equations we must solve for the cur-

rents in guides �1 and þ1 are identical, so we consider

only the latter. The relevant equation from Eq. (4) is then:

ð1� x2
0=x

2ÞI1;n þ ðj=2ÞfI1;n�1 þ I1;nþ1g
¼ �ðj0=2Þ expð�jnkaÞ: (12)

To find a solution, we adopt the approach used for inhomo-

geneous differential equations, which involves a particular

integral (PI) and a complementary function (CF). We first

identify the PI. Previous results suggest the linearly varying

solution I1,n¼ I1n exp(�jnka). Substitution yields:

ð1� x2
0=x

2ÞI1n expð�jnkaÞ þ ðj=2Þfðn� 1Þ expðþjkaÞ
þ ðnþ 1Þ expð�jkaÞgðI1Þ expð�jnkaÞ
¼ �ðj0=2Þ expð�jnkaÞ: (13)

Using the dispersion equation, this relation can be simplified

to:

ðj=2Þf� expðþjkaÞ þ expð�jkaÞgI1 expð�jnkaÞ
¼ �ðj0=2Þ expð�jnkaÞ: (14)

And hence the cross-coupled current amplitude must be:

I1 ¼ �jfj0=½2j sinðkaÞ�g: (15)

The overall current amplitude variation I1n clearly corre-

sponds to the linear amplitude variation i1 found using the

continuous model. However the solution does not satisfy the

boundary conditions (I1,n¼ 0 for n¼ 0 and n¼ �1). To

do so, we require CF terms. The LHS of Eq. (12) suggests

that these must be forward- and backward-traveling waves,

so the complete solution is I1,n¼ I1n exp(�jnka) þ I1
0

exp(�jnka) þ I1
00 exp(þjnka), where I1

0 and I1
00 are

unknown coefficients. Invoking the boundary condition at

n¼ 0 we obtain I1
00 ¼ � I0. Similarly, using the condition at

n¼ �1, we obtain I1
0 ¼ � j I1 exp(jka)/[2 sin(ka)]. The full

solution is therefore:

I1;n ¼ �jfj0=½2j sinðkaÞ�gfn expð�jnkaÞ
� ½sinðnkaÞ= sinðkaÞ� expðjkaÞg: (16)

The thick lines in Figs. 2(b) and 2(c) show typical variations

of the cross-coupled current I1,n with n and ka respectively,

using the same parameters as before. In each case, the dis-

crete solution is similar to the continuous one, but there is

now additional fine structure imposed on the previously

smooth variations. The discrete model can be shown to agree

exactly with the prediction of the iterative method, Eq. (5).

We can use these results to impose conditions on the

design of MI waveguide arrays. At mid-band, both models

suggest that the cross-talk is jI2,nj � jnj0/2jj. If we require

the cross-talk to be below a given maximum (say, jI2,nj< a)

after propagating N elements, the coupling coefficient must

satisfy:

jj0=jj<ð2a=NÞ: (17)

For example, to reduce cross-talk below �20 dB (a¼ 0.1) in a

9-element line, we require jj0/jj< 0.022, while to reach � 40

dB we require jj0/jj< 0.0022. Low cross-talk will therefore

only be obtained if the coupling between lines can be made

very weak.

IV. MAGNETO-INDUCTIVE CABLES

We now consider magneto-inductive cable, a high-per-

formance variant of MI waveguide formed on a flexible

substrate.

A. Physical arrangement

Each resonant element consists of pairs of inductor

loops and capacitor plates formed by patterning conductive

layers on either side of a thin dielectric layer. Figure 3(a)

shows the arrangement and Fig. 3(b) the equivalent circuit of

a unit cell. If the two inductors each have inductance L/2 and

the two capacitors have capacitance 2C, the unit cell

is equivalent to that of a conventional MI waveguide.

Figure 3(c) shows the formation of a cable by overlaying

unit cells on either side of the substrate. Here, alternate

elements have been displaced slightly for clarity. The nearest

neighbor coupling coefficient is derived from mutual in-

ductance in the shaded areas. Its maximum possible value

is now limited to þ1. Values close to this are obtained
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experimentally, and second nearest neighbor coefficients are

extremely small.

B. Numerical estimation of parameters

Detailed estimates of parameters may be obtained as fol-

lows. The resonant elements are typically long rectangular

loops, as shown in Fig. 4(a). Ignoring the capacitors (which

are small), the inductors are rectangles of length 2a and

width b formed using rectangular tracks of width w and

thickness t. Assuming (for example) a¼ 100 mm, b¼ 5 mm,

w¼ 0.5 mm, and t¼ 35 lm, numerical simulation using the

multipole-accelerated 3D inductance extraction program

FastHenry49 yields a self-inductance of L¼ 3.03� 10�7 H.

Coupling between adjacent elements in the same line

may then be estimated using the geometry in Fig. 4(b). Here,

two inductors with a small separation corresponding to the

substrate thickness are overlaid with a longitudinal offset d.

Similarly, coupling between elements in arrangements such

as the cable arrays considered in Sec. 5 may be estimated

using the geometry in Fig. 4(c), which shows two inductors

with an additional transverse offset p. The full lines in

Fig. 5(a) show numerically calculated variations of the cou-

pling coefficient j¼ 2M/L with longitudinal offset d, calcu-

lated for the parameters above but assuming different values

of p. For p¼ 0, the coupling coefficient varies quasilinearly

with jdj, and decreases from a maximum close to þ2 when

d¼ 0 through þ1 when jdj ¼ a almost exactly to zero when

jdj ¼ 2a. The dashed lines show idealized variations for

p¼ 0 and p¼ b. The nearest neighbor longitudinal coupling

coefficient is almost exactly unity, while second neighbor

coupling is negligible.

When p¼ b or p¼ 2b there is a significant transverse

offset between the elements. The coupling coefficient is now

negative, and has a significantly reduced magnitude, but still

FIG. 3. Magneto-inductive cable: (a) arrangement and (b) unit cell; (c) peri-

odic line.

FIG. 4. (a) Single inductor, (b) longitudinally coupled pair, (c) broadside

coupled pair.

FIG. 5. (a) Numerical variation of coupling coefficient with longitudinal

offset d, assuming a¼ 100 mm, b¼ 5 mm, w¼ 0.5 mm and t¼ 0.0035 mm,

(b) numerical variation of broadside coupling coefficient jmax with trans-

verse offset (or pitch) p. (c) Comparison between models for the variation of

broadside coupling coefficient with pitch.
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varies quasilinearly with jdj. In general we may therefore

conclude that the nearest neighbor coupling coefficient j
varies as:

j ¼ jmax(1 – jd/2aj) for jd=aj � 2;

j ¼ 0 for jd=aj > 2:
(18)

Here jmax is the coupling coefficient when the elements are

broadside on. This variation has the form of an auto-correla-

tion between two rectangular regions of overlap.

Figure 5(b) shows the numerically calculated variation of

jmax with the normalized lateral offset or pitch p/a, for the

same parameters as before. jmax reduces from approximately

þ2 to �1 as p varies from 0 to b, passing through zero at

approximately p¼ 2b/3. Similarly, for p> b, jmax is negative

and its value gives the broadside coupling coefficient j0 used

previously. In this regime, its modulus reduces monotonically

as p increases.

C. Analytic estimation of parameters

Parameters may also be estimated using a parallel-wire

approximation. For example, the self-inductance of a length

2a of two wires of radius r separated by a distance b is:

L ¼ 2aðl0=pÞlogefðb� rÞ=rg: (19)

For comparison with a coil constructed using rectangular

wires of width w and thickness t, we may approximate r as

a geometric mean of the cross-sectional dimensions, as

r¼H(wt)/2. For the parameters above, we obtain

L¼ 3.5� 10�7 H, close to the earlier numerical result. Simi-

larly, when p is sufficiently large that the inductors no longer

overlap, the mutual inductance obtained broadside on may be

estimated as:

M0 ¼ 2aðl0=2pÞlogefðp2 � ðb� rÞ2Þ=ðp2 � r2Þg: (20)

Consequently, j0 may be estimated as:

j0 ¼ logefðp2 � ðb� rÞ2Þ=ðp2 � r2Þg=logefðb� rÞ=rg
for p>b: ð21Þ

Figure 5(c) compares numerical and analytic results for the

variation of j0 with p, for the same elements as before. The

agreement is excellent. Both models show that j0 decays

approximately as p�2, implying that doubling the pitch in an

array will reduce broadside coupling coefficients and

coupled amplitudes fourfold, and hence reducing coupled

powers by a factor of 16 (or 12 dB). The same argument

implies that cross-talk in nonnearest neighbor guides will be

12 dB below that in nearest neighbors.

V. MAGNETO-INDUCTIVE CABLE ARRAYS

Cable arrays are formed by placing cables side-by-side

with a pitch p as shown in Fig. 6(a). Because of the overlap

of elements in the same line, the coupling between lines will

be more complicated and in this section we describe the

resulting effects.

A. Effect of cable coupling

The main effect of coupling will be additional coupling

terms. The coefficients may be estimated much as before.

Clearly, there will be a coupling coefficient j0
0 between cor-

responding elements (1, n) and (0, n) in each line, as shown

by the shaded overlap region in Fig. 6(b). The value of this

term will be the broadside coupling coefficient j0. However,

there will also be coupling j�1
0 between element (1, n) and

element (0, n� 1) and jþ1
0 between elements (1, n) and (0,

nþ 1) as shown in Fig. 6(c). Using the results of Sec. 4, these

terms can be estimated as j�1
0 ¼j þ1

0 � j0/2.

Thus, for coupled cables, the circuit equations for lines

0 and 1 have the modified form:

ð1� x2
0=x

2ÞI1;n þ ðj=2ÞfI1;n�1 þ I1;nþ1g
þ ðj0=2ÞfI0;n�1=2þ I0;n þ I0;nþ1=2g ¼ 0:

ð1� x2
0=x

2ÞI0;n þ ðj=2ÞfI0;n�1 þ I0;nþ1g
þ ðj0=2ÞfI1;n�1=2þ I1;n þ I1;nþ1=2g ¼ 0:

(22)

Here, we have ignored coupling to any other lines. In the

weak coupling regime, the equation that must be solved for

line 1 is then:

ð1� x2
0 =x

2ÞI1;n þ ðj=2ÞfI1;n�1 þ I1;nþ1g
¼ �ðj0=2ÞfexpðþjkaÞ=2þ 1þ expðjkaÞ=2g expð�jnkaÞ:

(23)

Or alternatively:

ð1� x2
0=x

2ÞI1;n þ ðj=2ÞfI1;n�1 þ I1;nþ1g ¼ �ðj0=2Þ
�f1þ cosðkaÞg expð�jnkaÞg: (24)

Clearly, the effect of the additional coupling terms in a cable

is to alter the transverse coupling coefficient between the

lines to a new value of j0cable¼ j0f1 þ cos(ka)g. Since

j0cable is now dependent on ka, we would expect changes in

the frequency dependence of the solution. For example,

when ka¼ p, there can be no net coupling, since

cos(ka)¼ �1. In this case, the additional coupling terms

FIG. 6. MI cable array: (a) arrangement; (b) and (c) origin of cross-coupling

coefficients.
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lead to cross-coupled currents that cancel the main current

induced by broadside coupling. However, when ka¼ 0 there

will be increased coupling, since the additional terms lead to

in-phase cross-coupled currents.

B. Modified cross-talk variation

By inspection, the discrete model then gives for the cur-

rent I1,n:

I1;n ¼ �jfj0cable=½2j sinðkaÞ�gfn expð�jnkaÞ
�½sinðnkaÞ=sinðkaÞ� expðjkaÞg: (25)

The effect of cable-type coupling is then to alter the fre-

quency dependence of any cross-talk. Figure 7 shows the

variation of the cross-coupled power P1¼ jI1j2 (in dB) with

x/x0, for a 9-element line with the previous parameters

(j¼ 0.7 and j0 ¼ �0.007). The results obtained with simple

broadside coupling are superimposed for comparison. The

curves intersect when x/x0¼ 1. However, cable coupling

makes the response highly asymmetric, with somewhat

increased cross-talk when x/x0< 1 and much reduced cross-

talk when x/x0> 1. Strategies to reduce cross-talk are

clearly important and will be considered in Sec. 7.

VI. EXPERIMENTAL RESULTS

We now investigate the validity of the theoretical model

using experiments carried out on thin-film MI cable fabri-

cated by double-sided patterning of copper-clad polyimide.

A. Experimental configuration

The starting material was 25 lm thick Kapton
VR

HN

(DuPont, Circleville, OH), coated on each side with a 35 lm

thick pressure-bonded layer of copper and patterned by li-

thography and wet etching. Cables were fabricated in 2 m

lengths containing 24 parallel lines. In each case, the element

length and width were 2a¼ 200 mm, and b¼ 4.7 mm respec-

tively, and the track width was w¼ 0.5 mm, but other param-

eters were varied across the array. From these variants,

cables with particular properties (established using separate

experiments detailed in Ref. 47) were selected.

The cables used had inductor and capacitor lengths of

90 mm and 10 mm respectively, giving an inductance of

L¼ 240 nH and a capacitance of C¼ 10 pF. The resonant

frequency f0¼x0/2p was then approximately 100 MHz, and

the Q factor at this frequency was 48. The mutual inductance

was M¼ 81 nH, so that the longitudinal coupling coefficient

was j¼ 0.675 and the mid-band impedance was Z0M¼ 48.6 X.

Because Z0M was close to 50 X impedance, it was simple to

carry experiments with properly terminated guides. Each guide

was therefore equipped with input and output transducers, con-

sisting of single inductors L/2 made resonant at the element

resonant frequency x0 using single capacitors 2C. Elsewhere,49

it has been shown that such transducers provide an excellent

match to resistive loads over most of the propagating band and

hence largely suppress end-reflections. Measurements were

made with an electronic network analyser (ENA) with 50 X
characteristic impedance (Agilent E5061A).

For cross-talk investigations, cables were separated,

shortened to 1 m lengths (which contained nine resonant ele-

ments and two transducers) and mounted on straight wooden

formers to allow cables to run parallel with arbitrary separa-

tion. Figure 8(a) shows a photograph of two neighboring

cables. The properties of isolated cables were first estab-

lished by connecting input and output to the ENA. Figure

9(a) shows the frequency variation of the S-parameters. The

variation of S21 shows bandpass propagation, ranging from

�70 MHz to �160 MHz, with a minimum insertion loss of

�3 dB at �100 MHz. The cutoff is slower at high frequen-

cies, presumably because of loss. The variation of S11 shows

reflection below �15 dB over the majority of the propagat-

ing band, suggesting that the coupling transducers are effec-

tive. However, reflections rise rapidly at the band edges,

implying ineffective excitation at these frequencies.

The properties of coupled cables were investigated by

connecting the input of one cable (Cable 0) to the S11 port of

the ENA and the output of the other (Cable 1) to the S21

port, terminating unused cable ends with 50 X loads as

FIG. 7. Variation of cross-coupled power with normalized frequency, for a

nine-element magneto-inductive cable with j¼ 0.7 and j0 ¼�0.007. Also

shown for comparison are the corresponding results obtained with simple

broadside coupling.

FIG. 8. (a) Photograph of and (b) arrangement for testing coupled magneto-

inductive cable.
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shown in Fig. 8(b). Figure 9(b) shows the frequency varia-

tion of cross-coupled power thus obtained. Here, a small sep-

aration (p¼ 10 mm) was used deliberately, to cause strong

cross-talk. The variation is again band-limited, but the cross-

coupled power is considerably reduced at high frequency

compared with Fig. 9(a). Figure 9(b) also shows the cross-

talk variation after correction for the excitation efficiency.

This data generally follows the asymmetric variation shown

in Fig. 7, with cross-talk increasing at low frequency and

reducing at high. Similar results were obtained at larger sep-

arations p, with overall cross-talk reducing as p increased.

The data points in Fig. 9(c) show the variation of cross-talk

with cable pitch, at 95 and 100 MHz frequency. The lines

show a theoretical fit, assuming the coupling coefficients

falloff as p�2 as estimated earlier. There is clearly good

agreement with the simple model.

VII. CROSS-TALK REDUCTION

The relatively slow decay of cross-talk with pitch sug-

gests that additional efforts should be used to minimize inter-

action between lines in dense MI cable arrays. For coupled

optical waveguide arrays, coupling is typically reduced by

dephasing (i.e., by varying the propagation constant between

guides).46 If this is done, contributions coupled from guide

to guide no longer add together in-phase. For MI cables, all

that is required is to vary the angular resonant frequency x0

of the elements from line to line, ideally keeping x0M con-

stant in the process so that impedance matching may be

maintained. However, for MI waveguides, the ability to

define elements of essentially arbitrary shape allows addi-

tional possibilities to reduce the coupling coefficients

between neighboring guides by cancellation of induced

currents.

For example, Fig. 10(a) shows a modified resonant ele-

ment, in which the capacitor positions have been altered and

the right-hand inductor has been twisted twice. With the

capacitors placed as shown, the structure can still be formed

using patterned conducting layers on either side of a thin

substrate. Figure 10(b) shows a simplified version of this ele-

ment, omitting the capacitors but showing the sense of cur-

rent flow in each part of the resonant loop. Figure 10(c)

shows how a single line may be formed by overlaying ele-

ments whose orientations are repetitively reflected. Alternate

elements are again slightly displaced, for clarity. This

arrangement is difficult to construct on a single substrate, but

relatively simple to form by stacking together two substrates

carrying alternate elements. Finally, Fig. 10(d) shows how a

cable pair may be constructed from adjacent lines that are

staggered so that alternating sections of each element abut.

Figure 10(e) shows the overlap that contributes to the

transverse coupling coefficient j0
0, while Fig. 10(f) shows

FIG. 9. Frequency-variation of (a) S-parameters, for single cable, and (b)

cross-coupled power and normalized cross-talk between paired cables; (c)

variation of cross-talk with pitch p.

FIG. 10. a) Twisted element, b) simplified element, c) and d) single line and

coupled lines formed from twisted elements, e) and f) origin of nearest-

neighbour cross-coupling terms.
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the corresponding contributions to j�1
0 and jþ1

0. In each

case the sign of the contribution can be determined from the

direction of current flow, and is indicated by the slope of the

crosshatched lines. For all three terms, the distribution of

current flow suggests that the induced currents will have dif-

ferent signs in different regions. As a result, cancellation of

induced currents may occur. With careful design, the net

coupling coefficient will be approximately zero, so that all

three contributions to cable coupling can be largely elimi-

nated. Although there is no corresponding reduction in sec-

ond nearest neighbor effects, this example suggests that

considerable reduction in nearest neighbor cross-talk might

well be possible.

VIII. CONCLUSIONS

The behavior of parallel arrays of identical magneto-in-

ductive waveguides has been investigated, using both dis-

crete and continuous models. Simple theoretical methods for

estimating cross-talk have been developed for arrays con-

taining simple MI waveguides, and for the slightly different

case of MI cable arrays, and the theory has been broadly

verified using experiments carried out with thin-film cable.

The main factors affecting cross coupling have been identi-

fied, and a strong frequency-dependence of the cross-talk

(the exact variation of which depends on the cable configura-

tion) has been predicted and observed. Suggestions for cross-

talk reduction by cancellation of induced currents using

improved element layouts have been made. Future work will

focus on development of practical low cross-talk systems.

We have focused on magnetic coupling, rather than elec-

tric coupling. We may illustrate the relative significance of the

latter by comparing the capacitance of the parallel-plate com-

ponents contained in the resonant elements with other mutual

capacitances. Clearly, there are several terms that might be

considered; here we restrict ourselves to broadside coupling

between the closest coplanar plates of nearest neighbors.

The per-unit-length capacitance CP of a parallel plate

capacitor of width wC, dielectric thickness tS, and relative

dielectric constant er is CP¼ e0erwC/tS, where e0 is the dielec-

tric constant of free space. For the flexible MI cable, wC � b/

2, so wC � 2.5 mm for b¼ 5 mm. Assuming a polyimide sub-

strate (er¼ 3.5) of thickness tS¼ 25 lm, we obtain CP

� 3500 e0 F/m. Similarly, the per-unit-length capacitance

CP
0 between coplanar plates of the same width separated by

a distance s can be found from coplanar waveguide theory50

as CP
0 ¼ e0K0(k)/K(k), where K(k) is a complete elliptic inte-

gral of the first kind, K0(k)¼K(k0), k2¼ 1� k02 and k¼ s/

(s þ 2wC). Assuming a pitch p, the separation between the

corresponding plates of capacitors from adjacent neighbors

is s¼ p� 2wC, so that k � (p� b)/p. The minimum realistic

separation is p� b � 1 mm, so the minimum likely value of

k is around 1/6. At this value, K0(k)/K(k) � 2, so CP
0 � 2e0 F/

m. In the worst case, we would therefore expect CP
0 still to

be at least a thousand times smaller than CP. In contrast, the

values of M0=L considered here have been much larger, in

the range 0.1< jM0/Lj< 0.5 for small separations. Electric

coupling effects are therefore likely to be relatively small.

However, this may not be the case in equivalent structures

based on split-ring resonators, where the element capacitance

itself arises from a coplanar geometry, and hence is much

smaller.
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