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Effective permeability of a metamaterial: Against conventional wisdom
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A method for finding the effective permeability of metamaterials is presented, based on the

interaction between electromagnetic and magnetoinductive waves. Assuming a coupled circuit

model for the interaction, a dispersion equation is derived that exhibits two types of bandgaps, one

leading to complex solutions and the other to purely evanescent waves. Although losses are

disregarded, the effective permeability (in contrast to established theories) is shown to have an

imaginary part in part of the stop band, while its real part remains finite in both the pass band and

the stop band. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3696075]

It was recognised a century and a half ago that there is a

simple way describing the electromagnetic properties of

materials. Instead of considering the intricacies of the micro-

scopic structure, it is possible to describe most of those prop-

erties by introducing the macroscopic parameters of

permittivity, permeability, and conductivity. Clausius1 and

Mossotti2 were pioneers of this art; their original concepts

are still valid today, and the Clausius-Mossotti equations can

be found in any textbook on Solid State Physics.

Effective medium theories3–11 (and how to derive the

material parameters from them) have enjoyed a new lease of

life since the subject of Metamaterials became of general in-

terest. It is difficult to choose between those theories,

because of the scarcity of experimental data. There is how-

ever broad agreement on a number of issues. Restricting the

discussion to lossless magnetic metamaterials containing res-

onant elements it is agreed that as the frequency increases

towards the resonant frequency the real part of the perme-

ability tends to plus infinity, then switches suddenly to minus

infinity, and rises monotonically from there towards its value

at infinite frequency. In the absence of losses, the imaginary

part of the permeability (the part that causes attenuation) is

necessarily zero. In the presence of losses, the real part of

the permeability remains finite, but there is then an imagi-

nary part as well that may reach a high value at the resonant

frequency. An increase in losses leads to lower real and

higher imaginary permeability. There are some variations on

this basic picture (as many as five are noted in Ref. 12) but

no major departures.

A different approach was offered by Syms et al.13 based

on a coupled circuit model for the interaction between elec-

tromagnetic (EM) waves and magneto-inductive (MI) waves

propagating in an array of split-ring resonators (SRRs).

Here, SRRs were described as L-C circuits and the EM wave

as a transmission line. Rods were also modelled but are

unnecessary here. A dispersion relation for coupled EM-MI

waves was derived, with a forbidden gap arising as a direct

consequence of the interaction. The paper investigated the

stop bands and pass bands for various combinations of SRRs

and rods, with and without coupling between the elements.

The aim of the present paper is to extend that analysis by

deriving the effective permeability directly from the disper-

sion equation. We shall first quote the dispersion equation

for a lossless system, define the complex permeability, and

show how attenuation may occur in a lossless structure.

We assume the model of Fig. 1. The physical structure

is a linear array of SRRs to which a transverse EM wave is

coupled via its magnetic field (Fig. 1(a)). Both waves are

represented using circuit models (Fig. 1(b)). The lower trans-

mission line is that of an EM wave with inductance L0 and

capacitance C0, where L0 ¼l0 a and C0 ¼ �0 a, a is the period

and l0 and �0 are the free space permeability and permittiv-

ity. The MI wave is also represented by lumped element res-

onators with inductance L and capacitance C, but in addition,

the elements are coupled to each other by a mutual induct-

ance M. Coupling between the waves is represented by a mu-

tual inductance M0. Assuming propagation in the form

exp{j(xt� nka)}, where x is the angular frequency, k is the

propagation constant, and n is the element number, the dis-

persion equation is obtained13 as

fw2 � 2q2 þ 2q2cosðkaÞgfw2½1þ jcosðkaÞ� � 1g ¼ w4q2:

(1)

FIG. 1. (a) Physical model and (b) circuit model for the interaction between

electromagnetic and magnetoinductive waves.

a)Author to whom correspondence should be addressed. Electronic mail:

r.syms@imperial.ac.uk. TEL: þ44-207-594-6203. FAX: þ44-207-594-
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Here, w¼x/x0 is the normalised frequency, k¼ k0 � jk00 is a

complex propagation constant with real part k0 and imaginary

part k00, x0¼ (LC)�1/2 is the resonant frequency of the ele-

ments, q¼ (c/a)(LC)1/2, c is the velocity of light, j ¼ 2 M/L
is the coupling coefficient between the elements and

q2¼M02/(LL0) is the coupling coefficient between the EM

and MI waves. q2 is a dimensionless parameter, playing the

same role as the filling factor in other theories.

Fig. 2(a) shows the dispersion characteristic for the typi-

cal parameter values q2¼ 0.02, q¼ 20, and j¼� 0.2. Fig.

2(b) shows the details of the gap region, and Fig. 2(c) shows

the variation of k00a with frequency over the same range. The

gap lies between the normalised frequencies w1¼ 1.114 and

w3¼ 1.132, but notably, it is made up by two different

regions, one below and one above w2¼ 1.122. Above w3, the

dispersion curves look the same as those in Refs. 3 and 14.

However, they are different below w3 since the unperturbed

MI wave, a backward wave, is omitted from these theories.

Inclusion of the backward wave means that the lower branch

has a maximum, allowing the presence of a pair of complex

waves (real parts the same, imaginary parts of opposite sign)

between the points P and Q as shown in Fig. 2(b). It needs to

be emphasised that there is an imaginary part although are

absent. This result is against conventional wisdom, basically

different from other treatments aimed at determining the

effective permeability. The more general result that there

can be lossless attenuation in a periodic system has been

known for a long time.15 For more recent studies of similar

anomalous behaviour in generalised negative index media

and media containing arrays of holes, see Refs. 16 and 17.

The dispersion curve of Fig. 2(a) offers immediately a

qualitative explanation of the phenomena due to the coupling

between the EM and MI waves. At low frequency, the curve

is characteristic of an unperturbed EM wave. As the fre-

quency increases, the interaction with the MI wave bends the

curve towards higher values of k, until it reaches the point P.

Beyond that, we have a backward wave that retains the prop-

erties of the MI wave. However, up to P, we may regard the

wave as a modified EM wave, whose speed drops below the

velocity of light. Above w3, we have a fast wave that gradu-

ally reduces its velocity to that of an unperturbed EM wave

once again.

This qualitative explanation may be made more rigorous

by defining an effective permeability. The unperturbed wave

vector is equal to kEM¼x(l0�0)1/2 while the actual wave

vector is k. Hence, the relative permeability lr¼lr
0 � jlr

00 is

equal to

lr ¼ ðk=kEMÞ2 ¼ ðk
02 � k

002 � 2jk0k00Þ=k2
EM (2)

We shall first discuss the variation of lr
0 qualitatively, on the

basis of the dispersion curve of Fig. 2(a). At low frequencies

lr
0 ¼ 1. It rises monotonically with w until it reaches w1, cor-

responding to the point P. The lower branch has its maximum

value here. As the frequency increases further, k becomes

complex. Its real part decreases and its imaginary part grows,

as shown in Figs. 2(b) and 2(c). Eq. (2) implies that lr
0 then

declines monotonically, reaching zero when k0 ¼ k00. As k0

reduces further, lr
0 becomes negative, reaching its maximum

negative value when k0 ¼ 0 at w¼w2. Between w2 and w3, in

the upper gap, k0 remains zero but k00 is non-zero. Hence, lr
0 is

still negative at that point and starts growing because k00

declines. At w3, both k0 and k00 are zero; hence, lr
0 ¼ 0.

The actual variation of lr
0 is shown in Fig. 3(a), for the

same parameters as before. Note that, because Eq. (1) has

FIG. 2. (a) and (b) Dispersion characteristics and (c) frequency dependence

of k00a. FIG. 3. Frequency variations of (a) lr
0 and (b) jlr

00j.
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multiple solutions, there are two possible variations and

these are shown superimposed. The thick line (the curve O-

P-Q-R-S) can be associated with the EM wave. The thin line

(which shares the region P-Q, but which diverges elsewhere)

can be associated with the MI wave, and is therefore devoid

of meaning as permeability. The former variation is similar

to curves available from other theories, but it should be

emphasized that those results were derived for the lossy

case. There are two major differences here. First, the maxima

and minima of lr
0 are now finite, not infinite. This result can

be attributed to the fact that the maximum deviation of the

EM branch from the light-line is also finite, and limited to

the range P-Q in Fig. 2(b). Second, the derivative of lr
0 is

discontinuous at P and Q due to the sudden appearance and

disappearance of k00.
The corresponding variation of jlr

00j is shown in Fig.

3(b). Again, two variations are shown, but these are identi-

cal. lr
00 is of course zero at P and Q. However, in contrast to

all other theories, lr
00 is not zero but finite in between. We

can now have two distinct physical interpretations. Relying

on the dispersion equation, we can argue that an electromag-

netic wave will decline between P and Q (w1 and w2)

because k00 is finite. Alternatively, we can argue that the

wave declines because the effective permeability has an

imaginary part between these frequencies. Between Q and R

(w2 and w3) the effective permeability has no imaginary part

but, nevertheless, the wave declines because lr
0 is negative.

For 1D systems, the approach above offers a very simple

route to homogenization. Other effects, such as non-nearest

neighbour coupling and retardation could clearly be added. The

permeability may be used for normal calculations, for example,

finding the reflection and transmission coefficients at the inter-

face between free space and a slab of the metamaterial. Despite

the appearance of complex k-values, we have verified numeri-

cally that power is conserved. In conclusion, the effective per-

meability of a magnetic metamaterial has been determined

based on the single assumption that the EM wave is coupled to

a MI wave. It has been shown that the real part remains finite

in the whole frequency band and may become negative in a

band that starts above the resonant frequency. An imaginary

part may also be present although losses are entirely absent.
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