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A graphical representation for two-dimensional periodic structures is introduced that provides the full infor-
mation contained in the dispersion equation: not only for the pass band but for the neighboring stop bands as
well. It is a seamless natural extension of Brillouin diagrams obtained by adding eight new zones which
incorporate the properties of evanescent waves. The accuracy of the infinite lattice approximation is tested both
by simulations and experiments using magnetoinductive waves. For waves propagating in one direction and
evanescent in the other direction, the results of the three different methods are shown to be in good agreement.
The versatility of the new representation and its applicability to the design of near-field manipulating metama-

terials is discussed.
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I. INTRODUCTION

Waves in periodic structures have been studied for over a
century. Lippmann! made color photographs in 1894 by cre-
ating periodic variation in the dielectric constant in an emul-
sion. Diffraction of x rays in solids started in the 1910s (see,
e.g., Ref. 2). The basic relationship in all these cases is be-
tween Kk, the three-dimensional wave vector, and w, the fre-
quency of the wave. In the two-dimensional (2D) case the
most popular representation is by diagrams, named after
Brillouin,? in which constant w curves are displayed in the
k,,k, plane. Most of the information is contained in the first
Brillouin zone but occasionally as, e.g., in Umklapp* pro-
cesses, higher zones may also have to be taken into account.
This representation was conceived for illustrating in a clear
and graphic manner the essential properties of propagating
waves. Evanescent waves have received much less attention
although the neglect can hardly be justified on theoretical
grounds. They are of course absent when the medium can be
regarded as homogeneous and of infinite dimension but
whenever the medium considered happens to be finite (usu-
ally, it is) evanescent waves play a role. The best known
examples are surface waves and the phenomenon of total
internal reflection. For periodic structures with definite pass
bands and stop bands the study of evanescent waves is of the
utmost importance. The very existence of photonic crystals
depends on finding frequency bands in which there are only
evanescent waves in all possible directions (see, e.g., Ref. 5).
For facilitating the calculation of interface effects in photonic
crystals Hsue and Yang® and Hsue et al.” introduced an ex-
tended plane-wave expansion which included evanescent
waves. In the latter paper they plotted constant frequency
curves for the first and higher Brillouin zones which are the
result of both propagating and evanescent modes. A quite
different generalization of Brillouin diagrams is due to Bac-
carelli et al.® It was introduced for periodic structures of
finite transverse dimensions to show leakage effects which
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incorporate not only the various radiation regimes but also
leakage into surface waves supported by a dielectric sub-
strate.

A new impetus to the study of evanescent waves was
given by Pendry’s” proposal of the “perfect” lens achievable
by negative index media.'®'> The perfection depends there
on the excitation of surface waves on both boundaries of a
slab. For a more general study of surface waves that includes
the effect of negative permittivity and permeability see, e.g.,
Ref. 13.

It is often assumed, by lecturers and students alike, that
for a 2D periodic structure the isofrequency curves in the
ky,k, plane give the full information about the lossless dis-
persion equation. This is incorrect in practically every case
of interest. Specifying the frequency and a real value of (say)
k, and determining the value of k, from the dispersion equa-
tion we may find that it is imaginary, or complex with a real
part equal to 7. None of the present methods of graphical
representation can account for this in a single diagram. Our
aim in the present paper is to generalize the concept of Bril-
louin zones by including evanescent waves. We can do so by
adding eight new zones to the first Brillouin zone. We shall
be able to ask the questions: which waves propagate and
which waves are evanescent, what is the rate of decay, and
how the decay occurs, monotonically or with alternating
phase?

For showing the properties of evanescent waves we need
a testing ground. The ideal candidates are magnetoinductive
(MI) waves. They owe their existence to magnetic coupling
between elements, small relative to the free space wave-
length. They were introduced by Shamonina et al.'*'3 in
2002 not long after the advent of the new subject of metama-
terials. Experimentally, slow waves of coupling between
metamaterial elements have been proven to exist in metama-
terials in the entire frequency range from MHz (Refs. 16 and
17) over GHz (Ref. 18) to hundreds of THz.'""?! For any
particular realization MI waves can propagate in a limited
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band but that band may be anywhere in a region from RF
frequencies to infrared and possibly beyond. Alu and
Engheta®? recently proposed a “magnetic molecule” with a
resonant frequency in the visible. Liu et al.?® analyzed a
one-dimensional (1D) structure of subwavelength elements
with submicron dimensions. Their simulations showed that
waves could propagate on such structure due to coupling
(both magnetic and electric) between the elements. However,
we need not be concerned with the various frequency regions
because the basic physical principles are essentially indepen-
dent both of the resonant frequency and of the size of the
elements. In the present study our generalized Brillouin dia-
grams will be related to wy, the resonant frequency of the
element, and plotted in terms of the relative frequency w/ .

There is now a large literature on various aspects of MI
waves, in particular on propagating waves, dispersion, for-
ward waves, backward waves, spatial resonances, retarda-
tion, excitation, positive and negative refraction, reflection,
diffraction and defects, waveguide components, biperiodic
structures, imaging, waves in a ring structure, and parametric
amplification (see, e.g., Refs. 24 and 25). Interaction of mag-
netoinductive and electromagnetic waves leads to strong spa-
tial dispersion of the effective-medium parameters,’®?” an
effect unaccounted for in a simplified effective-medium
model which neglects interaction between elements. Note
that magnetoinductive waves also appear under the names of
magnetization waves'® and magnetic plasmons,?®?' and,
when the coupling between the elements is electric, the logi-
cal term is electroinductive waves.>»?® We wish to empha-
size that while MI waves are our favorite candidates for
showing the relationships between evanescent and propagat-
ing waves, the technique is directly applicable to discrete
resonant arrays (e.g., nanoparticle arrays?’) and, with some
modifications, to that large family of waves on periodic sys-
tems (e.g., phonon polaritons) which have solutions involv-
ing both propagating and evanescent waves.

In Sec. I we shall derive the 2D dispersion equation of
MI waves with the aid of the Lagrangian for magnetically
coupled resonant circuits. In Sec. III we present the general-
ized Kirchhoff equations (GKE), a very general relationship
indeed. We shall refer to the calculations based on GKE as
simulations. The reason is that, like numerical packages, it is
a blunt instrument. One inserts the calculated or measured
mutual impedances and the details of the excitation, and out
comes the current distribution. The technique is analytical in
the sense that there is an analytical expression into which the
parameters need to be inserted but it offers no physical intu-
ition so our practice is to use it in combination with more
intuitive techniques.

In Sec. IV we come to the main message of this paper, the
generalization of the Brillouin diagrams by including evanes-
cent waves. We provide a classification of the generalized
Brillouin diagrams for metamaterial structures with isotropic
and anisotropic coupling coefficients. In Sec. V we briefly
review the eigenfunctions of the current in order to facilitate
the comparisons between the dispersion equation and GKE
solutions which is performed in Sec. VI for a set of
29X 29 elements. The magnetoinductive near-field lens3%3!
is reinterpreted in Sec. VII in terms of generalized 2D theory,
and experimental results confirming the theory are shown.
Conclusions are drawn in Sec. VIIL
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FIG. 1. (Color online) Schematic representation of the near-field
coupling between nearest neighbors in a 2D metamaterial.

II. 2D DISPERSION EQUATION OF
MAGNETOINDUCTIVE WAVES FOR A RECTANGULAR
LATTICE

The metamaterial elements are assumed in the form of
capacitively loaded loops which might be the actual
realization!® or may just represent resonant elements like
split ring resonators. In a 2D rectangular geometry the ele-
ment located at n,,n, is shown in Fig. 1 together with its
nearest neighbors. Figure 2 shows two examples of 2D rect-
angular arrangements, planar-planar and planar-axial con-
figurations. The elements are coupled to each other by the
magnetic fields generated. The dispersion equation for this
case has already been derived with the aid of Kirchhoff’s
voltage equations in one of the first papers!®> written on the
properties of MI waves. We shall show here briefly an alter-
native derivation based on a Lagrangian as introduced for the
1D case by Liu et al.?®

Assuming only nearest-neighbor coupling the Lagrangian
for an infinite assembly of identical elements in the nearest-
neighbor approximation may be written in the form

1 2 1, . . .
L= 5,,%) Lan,ny - Ean,ny + qunx,ny(an—l,ny + qnx+1,ny)
+ My‘?nx,ny(C]nx,ny—l + q.nx,nerl) > (1)

where L and C are the inductance and capacitance of the
element, M, and My are the mutual inductances in the x and
y directions respectively, Gn n, is the charge on the capacitor
in element n,,n,, and the dot denotes time derivative. Equa-
tion (1) may be converted into a differential equation with
the aid of the Euler equation (see, e.g., Ref. 20)

FIG. 2. Examples of metamaterials supporting magnetoinduc-
tive waves in the (a) planar-axial and (b) planar-planar
configuration.
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Performing the operations and considering that the current /
is the differential of the charge we find the differential equa-
tion

dIn N 1 dIn —1,n, dln +1,n,
L—+—= |1, ,dt+M | ——+———
dt C =%y dt dt
dIn a—1 dIn o+l
+M, —— ———]=0. (3)
dt dt

It needs to be noted that by using the Lagrangian we have
adopted here the physicists’ starting point. Electrical engi-
neers start immediately with Eq. (3) which is the well-known
Kirchhoff equation.

Since we are not interested in the electric and magnetic
field distributions we shall assume the solution in the form of
plane waves as follows:

In = Ioei[(kxdxnx+kydyny)—wt], (4)

where /j is a constant, w is the angular frequency, k, and k,
are the wave numbers, and d, and d, are the separation of the
elements in the x and y directions, respectively.

In order to simplify the notations we shall introduce the
normalized variables

{=kd, and (,=kd,, (5)

where {,={;+i{; and {,={ +i{], complex values being al-
lowed. The dispersion equation 1is then obtained in the form

2

w,
R e )

w

where x,=2M,/L, k,=2M /L, and w,= 1/VLC. For a range
of frequencies within the pass band,

®
(1+|Kx|+|Ky|)_l/ZSZS(1—|KX|—|K),|)_]/2, (7)
0

both £, and {, can be real; i.e., there are propagating solu-
tions in both directions. However, Eq. (6) allows at any fre-
quency for the existence of waves evanescent in one or in
both directions. Note that with our choice of currents [Eq.
(4)] for the waves to decline £} and £ must be positive.
Note that in the simple 1D case the bands for evanescent
and propagating waves do not overlap. The band of the
propagating waves is located around the resonant frequency,
the band of monotonically decaying evanescent waves is be-
low the pass band for positive coupling coefficient, and the
band of decaying evanescent waves with currents in neigh-
boring elements being in antiphase is above the pass band.
The two types of bands of evanescent waves interchange in
case of negative coupling coefficient. In the 2D case however
propagating and evanescent waves may coexist at the same
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frequency, a feature which may be employed for the realiza-
tion of near-field lenses. In the literature, the “classical” 2D
Brillouin diagrams relate k,, k, and the frequency to each
other. There is no information about evanescent waves. This
is clearly incomplete. We shall propose a representation
which will in a seamless manner add that information to the
“classical” diagrams.

III. GENERALIZED KIRCHHOFF EQUATION (GKE)

This is a simple but powerful numerical method which we
have employed before (see, e.g., Refs. 15 and 32) in order to
find the current distribution in the elements for a given exci-
tation. If we apply a voltage to element n then the general-
ized Kirchhoff law gives

V=2 Zy ol (8)

n,m

where I, is the current in element m, Z, ,=Z, is the self-
impedance and Z, ,, is the mutual impedance between ele-
ments n and m (n# m). If there are N elements Eq. (8) may
be written in the matrix form as

V=71, 9)
where
Vi I
V= ‘? , 1= If : (10)
wl o\

and Z is the impedance matrix. Note that this formulation is
much more general than the 2D dispersion equation dis-
cussed in the previous section. First it includes excitation and
second we do not need to specify in advance whether we are
talking about a one, two or three-dimensional lattice. In fact,
there is no need to have a periodic structure either (for an
example where the positions of the elements can be arbitrary,
see Ref. 33). All that matters is that we know the mutual
impedances between any two elements. The current distribu-
tion may then be found by inverting the impedance matrix.
Note that in the 1D case when only nearest-neighbor inter-
actions are considered Z is a tridiagonal matrix.

IV. GENERALIZATION OF BRILLOUIN DIAGRAMS

The first Brillouin zone for a square lattice extends from
0<{ < in the x direction and 0 <{, < in the y direction.
If we want to add information about the evanescent waves
we must realize that there are two kinds of evanescent waves
in a lossless medium. One that declines monotonically as a
function of distance, and the other one that declines while
changing its phase from element to element by 7. Calling the
monotonically declining wave an e™-wave, the alternately
declining one, an e®-wave, and the propagating one a
p-wave, the following combinations may exist considering
both the x and y directions
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FIG. 3. (Color online) Schematic representation of the general-
ized Brillouin diagram including zones I-IX with combinations of
propagating (p), evanescent monotonic (e™) and evanescent alter-
nating (e®) waves in the x and y directions.
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amounting to nine zones altogether. This is shown schemati-
cally in Fig. 3. There is one familiar zone, and eight new
zones which need to be explained. The familiar zone, DDy
may be seen in Fig. 3 as zone number V in which waves
propagate in both directions. Consequently, £, and gy’, vary
from O to .

Next to zone V is zone IV (e}'p,). At the boundary of
zones V and IV we find that {,=0 and g;, varies from O to .
However, in zone IV ¢ now represents a monotonically de-
clining wave, attenuation increasing as ! increases from 0 to
7 in the negative x direction. Note that the choice of 7 for
the left-hand edge of the box is arbitrary. Higher attenuation
would, of course, also be possible but we shall not be con-
cerned with those cases.

Zone VI (e}p,) is to the right of zone V. On the boundary
of the two zones {,= and | varies between 0 and 7. Now
the wave propagates in the y direction and declines alter-
nately in the x direction. Alternate decline means that {;
remains equal to 7 and ¢! increases from 0 to 7.

Zone II (p.ey') is below zone V. Along the common
boundary £ increases from 0 to 7. There is monotonic de-
cline in the y direction; the rate of decline increases as {;f
increases from O to .

Zone VIII (p,e}) is above zone V. Along the common
boundary ¢ increases from O to 7. There is alternate decline
in the y direction: {J= and {] increases from 0 to 7.

Now remain zones I (e;“e;“), 111 (e;‘:eg’), VII (e;“ei), and IX

(e%e?) in which the waves decline in both directions. In zone

X7y
I both declines are monotonic: {;=¢;=0, and ] and {] in-
crease from 0 to 7. In zone IX both declines are alternate: |

and g”y’, are equal to 7 and ¢! and {;’ increase from 0 to 7. In
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zone III the decline in the x direction is alternate whereas it
is monotonic in the y direction. {{=, {;=0 and both {] and
g”;f increase from O to 7. Finally in zone VII the decline in the
x direction is monotonic and alternate in the y direction:
{,=0, /=, { and {7 both increase from 0 to .

Note that the w/ wp=constant contour lines in zones II, IV,
VI, and VIII allow one to determine simultaneously the value
of the propagation constant in one direction and of the eva-
nescent decay in the perpendicular direction, while zones I,
III, VII, and IX contain contour lines of decay rate in both
directions. It needs to be emphasized again that the complex
values of both £, and {, are continuous across all zone
boundaries. This is a necessary condition for the
o/ wy=constant curves to be also continuous in the plane of
this new representation.

The ranges of frequencies for the nine zones depend criti-
cally on the values of the coupling coefficients. In principle
they can be quite high. For the axial configuration the limit-
ing value is 2 whereas in the planar configuration it tends
toward minus unity. Under practical conditions they are usu-
ally much smaller. We shall provide below the ranges of the
constant frequency curves in each zone under the assumption
that |k,|,|x,[<0.5.

For positive «, and negative «, [planar-axial arrangement
of Fig. 2(a)] the ranges of frequencies are given by

LIX:V o,

o= w1 + Kk, + k)2,

o = wy(1 - K, + k,) "2,

IVio = w1 + k, + Ky)_l/z,

VLo = wy(l - k,— k)72,
VILw = wy(1 + &, — k)72,

VIILw < wy(1 - &, - &,) 7", (12)

while for both «, and «, negative [planar-planar arrangement
in Fig. 2(b)] they are given by

Lo = oyl +&, + &))",
o= w)l -k + Ky)—l/z’
HLVILY o,

IVio = wy(1 + k,— K},)“/Z’
VLo =< wy(l - Kk, + k)72,

VLo < wy(1 + k, — Ky)—l/z,
IX:w= wy(l -k, — Ky)—l/Z’ (13)

and zone V is still determined by Eq. (7). These conditions
simplify, in the antisymmetric planar-axial case with
Kx=—Ky:|K, to
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FIG. 4. (Color online) Dispersion curves in the new representa-
tion for an antisymmetric planar-axial structure with «,=0.1 and
k,==0.1. Points P, to P, are discussed in the text.

LIX:V o,
ILVIE:o = o,
o = wy(1 -2|x])72,
IV, VIIL: o < w,,

VILw = wy(1 +2|«])""2, (14)

and, in the symmetric planar-planar case with Kx=Ky=—|K
to

bl

Lo = wy(1-2[])""2,
ILIV:o = w,,
ILVILY o,

VLVILo = w,

IX:0 =< wy(1 +2|x])72. (15)

As a first example let us take

k=01, k,=-0.1, (16)

an antisymmetric planar-axial configuration of split rings.
The three parameters, w/ wy, , and k,, define completely the
dispersion equation. It is plotted in the new representation in
Fig. 4 for w/wy=0.65,...,%. It may be seen immediately
that in zone V, in which both waves propagate, the waves
have a forward character in the x direction (corresponding to
the positive coupling coefficient) and a backward character
in the y direction (x,<0). Equation (14) provides the ranges
of frequencies for zones I-IX. Note that all curves traverse
several zones, starting in zone I and ending in zone IX.
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FIG. 5. (Color online) Dispersion curves for a symmetric planar-
planar structure, x,=x,=-0.1 (a) and for an asymmetric planar-
axial structure, k,=—0.05 and K},=O.3.

In Fig. 5(a) we plot the dispersion curves for the symmet-
ric planar-planar configuration in which both coupling coef-
ficients are negative and equal. They are taken as
k,=x,==0.1. The w/wy=constant curves change direction.
It may be seen that now both waves in zone V are backward
waves. The frequency ranges of the nine zones are given by
Eq. (15). All the curves traverse several zones, starting in
zone III and ending in zone VII.

Next we choose a case when there is negative coupling in
the x direction («x,=—0.05) and much larger positive coupling
in the y direction (x,=0.3). The wave is now backward in the
x direction and forward in the y direction as may be seen in
Fig. 5(b). The major consequence of high coupling in the y
direction is that the main pass band is wide in the y direction
and narrow in the x direction.

In the traditional representation the w/wy=constant
curves are confined to zone V. In our generalized represen-
tation any of the constant w/ w curves traverse several zones
showing that at a given frequency a number of different
kinds of wave behavior are possible. There is however a
conceptual difficulty. When considering a dispersion equa-
tion we always think of infinite plane waves propagating in
an infinite lattice in the x and y directions. This traditional
picture can no longer be applicable when evanescent waves
are also included in the picture. It is possible of course to
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imagine that (say) in zone II the wave propagates in the x
direction and decays monotonically in the y direction, how-
ever the association with infinite dimensions appears to be
less justified. One could legitimately ask, where does the
wave decay away from? From infinity? It does not make
much sense. Hence to envisage what is going on we should
resort to finite structures. As an example we shall take 29
X 29 resonant ring elements in a rectangular lattice. We shall
explore the possibilities of excitation of evanescent modes in
Sec. VI after a brief discussion of spatial resonances which
are always relevant when propagating waves in a finite lat-
tice are involved.

We need to note here that our representation, giving the
full information contained in the dispersion equation, is
made possible by neglecting Ohmic losses. We can do so
because the fundamental physical difference is between
propagating and evanescent waves. Ohmic losses are signifi-
cant only in those cases when information has to be carried
by a guided wave for a long distance, e.g., across the Atlan-
tic.

V. EIGENFUNCTIONS AND SPATIAL RESONANCES

The w/wy=constant curves being continuous suggests
that all points in the dispersion diagram are achievable. This
is true for an infinite lattice. For a finite lattice only certain
variations are permissible determined by the eigenfunctions.
For a linear lattice containing N elements the current eigen-
functions are given simply'> as

min
I(n)=A, sin , 17
i(n) =4, ( Nel ) (17)
where A, is a constant, [ is the order of the eigenfunction and
n is the running variable from element to element. For a 2D
rectangular N, X N, lattice the same functions appear in both
directions,

I /
I (npn) =A; , sin[ —2 Jsin| =22 ) (18)
Xty Xty

N.+1 N, +1

We may call it a spatial resonance when the current distribu-
tion is given by its eigenfunction. A finite lattice being a
discrete structure, the currents do not vanish at the edges, as
it would be for a continuous structure. Instead the currents
are taken zero in the fictional elements located next to the
edges.

VI. EVANESCENT MODE EXCITATION

We shall now take a 29X29 rectangular lattice with
k,==0.1 and «,=0.1 and excite waves, propagating or eva-
nescent, in each one of the new zones. Let us first choose
zone VIII. Any point within this zone denotes a wave that
propagates in the x direction as exp(i{;n,) and decays in the
y direction as (—1)”yexp(—§’y'ny). At least this is the prediction
of the dispersion Eq. (6) valid, as mentioned, for an infinite
lattice. Is it valid for a finite lattice as well? To check that we
shall choose point P in zone VIII on the w/w;=0.9 curve
with {,=7/10 and {,=m+i0.2747 as shown in Fig. 4. The

PHYSICAL REVIEW B 81, 115110 (2010)

29

553
(=]

—

'

10 20

553
o

element number n,

-107®

—_
(=]

-10*

10 20
element number n,

[
N=l

29

o

S
(=]
35
(=]
N
o

element number n )

—_
S

1

10 20
element number n,

553
o

FIG. 6. (Color online) 2D current distribution for P; in zone
VIII (a) and P, in zone II (b). Insets show the variation of the
current along the central vertical line of the 2D structure. Dots: the
generalized Kirchhoff equation; solid line: dispersion equation.

value of £ is of particular importance. For an effective ex-
citation the imposed variation must coincide with one of the
eigenfunctions. We shall impose a voltage variation upon the
first line of the 29 X 29 lattice as given by

V(n) =V, sin( 377'”), (19)
30
which is one of the eigenfunctions. The resulting current
distribution, simulated by GKE, a magnetoinductive surface
wave, is shown in Fig. 6(a). The code (logarithmic in ampli-
tude but showing both positive and negative values) is cho-
sen so that dark red and dark blue denote high positive and
high negative values, respectively (note that the continuous
variation of the color carries no information, it is valid only
in the discrete points defined by the position of the ele-
ments). As expected the variation in the x direction corre-
sponds to the imposed pattern and there is alternating decline
in the y direction. For a more accurate quantitative compari-
son of the decay we can choose line n,=15, where the cur-
rent is maximum, and plot the current for all the elements in
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that line. This is shown in the inset to Fig. 6(a) using again a
scale logarithmic in amplitude but showing both positive and
negative values. The linear decay scale shows that the func-
tion is indeed exponential, while the sign is changing from
element to element along the y direction. The rate of decay
obtained by GKE is shown by dots whereas that coming
from the dispersion equation by solid lines. The agreement
may be seen to be excellent. This is our first proof that the
dispersion equation usually associated with infinite dimen-
sions is meaningful, and predicts the correct variation for
exponential decay for a finite lattice as well. Remaining in
the same zone, for any frequency in the corresponding range
given by Eq. (14) we can choose any point with coordinates
§=ml/30(I=1,...,29) and {, provided by dispersion Eq.
(6). The conclusions remain unchanged: the response of the
metamaterial structure obtained by GKE shows a surface
wave propagating in the x direction with the imposed wave
number in the x direction and with the rate of current decay
in the y direction being very accurately predicted by the dis-
persion equation.

Our next example, point P, in zone II, lies on the w/w
=1.02 curve, and the excitation pattern is the same as for
point P;. P, has coordinates {,=7/10 and {,=i0.2557. The
current distribution is shown in Fig. 6(b). The surface wave
still propagates in the x direction, but the decline in the y
direction is now monotonic and slower than that in P;. A
quantitative comparison of the decay along the line n,=15
predicted from the dispersion equation and obtained by GKE
is shown in the inset and may be seen to be excellent. There
is an essential difference between point P, and point P; from
the previous example. The w/wy=1.02 curve may be seen to
traverse zone V, thus allowing for solutions propagating in
both directions. However, as no propagating eigenmodes of
Eq. (18) are excited at the chosen frequency, the required
surface-wave solution is successfully imposed.

We can draw very similar conclusions by taking points in
any of the zones II, IV, VI, and VIII: if a wave propagates in
one direction and decays in the other direction then the pre-
dictions of the dispersion equation apply also to finite struc-
tures.

However, zones I, III, VII, and IX are in a different cat-
egory. The waves decline in both directions. It is intuitively
obvious that imposing that decay in one direction along one
boundary is insufficient to ensure a decay in the other direc-
tion predicted by the dispersion equation. Our intuition sug-
gests that, for any of the new zones, excitation by imposing
a voltage decaying along a single boundary would not work.
Our simulations confirm it. There is however hope that we
can reproduce the required current distribution by imposing a
voltage distribution upon the first lines both in the x and y
directions. This is what we do when we choose point P; with
coordinates {,=i0.4087 and {,=7+i0.47 on the w/w,
=0.85 curve in zone VII. The corresponding current distribu-
tion is shown in Fig. 7(a). The decay in both directions
(monotonic in the x and alternate in the y direction) can be
clearly seen. To check whether we were successful imposing
the decay in both direction upon the whole lattice, we plot
the decay in the x and y directions in Figs. 7(b) and 7(c) for
a number of lines x=constant and y=constant within the
structure. The decay curves (plotted on the logarithmic scale)

PHYSICAL REVIEW B 81, 115110 (2010)

(a)
29- 1

10—10
N 20
= 20 10
5
i)
£
z 0
g
=
5
2 10 710-20
710-10
1 -1
20 29

element number n

(b) ()

current

1 10 20 29 1 10 20 29
element number n, element number n,

FIG. 7. (Color online) (a) 2D current distribution for P5 in zone
VII. The variation in the current along selected (b) horizontal and
(c) vertical lines of the 2D structure. Dots: the generalized Kirch-
hoff equation; solid line: dispersion equation.

being parallel lines is a proof that we did indeed succeed to
impose the decay upon the whole lattice. Also in this case,
the dots representing the values of the currents retrieved by
the GKE method lie on the solid lines of the solutions pre-
dicted by the dispersion equation. Following the same pro-
cedure, we can choose any point in zone VII or III, impose
the decays upon both boundaries and find that the resulting
current distribution agrees with that predicted by the disper-
sion equation.

For a planar-axial configuration, there is a major differ-
ence between zones III and VII, on one side, and zones I and
IX, on the other side. Solutions from zones III and VII, de-
caying in both directions, can successfully be imposed by
excitation decaying along two boundaries of a 2D finite
structure, whereas solutions from zones I and IX cannot.
Why? Point P5, and, generally, any point in zone VII, lies on
an isofrequency which traverses zone IV with a larger attenu-
ation in the x direction than that of P3, and zone VIII with a
larger attenuation in the y direction than that of P;. The
solution Ps, having the smallest decay, can successfully be
imposed. The same applies to zone III—a solution is im-
posed because it has a small decay in comparison with com-
petitors from zones II and VI. The situation is reversed if we
choose, say, point P, in zone I, remaining on the same isof-
requency. Excitation with a decay in the x direction deter-
mined by P4 will not be reproduced in the current distribu-
tion because lower decays on the same isofrequency curve
are available in zone IV propagating in the y direction. The
same is true if we choose a point in zone I on an isofre-
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FIG. 8. (Color online) Magnetoinductive lens. (a) Schematic
representation and (b) photograph of the experimental setup.

quency curve traversing zone II. Hence, again, the distribu-
tion predicted by the infinite lattice model will not be repro-
duced. Whatever has been said about zone I will also apply
to zone IX. Lower attenuation will be available in zone VI or
VIII. Similar conclusions can be drawn for the planar-planar
configuration but in that case the zones in which the method
of excitation fails to reproduce the current distributions pre-
dicted by the dispersion equation are zones III and VII.

We have to emphasize here that the failure to reproduce
current distributions in certain zones does not affect the use-
fulness of the representation. The generalized Brillouin dia-
gram with its nine zones offers an instant recognition of the
important properties of the waves in the stop bands, that how
large is the attenuation at different frequencies, which are the
solutions which propagate in one direction and decay in the
other direction, and what are the likely consequences of cer-
tain excitations. The zones in which there is decay in both
directions have limited significance. The only practical case
we can think of is an evanescent surface wave with moderate
attenuation.

VII. MECHANISM OF THE MAGNETOINDUCTIVE LENS

So far all our examples have been concerned with
29X 29 lattices. We shall add here a rather extreme example
in the sense that it has only two elements in the x direction
barely qualifying as a 2D structure. We shall take 2 strongly
coupled elements in the axial configuration in the x direction,
and 15 weakly coupled ones in the planar configuration in
the y direction. This configuration, shown schematically in
Fig. 8(a), is a variety of the so-called magnetoinductive
lens®* and it has already been interpreted as a one-
dimensional biatomic metamaterial chain3'*? which allows
for subwavelength imaging precisely at the resonant fre-
quency of individual ring resonators. In the nearest-neighbor
approximation for two identical lines the dispersion equation
was found in the form

@ LK
1- w2+Ky cos {,= * 5 (20)
The two solutions in Eq. (20) mean that, given the suitable
combination of the coupling coefficients «, and «,, the pass
band is split into two with a stop band in between. The
essential criterion is that sideways propagation of MI waves
must be prohibited.
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FIG. 9. (Color online) Magnetoinductive lens with strong cou-
pling in the y direction, «,=0.45 and x,=-0.1 (a) and with weak
coupling, x,=0.1 and «,=-0.1 (b). Only zones II, V, and VIII are
shown. ‘

We shall now analyze the properties of the magnetoinduc-
tive lens with the aid of our extended 2D Brillouin diagram.
The w/wy=constant curves for this case are plotted in Fig.
9(a), using the measured values (for a brief description of the
measurements see below) of the coupling coefficients,
k,=0.45, Ky:—O.l. It needs to be noted, only zones II, V, and
VIII are shown. Having only two elements in the x direction
the two eigenfunctions are

I(n,) = sin(%) and I(n,)= sin(zznx> ,  (21)

the two lines being in phase for the first one and in antiphase
for the second one. In the x direction the only allowed solu-
tions are {{=r/3 and 27/3 denoted by dashed lines in Fig.
9(a). This means that for any w/ wy=constant curve the value
of £/ in zone V or the values of £ in zones II and VIII are
given by the intersection of those curves with the dashed
lines.

Let us first choose {,=m/3. We can see from Fig. 9(a)
that the intersections are below w/w;=0.87 in zone VIII and
above w/wy=0.95 in zone II, and there is one pass band
between the two stop bands. This is shown by the continuous
blue curve on the left-hand side of Fig. 10 where §’y' is plotted
as a function of frequency. Note that in the pass band 4:0.
We can repeat the exercise by choosing {/=2/3. Then the
stop bands are below w/wy=1.07 and above w/wy=1.22.
The intersections of the w/wy=constant curves in zones II
and VIII will give again the rate of decay in the y direction.
These results are plotted on the right-hand side of Fig. 10(a)
by the continuous red line. There is again a pass band be-
tween the two stop bands, similarly to that on the left-hand
side. The interesting, and rather unexpected, thing is that
there is now a stop band in the middle of the pass band of the
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FIG. 10. (Color online) Magnetoinductive lens. Decay rate ver-
sus frequency as predicted by the dispersion equation (thin solid
line) as well as retrieved from the experimental data (dots).

single line. There is no propagation at the resonant frequency
of the elements. We can use again the GKE simulation to see
whether specifying the frequency and ¢ for this 2 X 15 lat-
tice will yield the values of g"; predicted by the dispersion
equation. From the experience obtained by simulations in
Section VI we can be fairly certain that exercise will suc-
ceed, and indeed the attenuation curves obtained by simula-
tions coincide quite closely with those (both on the left-hand
side and on the right-hand side) plotted in Fig. 10. There is
no need to show them.

We have also performed experiments to confirm the the-
oretical results in this particular case of two coupled lines. It
consisted of 2 X 15 elements as shown schematically in Fig.
8(a) and on the photograph of Fig. 8(b). The measurement
setup was identical with that reported in Refs. 31 and 32. The
elements consisted of singly split loops (mean radius of 11
mm) loaded by capacitors with a resonant frequency of 51.7
MHz and a quality factor of 165. The coupling coefficients
were measured separately; their values have already been
given above for calculating the theoretical curves. The array
was excited either in the middle or at one of the edges by a
small transmitter coil and the current was measured by a
similar receiving coil. The attenuation, calculated from the
measured currents, is shown in Fig. 10 by dots. The agree-
ment with the theoretical results is quite reasonable.

Whether the magnetoinductive lens is suitable for sub-
wavelength imaging at the resonance frequency depends
critically on the values of the coupling coefficients. Figure
9(b) shows the w/wy=constant curves for the case when the
separation between the coupled lines is very much reduced
so that «, declines to 0.1. It is still true of course that the pass
bands are different for the {{=7/3 and 27/3 excitations but
now the two pass bands overlap and the magnetoinductive
lens is not working at wy,.

It is worth mentioning a very simple rule for deciding
whether the two pass bands overlap. We need to look at the
o/ wy=constant curves and see whether there are any which
can traverse zone V without touching either of the dashed
lines. In Fig. 9(a) the w/wy=1 curve clearly has this prop-
erty. In the counterexample of Fig. 9(b), where the coupling
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is reduced, no such curve exists. Thus, for the 2D magneto-
inductive lens made of two chains of resonant elements to
work at the resonant frequency w, the condition

|k,| > 2|k, (22)

has to be fulfilled. Our conclusion is that the imaging mecha-
nism of the magnetoinductive lens is quite different from the
mechanism of Pendry’s superlens. In the superlens, a re-
quirement is that two slow-wave modes (e.g., surface-
plasmon polaritons) propagating along two closely spaced
surfaces couple to each other enabling the transfer of the
near-field information across the structure. In the case of the
magnetoinductive lens, however, waves do not propagate but
decay along each of the two surfaces, and propagate across
the structure in the direction perpendicular to both surfaces.

VIII. CONCLUSIONS

Propagating and evanescent waves for two-dimensional
periodic structures have been studied. By adding eight new
zones to the traditional first Brillouin zone we have been able
to include in graphical form the full information contained in
a lossless dispersion equation. The generalization has been
tested by considering MI waves in a two-dimensional lattice
of capacitively loaded loops. The applicability of the disper-
sion curves to finite lattices has been investigated by the
generalized Kirchhoff equations (GKE). The examples in-
volve 29 X 29 element lattices in the planar-axial and in the
planar-planar configurations. The mechanism of the magne-
toinductive lens is unraveled and shown to be quite different
from Pendry’s superlens as it involves not coupled surfaces
but evanescent waves decaying along the surfaces and propa-
gating into the depth of the structure. We wish to emphasize
that MI waves employed here are not the only candidates for
showing the relationships between evanescent and propagat-
ing waves. Our method is directly applicable to all periodic
systems capable of supporting slow waves by virtue of cou-
pling between the elements. In particular, generalized Bril-
louin diagrams can be used to describe waves of coupling
between nanoparticles and employed for the design of near-
field manipulating devices. This approach can easily be ad-
justed to other types of coupling including electric
coupling?®?® and coupling in connected ring chains.?! The
approach being valid for any resonant frequency will be use-
ful in the design and analysis of nanostructured metamateri-
als for THz and visible frequencies by accounting for both
propagating and evanescent slow-wave modes. Finally, we
wish to note that our representation need not be restricted to
periodic structures. Nonperiodic media may also have disper-
sion equations with both propagating and evanescent waves
in the solution although in that case radiation problems are
more likely to cause complications for finite structures.
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