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The Seebeck coefficient of one electron, driven thermally into a semiconductor single-electron

box, is investigated theoretically. With a finite temperature difference DT between the source and

charging island, a single electron can charge the island in equilibrium, directly generating a

Seebeck effect. Seebeck coefficients for small and finite DT are calculated and a thermally driven

Coulomb staircase is predicted. Single-electron Seebeck oscillations occur with increasing DT, as

one electron at a time charges the box. A method is proposed for experimental verification of these

effects. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4867775]

The Seebeck coefficient S or thermopower, where a tem-

perature difference DT applied across a material generates an

electric potential DV such that S¼DV/DT, provides a pri-

mary measure of the thermoelectric (TE) properties of a

material.1–4 In recent years, there has been widespread inter-

est in TE effects in semiconductor nanostructures and

nanocomposites,3–7 for energy generation and scavenging

without emission of greenhouse gases. Here, a reduction in

the thermal conductivity of the nanostructure, in combination

with relatively unaffected electrical conductivity, provides a

means to fabricate TE devices with higher efficiency than in

bulk materials.7 The TE behavior is, nevertheless, created by

many particles, with large numbers of electrons involved in

charge and heat transfer. However, the possibility of control-

ling a single or small numbers of electrons in a nanoscale de-

vice raises the interesting question: “Can one electron

directly generate an observable Seebeck effect?”

Single-electron and quantum dot (QD) devices8–10 pro-

vide a means to control charge at the one-electron level by

using the Coulomb blockade effect. In early theoretical work

on Coulomb blockade, Amman et al.11 investigated the

Seebeck coefficient of a single mesoscopic tunnel junction,

in the low temperature difference limit, S0 ¼ limDT!0
DV
DT jT ,

where T is the measurement temperature. They found that in

an isolated mesoscopic tunnel junction, where the electron

dwell time on the junction sd, the tunneling time st, and the

external circuit response time sr was such that st< sd< sr,

the effect of the single-electron charging energy Ec¼ e2/2C
led to an exponential reduction in S at low T, where kBT
�Ec. Here, C is the tunnel junction capacitance. At higher

temperature, Ec was overcome thermally, leading to an

increase in S with T. However, it was found to be very diffi-

cult to experimentally measure single-electron effects using

only a single tunnel junction, as these were overcome by

charge fluctuations in the external circuit.8

In contrast to a single tunnel junction, the Seebeck coeffi-

cient SQD in QDs has been extensively investigated, both theo-

retically and experimentally.12–16 These works also

concentrated on the limit DT! 0. In a QD with total

capacitance C, coupled by two tunnel junctions to source/

drain electron reservoirs and capacitively to a gate terminal, a

Coulomb energy gap Ec¼ e2/C exists at the Fermi energy EF

of the reservoirs. With temperature difference DT between the

source and drain, application of a gate voltage shifts the

Coulomb gap relative to the Fermi energy, leading to saw-

tooth oscillations in S with gate voltage. The oscillation peak/

valley ratio �e/2TC, where T is the temperature of the “cold”

reservoir. Although each sawtooth is associated with one elec-

tron added to the QD, in this configuration many electrons are

transferred from the “hot” to the “cold” reservoir.

SQD may be contrasted with S in lightly doped “bulk”

semiconductor material,2,17 which depends on the conduc-

tion or valance band offset (for n-type or p-type material,

respectively) to the Fermi energy. In a bulk semiconductor,17

S is given by S ¼ 7 kB

e

EC=F�EF=V

kBT þ r þ 5
2

� �� �
, where kB is the

Boltzmann constant, EF the Fermi energy, EC and EV the

conduction and valance band energies, e the electron charge,

and r a scattering factor for charge carriers. The negative/

positive signs are taken for electrons/holes. Typically, r is

assumed to have a value between �0.5 and þ1.5, with the

former value corresponding to a scattering mechanism domi-

nated by phonon scattering and the latter by impurity scatter-

ing. For a lightly doped semiconductor, the band offset

EC/F – EF/V can form the majority contribution to S. In

contrast, in a heavily doped semiconductor or metal S ¼ p2

3

k2
B

e

T @lnr Eð Þ
@E

� �
E¼EF

, where r is the electrical conductivity.17 This

equation does not depend on the band-offset and S has a far

smaller value. If we now compare a semiconductor QD to

bulk semiconductor material, the Coulomb gap can be

regarded as analogous to the band-offset in bulk material and

for both situations, S provides a measure of the potential

energy carried by many electrons, and of fundamental charge

and heat transfer properties for the system. Even with a me-

tallic “island,” the presence of single-electron charging

effects opens up a Coulomb gap at the Fermi energy and cre-

ates a situation analogous to the band-offset in bulk semicon-

ductors, increasing the value of S.

This paper investigates theoretically the Seebeck effect

in a semiconductor single-electron box,18 consisting of ana)Electronic mail: z.durrani@imperial.ac.uk
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island coupled by a tunnel junction to a source reservoir, and

by a storage capacitor to a drain reservoir. In this device,

electrons can be added one by one to a semiconductor island

at equilibrium, allowing investigation of the Seebeck effect

created directly by one, or a few electrons. Furthermore, the

use of a semiconductor single-electron box allows us to

investigate the variation of the Seebeck effect with the band-

offset and results in an enhancement of the Seebeck coeffi-

cient. In contrast to earlier works in the limit DT! 0, a finite

temperature difference DT is applied across the tunnel junc-

tion to thermally overcome Coulomb blockade and drive

electrons into the box. This leads directly to an island voltage

and a corresponding “single-electron Seebeck effect.” The

Seebeck coefficients S0 and S for both small and finite DT,

and the differential Seebeck coefficient Sdif f ¼ d DVð Þ
dðDTÞ are

investigated as a function of DT, and island temperature T. If

T is small such that kBT < Ec, the average electron number

hni increases in discrete steps as DT increases, creating a

thermally driven Coulomb staircase. Corresponding single-

electron Seebeck oscillations are observed in S and Sdiff, with

larger peak magnitude for Sdiff. As the band-offset f¼EC

�EF is increased, the peak magnitude of Sdiff is also seen to

increase, implying that larger values of Sdiff are possible in a

semiconductor single-electron box by controlling f. Finally,

unlike the oscillations of SQD in a quantum dot, where many

electrons transfer between hot and cold reservoirs and the

Coulomb gap is controlled by application of a gate voltage,

each oscillation of S and Sdiff is generated directly by the

addition of one extra electron to the island.

Figure 1(a) shows a single-electron box, formed by a

tunnel capacitor C1 in series with a storage capacitor Cb,

with an intermediate island region. Figure 1(b) shows sche-

matically the energy band diagram across the device. Here,

the right hand side potential barrier corresponds to Cb and is

assumed to be wide enough to inhibit electron tunnelling.

The single-electron charging energy for this device is

Ec¼ e2/2C, where C¼C1 þ Cb. If T is small such that Ec

� kBT, then Ec prevents electron tunneling on to the island

across C1. However, if a temperature difference DTSD¼TS

� TD is applied across the device, with the source as the

“hot” side at temperature TS and the drain as the “cold” side

at temperature TD, then it becomes possible for thermally

activated electrons to tunnel on to the island (Fig. 1(c)). For

temperature difference DT¼ TS � T across C1, this occurs

when kBDT�Ec¼ e2/2C. The average island electron num-

ber then increases by one, and the island potential relative to

the source becomes DV¼�e/C (Fig. 1(d)), inhibiting tunnel-

ling of a second electron. It is then possible to associate a

Seebeck coefficient with one electron on the island,

S1¼DV/DT� kBDV/Ec��2kB/e. Here, as electrons are

transferred, S1 is defined to be negative. This quantity

depends on fundamental constants only and is independent

of material or device parameters.

We now calculate S, S0, and Sdiff in an n-type semicon-

ductor single-electron box, by extending the approach used by

Amman et al.11 to calculate the Seebeck coefficient of a single

tunnel junction with metal contacts. Here, S and Sdiff are more

relevant experimentally, as there is always a finite DT in a

measurement. The Seebeck coefficients are defined as

S ¼ hVi
DT

����
T

; S0 ¼ lim
DT!0

hVi
DT

����
T

; Sdif f¼
dhVi

dðDTÞ

����
T

: (1)

hVi is the average voltage of the island relative to the source,

DT¼TS � T, TS the source temperature and T the island tem-

perature. Regarding S0, while this is defined for DT ! 0, in

practice a finite DT must be present to drive the single-electron

box, and similar to the approach of Amman et al. for a single

tunnel junction,11 in the following we calculate S0 for small DT
� T. With the condition DT> 0, hni and hVi are given by

hni ¼
X1
n¼0

nqe nð Þ; (2)

hVi ¼ hnie
C
¼ e

C

X1
n¼0

nqe nð Þ: (3)

qe(n) is the steady state probability for n electrons on the

island and in our case, n� 0, as DT> 0 implies that electrons

are only added to the island. qe(n) is given by the steady state

solution to the master equation

@q n; tð Þ
@t

¼ r nþ 1ð Þqðnþ 1; tÞ þ lðn� 1Þqðn� 1; tÞ

� rðnÞ þ lðnÞð Þqðn; tÞ ¼ 0: (4)

r(n) and l(n) are the electron tunneling rates across the tunnel

junction from the right (i.e., the island), and from the left

(i.e., the source), respectively. l(n)> 0 leads to electrons tun-

neling on to the island, and r(n)> 0 leads to electrons leav-

ing the island. Equation (4) comprises the probability rates

for the transition from n þ 1 or n � 1 to n electrons on the

island, minus the rates with n electrons on the island.

Assuming a constant, normalised density of states D on both

the island and the source, these tunneling rates are given by

rðnÞ ¼ D2

e2R

ð1
ne2=Cð Þþf

f T E� ne2

C

� �
1� f TþDT E� e2

2C

� �� �
dE;

(5)

FIG. 1. (a) Single-electron box. (b) Energy diagram across the single-

electron box. The single-electron charging energy is Ec. (c) Temperature dif-

ference DT thermally overcomes Coulomb blockade and drives an electron

on to the island. (d) Energy diagram with one extra electron on the box.
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lðnÞ ¼ D2

e2R

ð1
ne2=Cð Þþf

f TþDT Eð Þ 1� f T E� ne2

C
� e2

2C

� �� �
dE:

(6)

Here, R is the tunnel junction resistance, f¼EC � EF is the

conduction band offset, and f T(E)¼ 1/(1þ exp(E/kBT)) is the

Fermi-Dirac distribution function, at temperature T and with

energy E defined relative to the Fermi energy EF. The term

ne2/C corresponds to the increase in the energy of the island

with n extra electrons on the island, and the term e2/2C is the

single-electron charging energy. Furthermore, the integrals

are evaluated from ne2/Cþ f to infinity, as this is the mini-

mum energy of electrons on the island (relative to EF) with n
electron on the island. The minimum energy for electrons on

the source is f and the situation for one electron on the island

is shown in Fig. 1(d). While electrons can exist on the source

at lower energies than ne2/Cþ f, if n> 0 and as long as

E> f, these electrons cannot tunnel onto the island as their

energies overlap with either the band gap or the Coulomb

gap in the island.

We now use the Boltzmann approximation to solve Eqs.

(5) and (6). The integrals may then be solved directly for f
� kBT, using fT(E) � exp(�E/kBT), and allowing evaluation

of the following explicit results:

rðnÞ ¼ D2

e2R
kBTexp � f

kBT

� �
� kBT T þ DTð Þ

2T þ DT

 

� exp �
f 2T þ DTð Þ þ e2

C n� 1
2

� �
T

kBT T þ DTð Þ

 !!
; (7)

lðnÞ ¼ D2

e2R
kB T þ DTð Þexp �

ne2

C
þ f

� �
kB T þ DTð Þ

0
B@

1
CA� kBT T þ DTð Þ

2T þ DT
� exp �

e2

C
n� 1

2

� �
T � e2

2C
DT þ f 2T þ DTð Þ

kBT T þ DTð Þ

0
B@

1
CA

0
B@

1
CA
:

(8)

Using Eqs. (7) and (8), in a manner similar to the solution of

Eq. (4) given by Amman et al.,11,19 for the normalisation condi-

tion
P1

0 qe nð Þ ¼ 1 the steady state probability qe(n) is given by

qeð0Þ ¼

Y1
j¼1

rðjÞ
 !

Y1
m¼1

rðmÞþ
X1
k¼1

Yk�1

j¼0

lðjÞ

0
@

1
A Y1

j¼kþ1

rðjÞ
 ! ; (9a)

qeðnÞ ¼

Yn�1

j¼0

lðjÞ

0
@

1
A Y1

j¼nþ1

rðjÞ
 !

Y1
m¼1

rðmÞþ
X1
k¼1

Yk�1

j¼0

lðjÞ

0
@

1
A Y1

j¼kþ1

rðjÞ
 ! For n � 1:

(9b)

Equations (9a) and (9b) may be evaluated numerically, using

Eqs. (7) and (8). Equations (1)–(3) can then be used to find

hni and hence S, S0, and Sdiff.

Figure 2(a) shows hni (Eq. (2)) and S0e/kB vs. dimen-

sionless island temperature TkB/Ec, with small DT. Here, S0

and T are plotted in dimensionless forms relative to e/kB and

kB/Ec, respectively. Curves are plotted for a constant ratio

a¼DT/T, for a¼ 0.1, 0.05, and 0.01. For small T � Ec/kB,

the island is in Coulomb blockade, hni� 0 and a Coulomb

gap is observed with T. hni tends exponentially to zero as T

tends to zero (Fig. 2, inset) and tends to increase linearly

with T when kBT>Ec. For intermediate values of T,

Coulomb blockade is overcome at lower T for larger values

of a. In Fig. 2(a), Coulomb blockade is overcome thermally

by increasing island temperature. DT corresponds only to a

small temperature difference between the source and the

island, and cannot overcome Coulomb blockade by itself.

FIG. 2. (a) Average electron number

hni (dashed lines), and dimensionless

Seebeck coefficient S0e/kB in the low

DT limit (solid lines) vs. dimensionless

island temperature TkB/Ec. Curves

shown for three values of a¼DT/T.

Inset: hni reduces exponentially for

low T. (b) hni (dashed line) and dimen-

sionless Seebeck coefficient Se/kB for

finite DT (solid line) vs. DT/T. T is

high enough to allow Coulomb block-

ade to be easily overcome.
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Therefore, hni does not show any quantisation, as Ec is

always thermally overcome by T. In practice, the continuous

variation of hni simply represents a displacement in the elec-

tron density on the island with respect to the background ion

density.18 In a manner similar to hni, S0 shows a Coulomb

gap at low T. However, as T increases, S0 saturates. This is a

consequence of constant a in each curve, implying that DT
increases linearly with T. As hni and hVi (Eq. (3)), both tend

to increase linearly at higher T, the ratio hVi/DT tends to sat-

urate, with higher magnitudes for larger values of a.

Figure 2(b) shows hni and Se/kB vs. DT/T, for constant

T¼Ec/2kB. Here, T is large enough to overcome Coulomb

blockade, and we plot S¼hVi/DT as DT can be large and no

longer tends to zero. Larger values of DT, from 0.1 T to

1.5 T, lead to greater values of hni on the island, though as

before, quantisation is not observed. Again, Se/kB saturates

at higher temperatures, though this is driven by DT and

not T.

We now use DT to drive a single-electron box within the

Coulomb blockade regime, where kBT<Ec. Figure 3(a)

shows hni and Se/kB vs. DTkB/Ec, for constant T¼ 0.1Ec/kB,

and Fig. 3(b) shows the corresponding curve for Sdiff (Eq.

(1)). As T is small enough for the island to be in Coulomb

blockade, DT is may be regarded as equivalent to a thermal

voltage, as discussed qualitatively for Fig. 1. hni shows a

thermally driven Coulomb staircase, and increases in discrete

values. The steps are thermally washed out at higher DT, as

kBDT begins to approach Ec. The curve for S shows the

Seebeck coefficient for one to a few electrons. In contrast to

hni, single-electron Seebeck oscillations are observed in S,

with larger peak-valley ratio for small DT. In Fig. 3(b), Sdiff

shows even stronger oscillations with DT. Each oscillation

FIG. 4. (a) Thermally driven Coulomb

staircase in hni vs. DTkB /Ec, for various

band offset f. (b) Single-electron

Seebeck oscillations in Sdiff vs. DTkB /Ec,

for various band offset f. Inset:

Oscillation period DTosckB/Ec vs. f/Ec.

(c) Ratio of Boltzmann distributions for

source and island at energy E¼ fþEc,

as a function of f/Ec, with DT� kB/Ec

¼ 0.05 � 0.2. (d) Proposed circuit for

experimental measurement.

FIG. 3. (a) Thermally driven Coulomb

staircase in hni and single-electron

Seebeck oscillations in Se/kB vs.

DTkB/Ec. The single-electron box is in

the Coulomb blockade regime. (b)

Single-electron Seebeck oscillations in

Sdiff vs. DTkB /Ec, corresponding to the

conditions in (a).
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corresponds to the addition of one electron to the island. The

peak magnitude of Sdiff may be much greater than S. The

largest difference is for the first peak, which is �4 times

greater in magnitude in Sdiff. This implies that experimen-

tally, if DT cannot be reduced to zero, a much larger Seebeck

coefficient may be observed for small, additional variation in

DT.

Figure 4 shows, for varying band offset f, thermally

driven Coulomb staircases in hni (Fig. 4(a)), and oscillations

in Sdiff vs. DTkB/Ec (Fig. 4(b)). Figure 4(b) inset shows the

oscillation period DTosc of Sdiff as a function of f. For larger

f, both the staircase and oscillations are stronger and may be

observed at lower DT. This is caused by the behavior of the

exponential tail of the Boltzmann distribution on the source,

compared to that on the island. To illustrate this, Fig. 4(c)

shows the ratio of the Boltzmann distributions

f TþDT Eð Þ=f T Eð Þ at energy E¼ fþEc, as a function of f/Ec,

or an island with Ec¼ 0.8 meV, T¼ 1 K, and

DT� kB/Ec¼ 0.05 � 0.2. Here, the ratio considers a state on

the source with energy equal to the single-electron energy of

the island. When f/Ec is increased, the ratio increases expo-

nentially, implying that it is much easier to thermally occupy

states in the source, relative to the island, when f is larger.

This causes a decrease in the oscillation period and an

increase in magnitude for Sdiff as f/Ec increases (Fig. 4(b)).

Recognising that the electrical properties of the single-

electron box,18 and single-electron memory cells based on

this,20–22 have been extensively investigated, it should be

possible to experimentally verify the theoretical predictions

of this paper. In experimental work on the single-electron

box/memory, a single-electron transistor or field-effect tran-

sistor is used as an electrometer to sense the island voltage

through the transistor drain-source current I (Fig. 4(d)). The

storage capacitor Cb is then formed by the transistor gate ca-

pacitor Cg. It is proposed that for Seebeck measurements, a

temperature difference DTSD applied between the tunnel

junction source and the electrometer drain (Delec) is used to

create DT and drive electrons on the island. DTSD may be

generated using a resistive heater (e.g., similar to QD work,

(Ref. 14)). Oscillations should then be observed in I vs. DT,

corresponding to single-electron Seebeck oscillations in Sdiff.

Finally, we note that in experimental work on semiconductor

single-electron devices,20–22 it is common for the source and

drain electrodes to be heavily doped, to allow electrical con-

tact at cryogenic temperatures. Calculation with a heavily

doped source would require use of the full Fermi-Dirac dis-

tribution. However, if Ec � kBTS then only electrons from

the distribution tail are likely to tunnel onto the island and

the use of a Boltzmann approximation remains valid.

In summary, a Seebeck effect can be generated directly

by single electrons, driven thermally, one by one, into a

single-electron box. With temperature difference DT across

the tunnel junction of the box, one electron can charge the

island in equilibrium and directly generate a Seebeck effect.

Seebeck coefficients for small and finite DT, and the differ-

ential Seebeck coefficient, are investigated. At small island

temperature, a thermally driven Coulomb staircase is

observed for island electron number. Single-electron

Seebeck oscillations occur with DT, as the box charges one

electron at a time.

The author would like to thank M. E. Jones and W. T.

Pike for valuable discussions in the preparation of this work.

The research leading to these results has received funding

from the European Union’s Seventh Framework Programme

FP7/2007-2013 under Grant Agreement No. 318804.

1A. Majumdar, Science 303, 777–778 (2004).
2G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic
Principles and New Material Developments (Springer-Verlag, Berlin,

Heidelberg, 2001).
3F. DiSalvo, Science 285, 703–706 (1999).
4M.-S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z.

Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043

(2007).
5A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M.

Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).
6E. Krali and Z. A. K. Durrani, Appl. Phys. Lett. 102, 143102 (2013).
7T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Science 297,

2229 (2002).
8K. K. Likharev, Proc. IEEE 87, 606 (1999).
9Z. A. K. Durrani, Single-Electron Devices and Circuits in Silicon
(Imperial College Press, London, 2010).

10L. P. Kowenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M.

Westervelt, and N. S. Wingreen, Mesoscopic Electron Transport, Electron

Transport in Quantum Dots, edited by L. L. Sohn, L. P. Kowenhoven, and

G. Sch€on (Kluwer, Dordrecht, 1997).
11M. Amman, E. Ben-Jacob, and J. Cohn, Z. Phys. B: Condens. Matter 85,

405 (1991).
12C. W. J. Beenakker and A. A. M. Staring, Phys. Rev. B 46, 9667 (1992).
13X. Chen, H. Buhmann, and L. W. Molenkamp, Phys. Rev. B 61, 16801

(2000).
14L. W. Molenkamp, A. A. M. Staring, B. W. Alphenaar, H. van Houten,

and C. W. Beenakker, Semicond. Sci. Technol. 9, 903 (1994).
15A. S. Dzurak, C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F. Frost, G. A.

C. Jones, and D. G. Hasko, Solid State Commun. 87, 1145 (1993).
16R. Scheibner, H. Buhmann, D. Reuter, M. N. Kiselev, and L. W.

Molenkamp, Phys. Rev. Lett. 95, 176602 (2005).
17L. Weber and E. Gmelin, Appl. Phys. A: Mater. Sci. Process. 53, 136

(1991).
18P. Lafarge, H. Pothier, E. R. Williams, D. Esteve, C. Urbina, and M. H.

Devoret, Z. Phys. B: Condens. Matter 85, 327 (1991).
19M. Amman, R. Wilkins, E. Ben-Jacob, P. D. Maker, and R. C. Jaklevic,

Phys. Rev. B 43, 1146 (1991).
20K. Nakazato, R. J. Blaikie, and H. Ahmed, J. Appl. Phys. 75, 5123 (1994).
21Z. A. K. Durrani, A. C. Irvine, and H. Ahmed, IEEE Trans. Electron

Devices 47, 2334 (2000).
22Y. Takahashi, Y. Ono, A. Fujiwara, and H. Inokawa, J. Phys.: Condens.

Matter 14, R995 (2002).

094508-5 Zahid A. K. Durrani J. Appl. Phys. 115, 094508 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

155.198.134.224 On: Mon, 17 Mar 2014 13:54:08

http://dx.doi.org/10.1126/science.1093164
http://dx.doi.org/10.1126/science.285.5428.703
http://dx.doi.org/10.1002/adma.200600527
http://dx.doi.org/10.1038/nature06381
http://dx.doi.org/10.1063/1.4800778
http://dx.doi.org/10.1126/science.1072886
http://dx.doi.org/10.1109/5.752518
http://dx.doi.org/10.1007/BF01307637
http://dx.doi.org/10.1103/PhysRevB.46.9667
http://dx.doi.org/10.1103/PhysRevB.61.16801
http://dx.doi.org/10.1088/0268-1242/9/5S/136
http://dx.doi.org/10.1016/0038-1098(93)90819-9
http://dx.doi.org/10.1103/PhysRevLett.95.176602
http://dx.doi.org/10.1007/BF00323873
http://dx.doi.org/10.1007/BF01307627
http://dx.doi.org/10.1103/PhysRevB.43.1146
http://dx.doi.org/10.1063/1.355758
http://dx.doi.org/10.1109/16.887016
http://dx.doi.org/10.1109/16.887016
http://dx.doi.org/10.1088/0953-8984/14/39/201
http://dx.doi.org/10.1088/0953-8984/14/39/201

