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Abstract
In this paper, trends from the last 10 years of inertial micro-generator
literature are investigated and it is shown that, although current generator
designs are still operating well below their maximum power, there has been
a significant improvement with time. Whilst no clear conclusions could be
drawn from reported fabricated devices with respect to preferred transducer
technology, this paper presents operating charts for inertial micro-generators
which identify optimal operating modes for different frequencies and
normalized generator sizes, and allows comparison of the different
transduction mechanisms as these parameters vary. It is shown that
piezoelectric generators have a wider operating range at low frequency than
electromagnetic generators, but as generator dimensions increase, the
frequency to which piezoelectric transducers outperform electromagnetic
transducers decreases.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Motion and vibration are attractive sources for micro-
engineered energy scavenging generators [1, 2]. The most
universal motion scavengers are of the inertial type, i.e. having
a proof mass suspended within a frame and energy extracted by
a transducer that damps the motion of the proof mass within
the frame. These devices have the advantage that they can
function simply by being attached to a source of motion at
a single point, rather than relying on the relative motion of
different parts of the ‘host’ structure. Thus they are also well
suited to miniaturization.

The basic operating principle of inertial micro-generators
is illustrated in figure 1. The fundamental parameters limiting
the generator output are its proof mass m and maximum
internal displacement Zl, and the source motion amplitude
Y0 and frequency ω [3]. From these we can derive the
maximum power from basic principles. If we assume
harmonic source motion, the maximum acceleration amax is
ω2Y0. The maximum damping force by which energy can be

extracted is equal to the inertial force on the proof mass, mamax

(if greater, the mass will not move relative to the frame). If
energy is extracted in both directions, and the internal motion
amplitude Z0 = Zl (giving the maximum travel range of 2Zl),
we derive a total energy per cycle of 4Zlmamax = 4Zlm ω2Y0.
To convert this to power we simply divide by the excitation
period 2π/ω, giving

Pmax = 2Y0Zlω
3m/π. (1)

We can then define a normalized power Pn = P/Pmax as a
measure of how close the performance of a specific device
comes to the optimum level. We have calculated Pn for
measurements on inertial energy scavengers reported in the
literature [1, 4–27] and the resulting values are plotted in
figure 2 as a function of the year of publication. An upward
trend can clearly be seen, although the best values are still
below 20% of the optimum. Although Pn should not drop with
volume, since it is normalized to device size, the same data
plotted against device volume (figure 3) show that typically
the best Pn values have been achieved for larger devices.
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Figure 1. Schematic construction of inertial generators.
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Figure 2. Normalized measured power Pn versus year of
publication. Numbers show which reference the data were taken
from.
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Figure 3. Normalized measured power Pn versus device volume.
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Figure 4. Normalized measured power Pn versus operating
frequency.

This is likely an indication of the technological difficulties
encountered at smaller size scales, for example the greater
difficulty in achieving high magnetic flux gradients. Finally,
we plot the normalized power versus frequency (figure 4), and
a downward trend is clearly seen.

Several transduction mechanisms can be used for inertial
micro-generators, namely electromagnetic [14], electrostatic
[28] and piezoelectric [29]. The transduction type is also
indicated in figures 2–4, but no clear trends can be seen
regarding their relative merits. To obtain some general
guidance on the practical limitations of specific transduction
methods, we have examined the key issue of the damping
levels that can be achieved. We consider only mechanically
resonant devices operating at the resonant frequency ωn, as
this covers most reported examples.

2. Scaling analysis of transducer types

In an ideal case, the parasitic damping would be zero, and
maximum power is then obtained by setting the electrical
damping factor ζ e to the level that allows the mass to move over
the entire internal range, but without hitting the end stops, i.e.
Z0 = Zl [3]. However, in some cases the maximum damping
force of the transducer is insufficient to achieve this, and thus
the device cannot operate in a resonant mode. In cases where
the parasitic damping factor ζ p is not negligible, maximum
power will inevitably be reduced, but the optimum ζ e will still
be that which gives Z0 = Zl, unless this requires ζ e < ζ p, in
which case ζ e = ζ p should be chosen if possible.

In general, the damping factor is related to the resonant
quality factor Q by Q = 1/2ζ . Since the damping will
have parasitic and electrical (transducer) components, we
introduce the quantities Qp = 1/2ζ p and Qe = 1/2ζ e. Note
that the combined Q is given by 1/Q = 1/Qp + 1/Qe.
Furthermore, for a resonant system in which the damping
force is proportional to the relative mass-frame velocity, i.e.
F = −Ddz/dt, D = 2mωnζ . To perfectly damp the system we
require Q = Zl/Y0, so that D = mωn/(Zl/Y0).

2.1. Electromagnetic damping

An electromagnetic damper can be implemented as a coil
moving across the boundary of a region of magnetic flux
density B. If we assume that the induced voltage is limited
mainly by the resistive load R, rather than the coil’s inductance,
then in this case the electrical damping coefficient is given by
De = (NBl)2/R [3], where N is the number of coil turns and l
is the length of the border of the flux region cutting across the
coil. The load R will consist of the coil resistance Ri (which
is a parasitic component) and the energy extracting load RL

in series. The former determines the maximum De, and thus
the minimum Qe; however, unless RL is substantially greater
than Ri most of the electrical power will be wasted. Instead
we assume that a useful device has at least RL = 10Ri. This
sets the minimum achievable Qe as

Qe(min) ≈ 10mRi

(NBl)2
ωn. (2)

If this quantity is greater than Zl/Y0, it will not be possible
to achieve harmonic motion by electrical damping alone,
although it may be possible if significant parasitic mechanical
damping is present. A key implication of (2) is that the range
of achievable Qe reduces with increasing frequency.

S212



Performance limits of the three MEMS inertial energy generator transduction types
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Figure 5. Prototype MEMS inertial scavengers: piezoelectric (left)
and electrostatic (right).

2.2. Piezoelectric damping

A similar quantity can be derived for the piezoelectric case.
We start with the constituent equations for the piezoelectric
cell [30]:

Fp = KPEz + αV (3)

I = αż − C0V̇ . (4)

Here Fp is the force produced by the piezoelectric material,
V is the voltage between the terminals, I is the current
through the terminals, KPE is the short circuit stiffness, z

is the relative displacement, C0 is the capacitance of the
piezoelectric element and α = e33A/t , with A and t being
the cross-sectional area and thickness of the piezo element
respectively, and e33 is the piezoelectric coefficient. Note that
e33 applies to the case where the voltage and strain are colinear;
many implementations, such as thin piezo films on cantilevers,
have strain and electric field on orthogonal axes, and an off-
diagonal element of the piezoelectric tensor then applies in
place of e33. The force developed by the piezoelectric cell
with a resistive load R connected can be found from these
equations, in the Laplace domain, as

F(s) = Z(s)

(
KPE +

sα2R

1 + sC0R

)
. (5)

The force developed by the piezoelectric material is therefore
a constant spring force plus a force which acts as a first-order
high pass filter. The frequency response, FHP(jω), of the high
pass filter term is

FHP(jω) = Z(jω)

(
jωα2R

1 + jωC0R

)
(6)

which can be written as

FHP(jω) = Z(jω)

(
jωα2R

1 + (ωC0R)2
+

ω2α2C0R
2

1 + (ωC0R)2

)
. (7)

These terms are therefore a frequency-dependent damping
term (proportional to jωZ( jω)) and a frequency-dependent
spring constant term (proportional to Z( jω)). The resistance
can be altered to maximize the available damping force,
FD( jω), i.e. when

dFD(jω)

dR
= 0, (8)

which is when

R = 1

ωC0
. (9)

L

Cantilever
Proof mass

Piezo film

Figure 6. Piezoelectric film on a cantilever beam.

Thus,

Dmax = α2

2ωC0
. (10)

In practice, since piezo-elements can only achieve very small
direct displacements, devices must incorporate some leverage
mechanism (of ratio r). A typical example is the cantilever
structure shown in figure 6. If we approximate this as a
thin film of piezoelectric material on a structural cantilever
of thickness h, then it is straightforward to show that the proof
mass motion �z is greater than the piezo-film extension (or
compression) by a factor L/h.

The leverage will transform the damping coefficient (i.e.
the force to velocity ratio) by a factor of r2, in a manner
equivalent to an electrical transformer of turn ratio r. Thus we
obtain

Qe (min) = 2mC0r
2

α2
ω2

n. (11)

Since the other parameters in this expression have little or
no frequency dependence, the minimum Qe is proportional
to the frequency squared. Thus the operating range for
which optimum power can be achieved becomes rapidly
diminished with increasing frequency, more rapidly than in
the electromagnetic case considered above.

2.3. Electrostatic damping

For the case of the electrostatic damper, the damping is
nonlinear but a closed-form solution to the minimum available
Q factor exists. This is given in [3] as

Qe(min) = ω2
c

[
1(

1 − ω2
c

)2 −
(

Fmax

mY0ω2ωc
U

)2
] 1

2

(12)

where

U = sin
(

π
ωc

)
1 + cos

(
π
ωc

) . (13)

There are two different methods of operating an electrostatic
transducer to achieve Coulomb (fixed force) damping, which
are gap-closing constant charge operation and sliding plate
constant voltage operation. The most common type on the
microscale is the latter, in the form of a comb drive variable
capacitor on a folded suspension. For this type of transducer
the parasitic damping force can be approximated as [31]

Fp(ż) = 2Ngtµairx0

g
ż. (14)
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Figure 7. Operating limits on the electrical damping and parasitic Q
factor.

Here Ng is the number of gaps in the comb drive, t is the
thickness of the structure, µair is the viscosity of air, g is the
gap width, x0 is the initial gap overlap and z is the overlap
movement. The electrical damping force is given by

Fe(z) = Q2
c

2C0

1

(z + x0)2
(15)

where Qc is the initial charge on the capacitor and C0 is the
capacitance per given length as given by

C0 = Ngε0t

g
. (16)

It can be seen that the electrical damping force is not
proportional to velocity, as is required for a harmonic
oscillation. Thus the motion will be inherently nonlinear.
Furthermore, it is a property of Coulomb damped resonators
that when operated at the resonant frequency, in the absence
of parasitic damping and physical stops, the motion amplitude
rises without limit unless the damping force satisfies a stability
criterion [32]:

Fe � π

4
mω2Y0. (17)

2.4. Example operating chart

If we define Zl/Y0 and ωn as our general operating parameters,
then we can plot equations (2) and (11) as limits of operation
for electromagnetic and piezoelectric devices. By adding the
Qp of the device, and the combined Q, we can indicate regions
of operation as a function of the operating point.

This is done in figure 7 schematically, for an
electromagnetic generator with parasitic damping present.
The parasitic damping factor (and hence the Qp) has been
assumed to be constant with frequency for simplicity, but any
actual frequency dependence could easily be substituted. For
example, the parasitic damping force for a comb drive as given
by equation (14) is equivalent to a frequency-independent
damping coefficent D, and thus a Qp linearly proportional to
frequency.

Figure 8. Comparison of minimum Q factors with electromagnetic
and piezoelectric cube devices of volume 1 cc.

With reference to figure 7, the operating regions are as
follows:

1. Harmonic motion is not possible. The maximum
combined damping factor (which is (1/Qp + 1/Qe)) is
less than required for oscillation within the limit of Zl.

The line marked ‘minimum Qtotal’ indicates the minimum
value of Z0/Y0 achievable. If the operating point is below
this line, harmonic motion is not possible and the mass
will strike the end stops.

2. Optimal operation occurs when the electrical damping and
parasitic damping are equal, assuming that this results in
Z0 < Zl. In this operating region, if the parasitic and
electrical damping terms were set equal, i.e. Qe = Qp,
the mass would hit the end stops because the overall
damping would not be large enough. Therefore, for
optimal operation, the electrical damping should be set
so that Z0 = Zl, i.e. Qe > Qp.

3. In this region of the figure, the parasitic and electrical
damping terms should be set equal, i.e. Qe = Qp. The
device will then operate within its displacement limit.
This will give Z0/Y0 = Qparasitic/2.

4. In this region it is not possible to make the electrical
damping and parasitic damping equal, because the
electrical damping force cannot be made large enough, i.e.
Qe > Qp. The electrical damping should therefore be set
to the maximum that can be achieved. The generator can
operate within the displacement constraint, but a different
transducer could in principle extract more power if it could
generate a higher damping force.

Figures 8 and 9 show two specific examples of the
minimum Q-factor achievable from electromagnetic and
piezoelectric generators. In each case we assume a cubic
device of length L and the mass , of relative density 8.9 (Ni), is
taken to occupy half the device volume. The electromagnetic
device is assumed to have a flux density of 1 T and a copper coil
occupying 2% of the device volume, for which a fixed N2/Ri is
obtained. The active coil length l is assumed to be L/2. For the
piezoelectric device, we assume εr = 1000, area L2, thickness
L/10 and e33 = 0.15 C m−2. A leverage factor of 500 was
chosen. Because Qmin for electromagnetic and piezoelectric
devices scale as ω and ω2 respectively, there will always be
a frequency above which electromagnetic devices can achieve
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Figure 9. Comparison of minimum Q factors with electromagnetic
and piezoelectric cube devices of volume 0.1 cc.

higher damping. As can be seen in figures 8 and 9, the cross-
over frequency increases as the device size decreases. It can
also be observed that the increasing Q with frequency (for both
transducer types) could explain the decreasing performance
trend seen in figure 4.

3. Conclusions

Obtaining maximum power from inertial energy scavengers
is often limited by the maximum damping force achievable
in the transduction mechanism, and this problem increases
with increasing frequency. Piezoelectric generators can
outperform electromagnetic generators at low frequency, but
with increasing frequency, the internal capacitance of the
piezoelectric reduces the amount of real power that can be
obtained. This suggests that piezoelectric devices might
be better suited to human body powered applications and
electromagnetic devices to high frequency applications.
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