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Enhanced cognitive demodulation 
with artificial intelligence
Hang Ren, Sang‑Hee Shin & Stepan Lucyszyn*

The low-cost ‘THz Torch’ wireless link technology is still in its infancy. Until very recently, inherent 
limitations with available hardware has resulted in a modest operational figure of merit performance 
(Range × Bit Rate). However, a breakthrough was reported here by the authors, with the introduction 
of ‘Cognitive Demodulation’. This bypassed the thermal time constant constraints normally associated 
with both the thermal emitter and sensor; allowing step-change increases in both Range and Bit Rate 
with direct electronic modulation. This paper concentrates on advancements to the bit error rate (BER) 
performance. Here, separate techniques are introduced to the demodulation software that, when 
combined, result in enhanced Cognitive Demodulation. A factor of more than 100 improvement in 
BER was demonstrated within the laboratory and approximately a 60-fold improvement in a non-
laboratory environment; both at the maximum Range and Bit Rate of 2 m and 125 bps, respectively, 
demonstrated recently. Moreover, demodulation speed is increased by almost a factor of 10,000; 
allowing for real-time demodulation while easing future computational hardware requirements. 
In addition to these software advancements, the paper demonstrates important improvements in 
hardware that has brought the technology out of the laboratory, with field trials being performed 
within an office corridor.

The first thermal infrared wireless digital communications system, known as the ‘THz Torch’, was introduced 
in 20111. The philosophy behind this technology is to implement a secure and robust communications channel, 
while being extremely low cost-making it affordable for future ubiquitous applications. Here, the thermal-based 
physical layer hardware consists of a transmitter (employing miniature incandescent light bulbs or thermal emit-
ters) and receiver (employing pyroelectric infrared (PIR) motion sensors) that supports wireless data transfer via 
a modulated noise carrier. The same group then went on to investigate various aspects associated with the ‘THz 
Torch’ technology, from systems level architectures down to device level enabling technologies, while trying to 
maintain the low-cost philosophy2–8. From this, two major scientific breakthroughs were published7,8: the first 
was in 2014, which demonstrated the secure nature of this technology7; while in early 2020, the thermal time 
constants associated with the hardware were bypassed by introducing the new concept of ‘Cognitive Demodula-
tion’8. This powerful technique has wide-ranging implications for future communications (underwater, terrestrial 
and aerospace) and sensor technologies (sonar/radar/lidar and imaging), making them more resilient when 
operating in harsh environments. For example, the concept of having an adaptive, time-variant matched filter 
can be applied to future generations (+5G) of cellular/mobile communications systems, helping to maintain bit-
error rate levels as physical channels degrade. The concept was applied to this extreme case, employing a thermal 
noise-based carrier system, but can be adapted to conventional sinusoidal-based carrier systems. Basic Cognitive 
Demodulation relies on the complete system being modelled, with the level of success being dependent on the 
accuracy of the individual parameter values. This paper first introduces a framework for timing synchronization 
and demodulation. Then an emitter calibration method is presented to complete the model of the entire system. 
This complete system model is combined with advanced signal processing to improve the timing synchroniza-
tion and then artificial intelligence is introduced to enhance Cognitive Demodulation at the receiver. With the 
latter, recent advances in machine learning9,10 (from the computer science community) provides new perspectives 
and tools for communications applications. As an example, new demodulation algorithms can be designed by 
adapting powerful function approximators (e.g., neural network) to different modulation schemes, converting 
measured analogue waveforms into digital symbols11–15. Using the ‘THz Torch’ wireless link as a harsh environ-
ment testbed, this paper will introduce the following three techniques for enhancing Cognitive Demodulation: 
Emitter Calibration; Timing Synchronization; and Neural Networks.
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Results
The architecture for this ‘THz Torch’ wireless communications link has been described at length in our recent 
paper8 and will not be repeated here for brevity.

Non‑laboratory experimental setup.  The recently reported 0.5–2 m ‘THz Torch’ wireless links were set 
up within a laboratory environment8, with the use of an optical bench and precision alignment rails. Here, meas-
urements are now performed in a non-laboratory setting (within an office corridor, as shown in Fig. 1a–d), with 
reference experiments also performed within the laboratory. Instead of using precision alignment rails, the field 
trials employed simple laser alignment, with the use of two 3D-printed guide holes in both the transmitter (Tx) 

Figure 1.   (a–d) Practical field trials for a 2 m ‘THz Torch’ wireless link. (a) The complete ‘THz Torch’ link 
showing the transmitter (Tx) and receiver (Rx). (b) Zoomed-in view of the transmitter. (c) Zoomed-in view of 
the receiver. (d) Zoomed-in view of the transmitter and receiver front-end hardware. The insert in (d) shows 
the thermal image of the transmitter’s front-end hardware with the thermal emitter in the ON-state (the cross-
hairs from the camera image indicates the centre of the Tx lens). (e) Basic block diagram for the ‘THz Torch’ 
transceiver architecture.
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and receiver (Rx) setups. In addition, a 3D-printed shroud was used by the receiver to suppress microphonic 
noise and ambient temperature fluctuations.

Receiver architecture and framework.  Figure 1e shows the basic block diagram for the ‘THz Torch’ 
transceiver architecture. The up-converter and down-converter, which are commonly seen in conventional digi-
tal communications links, are implicitly included in the thermal emitter and PIR sensor blocks, respectively. 
The analog-to-digital converter (ADC) is exploited as a fractionally spaced sampler, with sampling rate chosen 
to be an integer multiple of the symbol rate. The timing synchronizer locates the temporal boundary for each 
predefined training sequence. The demodulator then processes the data frame signals to generate the received 
symbol sequence. The calibrator implements the thermal emitter (discussed later) and PIR sensor8 calibrations; 
updating their system parameters from synchronized calibration signals. The output from the calibrator is sent 
to the demodulator and the timing synchronizer; improving their future decision-making processes.

The received discrete baseband signal in Fig. 1e can be expressed as:

where vs[t − δ] is a delayed noiseless received signal corresponding to the transmitted symbols; δ represents the 
time delay; and vn[t] is the sampled noise. Although the noise mechanism is complicated within our system, a 
reasonable approximation is that vn[t] is sampled white Gaussian noise (WGN) with two-sided power spectral 
density (PSD) σ 2

n . Equivalently, vn[t] are independent and identical distributed (I.I.D.) samples from zero-mean 
Gaussian distribution N(0, σ 2

n ).
Timing synchronization aims at estimating the time delay δ . It is achieved by matching the received signal to 

the expected noiseless signal corresponding to a sequence of predefined training symbols. The received signal 
for synchronization can be written as:

where vtrain[t] is the expected noiseless signal corresponding to the sequence of training symbols. Timing syn-
chronization can be formulated under the hypothesis testing framework16. Given two hypotheses:

where Htrain is the hypothesis corresponding to the signal model in Eq. (2) and Hn is a noise-only dummy 
hypothesis; the objective of timing synchronization is to maximize a likelihood ratio w.r.t. δ:

Once the timing synchronization is established, δ can be removed from Eq. (1) by simply shifting the expected 
noiseless signal in time. Given two possible symbol values {S0, S1} , with ON-OFF keying (OOK) modulation, 
there are three predefined training sequences for timing synchronization in our ‘THz Torch’ wireless link: the PIR 
sensor calibration sequence; the thermal emitter calibration sequence, which includes four leading S1 followed 
by twenty S0, sent at 50 Bd; and the fixed preamble {S1, S1, S1, S0} for each data frame. The expected noiseless 
signal for the PIR sensor calibration sequence is essentially a step response8. The expected noiseless signal for the 
thermal emitter calibration sequence and the data frame preamble can be determined by solving Eq. (4)8, then 
Eq. (16)8 and finally Eq. (14)8 in our most recent previously reported work8. In Eq. (4)8, We is switched between 
WR and 0, according to the training sequence. Initial conditions are T(0) = T0 for Eq. (4)8 and v′(0) = v(0) = 0 
for Eq. (14)8.

The demodulator is exploited to retrieve the transmitted symbol sequence from each synchronized data 
signal. Assuming a transmitted symbol sequence {s1, s2, ... sN } with values {S0, S1} , the overall received signal is:

where TS is the samples per symbol interval and vs1:(i−1)
si [t] is the expected noiseless signal of si conditioned on all 

previous symbols s1:(i−1) . Given our two symbol values {S0, S1} , there are two hypotheses for v[t] of si:

A demodulator that exploits the maximum likelihood (MLE) decision rule is represented by:

The decision rule in Eq. (7) is applied iteratively to demodulate all the symbols in chronological order. Again, 
two possible noiseless received signals vs1:(i−1)

S0 [t] and vs1:(i−1)
S1 [t] can be obtained using Eq. (4)8, Eq. (16)8 and 

Eq. (14)8. Similarly, we have We = 0 for vs1:(i−1)
S0 [t] and We = WR for vs1:(i−1)

S1 [t] , with our chosen OOK modula-
tion scheme. Here, the initial conditions T(0), v(0) and v′(0) are decided by all previous symbols s1:(i−1) within 
the same frame. Without knowing a prior the true transmitted s1:(i−1) , the demodulated symbols for s1:(i−1) are 
used instead.

(1)v[t] = vs[t − δ] + vn[t]

(2)v[t] = vtrain[t − δ] + vn[t]

(3)
Htrain : v[t] = vtrain[t − δ] + vn[t]

Hn : v[t] = vn[t]

(4)δ∗ = arg max
δ

pδ(v|Htrain)

p(v|Hn)
= arg max

δ
ln

pδ(v|Htrain)

p(v|Hn)

(5)v[t] =

N
∑

i=1

v
s1:(i−1)
si [t − (i − 1)× TS] + vn[t]

(6)
HS0 : v[t] = v

s1:(i−1)

S0 [t] + vn[t]

HS1 : v[t] = v
s1:(i−1)

S1 [t] + vn[t]

(7)s∗i = arg max
si

p(v|Hsi ) = arg max
si

ln p(v|Hsi )
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This hypothesis testing framework for synchronization and demodulation is commonly used in digital trans-
ceiver design. However, our concept of a cognitive receiver can be justified for the following two reasons:

•	 Conventional digital systems rely on linear memoryless modulation. In contrast, with our system, we have a 
complex memory and nonlinear modulation in which the expected noiseless signal is defined by the current 
symbol and all previous symbols within the same frame. The vs1:(i−1)

si [t] term in Eq. (5) and Eq. (6) shows this 
dependency by its superscript. Our solution constantly tracks the thermodynamics of the system to produce 
all possible hypotheses in Eq. (6).

•	 All expected noiseless signals used for synchronization and demodulation are implicitly dependent on the 
thermal emitter and PIR sensor parameters. Our solution adaptively calibrates these parameters using opti-
mization approaches.

Following the framework developed here, four algorithms are introduced in this work to further enhance 
our cognitive ‘THz Torch’ receiver.

Naive template matching and matched filter.  The basic cognitive demodulation introduced in our 
previous work8 is intuitive. For synchronization, the following optimization problem is solved:

where TH is a integer that represents a sufficiently large time horizon so that the energy of vtrain[t − δ] does 
not depend on δ . An intuitive explanation for Eq. (8) is that the optimal time delay for timing synchronization 
minimizes the mean-square-error between the received signal and the delayed noiseless signal. Its counterpart 
for demodulation is given by:

where TS is a integer that represents the number of samples per symbol. Equation (9) finds the optimal i− th 
symbol s∗i  , which minimizes the mean-square-error between the received signal v[t] and the expected noiseless 
signal corresponding to si . By deriving Eq. (8) and Eq. (9) from Eq. (4) and Eq. (7), respectively, we can unify the 
basic cognitive demodulation under our hypothesis testing framework; refer to here as naive template matching. 
Assuming vtrain[t1] and vtrain[t2] are independent for ∀ t1, t2 ∈ [0,TH ) , Eq. (4) can be written as:

Following the same independent assumption, for Eq. (7), we have:

Derivations for this naive template matching assume that any two timestamps in the expected noiseless signal 
are independent. This assumption does not consider the fact that there are only a few possible noiseless signals 
expected and, thus, timestamps in one expected signal are closely dependent on each other. To overcome this 

(8)δ∗ = arg min
δ

1

TH

TH−1
∑

t=0

(v[t] − vtrain[t − δ])2

(9)s∗i = arg min
si

1

TS

TS−1
∑

t=0

(v[t] − v
s1:(i−1)
si [t])2

(10)

δ∗ = arg max
δ

ln
pδ(v|Htrain)

p(v|Hn)

= arg max
δ

TH−1
∑

t=0

lnN(v[t]|vtrain[t − δ], σ 2
n )−

TH−1
∑

t=0

lnN(v[t]|0, σ 2
n )

= arg max
δ

TH−1
∑

t=0

lnN(v[t]|vtrain[t − δ], σ 2
n )

= arg max
δ

TH−1
∑

t=0

ln

{

1
√

2πσ 2
n

exp

[

−
(v[t] − vtrain[t − δ])2

2σ 2
n

]}

= arg min
δ

1

TH

TH−1
∑

t=0

(v[t] − vtrain[t − δ])2

(11)

s∗i = arg max
si

ln p(v|Hsi )

= arg max
si

TS−1
∑

t=0

lnN(v[t]|v
s1:(i−1)
si [t], σ 2

n )

= arg max
si

TS−1
∑

t=0

ln

{

1
√

2πσ 2
n

exp

[

−
(v[t] − v

s1:(i−1)
si [t])2

2σ 2
n

]

}

= arg min
si

1

TS

TS−1
∑

t=0

(v[t] − v
s1:(i−1)
si [t])2
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shortcoming, we adapt the signal space and matched filter concepts used in conventional digital communications 
to our ‘THz Torch’ system. Here, matched filter based synchronization and demodulation are expressed by Eq. 
(12) and Eq. (13), respectively.

where Mtrain[t] = vtrain[−t] is the matched filter for vtrain[t] ; (∗) is the convolution operator; and 〈, 〉 is the inner 
product operator.

where � · �2 represents the energy of a signal. Unlike conventional matched filters, Ms1:(i−1)
si [t] in Eq. (13) now 

varies with the previously transmitted symbols. Furthermore, all matched filters can perceive the system varia-
tion by employing calibrated emitter and sensor parameters.

The matched filter algorithm is essentially an extension of naive template matching to signal space. Since 
there are only a few possible noiseless signals expected, a low dimensional signal space can be constructed and 
each hypothesis in Eq. (3) and Eq. (6) can be projected to a Gaussian distribution in signal space. Conditional 
likelihoods in Eqs. (4) and (7) are simplified to probabilities under these projected Gaussian distributions. Any 
noise signal component, which is orthogonal to the signal space, has no contribution to the result and can, thus, 
be dropped. In addition, the matched filter remains optimal when there is a scaling factor between the predicted 
and the real noiseless signal expected.

Figure 2a,b illustrates the matched filter operation in signal space. For synchronization, the signal space 
is one-dimensional with a basis φsyn[t] = vtrain[t−δ]

�vtrain[t−δ]�
 . Two hypotheses Htrain and Hn are projected to the 

N(�vtrain[t − δ]�, σ 2
n ) and N(0, σ 2

n ) distributions, respectively. The projection of the received signal v[t] onto the 
signal space is �φsyn[t], v[t]� . Equation (12) is equivalent to maximizing the likelihood ratio w.r.t. the time delay δ:

For demodulating the i− th symbol, the signal space is two-dimensional with the basis φi0[t] and φi1[t] , cal-
culated using Gramm-Schmidt orthogonalization:

Hypotheses HS0 and HS1 in Eq. (6) are mapped to two Gaussian distributions:

The projection of the received signal v[t] onto the signal space is given by:

The decision rule in Eq. (13) essentially chooses the hypothesis that assigns the largest probability to the received 
signal projection.

Figure 2c,d,e illustrates the synchronization achieved by naive template matching and the matched filter. 
Compared with the former, the latter’s objective in Eq. (12) tends to have a more steep peak at the optimal time 
delay. These results are consistent with Fig. 2c&d and deviate by 2 ms for data frame synchronization in Fig. 2e.

Introduction of thermal emitter calibration.  This section introduces a thermal emitter calibration 
algorithm to complete the model of the entire system. Obeying the principle of conservation of energy, while 
ignoring thermal convection, the following differential equation has been formulated8 to describe the thermo-
dynamics of the emitter:

(12)δ∗ = arg max
δ

(v ∗Mtrain)[δ] = arg max
δ

�v[t], vtrain[t − δ]�

(13)
s∗i = arg max

si
(v ∗M

s1:(i−1)
si )[0] −

�v
s1:(i−1)
si [t], v

s1:(i−1)
si [t]�

2

= arg max
si

�v[t], v
s1:(i−1)
si [t]� −

�v
s1:(i−1)
si �2

2

(14)ln
pδ(v|Htrain)

p(v|Hn)
= ln

N(�φsyn[t], v[t]�|�vtrain[t − δ]�, σ 2
n )

N(�φsyn[t], v[t]�|0, σ 2
n )

(15)

φi0[t] =
v
s1:(i−1)

S0 [t]

�v
s1:(i−1)

S0 [t]�

φ′
i1[t] = v

s1:(i−1)

S1 [t] − �v
s1:(i−1)

S1 [t],φi0[t]� · φi0[t]

φi1[t] =
φ′
i1[t]

�φ′
i1[t]�

(16)
HS0 : N

([

�φi0[t], v
s1:(i−1)

S0 [t]�
0

]

, σ 2
n I

)

HS1 : N

([

�φi0[t], v
s1:(i−1)

S1 [t]�

�φi1[t], v
s1:(i−1)

S1 [t]�

]

, σ 2
n I

)

(17)proj(v[t]) =

[

�φi0[t], v[t]�
�φi1[t], v[t]�

]

(18)We(t) = Ce
dT(t)

dt
+ ke[T(t)− T0] + σeǫAeT

4(t)
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Figure 2.   (a–b) Matched filter hypothesis in signal space. (a) One dimensional signal space for 
synchronization. (b) Two dimensional signal space (varying from symbol to symbol) for demodulation. (c–e) 
Timing synchronization for predefined training sequences demonstrated for the 2 m single-channel ‘THz Torch’ 
wireless link field trial: The naive template matching (NTM) objective in Eq. (8) and the matched filter (MF) 
objective in Eq. (12) are scaled and shifted to [−1, 0] for visualization purposes. Each time delay estimation, 
indicated by a vertical dashed line, is obtained by locating the peak of its corresponding objective function. (c) 
Timing synchronization for PIR sensor calibration. (d) Timing synchronization for thermal emitter calibration. 
(e) Timing synchronization for data frame.
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where, We(t) is the thermal emitter’s input power, as a function of time t; Ce is the heat capacity of the thermal 
emitter; T(t) is the transient temperature that varies between the lower extreme limit of the ambient temperature 
T0 and its steady-state temperature; ke is the thermal conductivity; σe is the Stefan–Boltzmann constant; ε is the 
emissivity of the emitter; and Ae is the heated surface area of the thin-film thermal emitter.

Calibrating the values of the relevant parameters WR , Ce and ke is critical for both cognitive synchronization 
and demodulation. In our recent work8, these values were simply estimated from typical specifications given by 
the manufacturer and, thus, did not take account of variations due to batch-to-batch manufacturing, component 
aging and operational environmental changes. In this section, we introduce an emitter calibration routine based 
on a zero-order optimization method that does not require changes in hardware.

Assuming the channel filters, atmospheric attenuation and pyroelectric sensor are all adequately character-
ized, the mean-absolute-error (MAE) between the expected (predicted by the model) and received signals, 
corresponding to a predefined training sequence ( vtrain[t] and v[t] , respectively), is a non-analytical function of 
the emitter parameter values:

Minimizing this error function gives adaptive emitter parameter values, making the prediction more consist-
ent with the measurement. However, we can only evaluate f (WR, Ce , ke) at a given point x0

.
= (WR0, Ce0, ke0) 

without any a prior knowledge of its gradient ∇xf (x0) - comprised of partial derivatives with respect to the 
individual emitter parameters. Therefore, to optimize this function without using the finite-difference method 
(which does not scale-up very well), a zero-order approach is adopted in which the gradient ∇xf (x0) and Hessian 
matrix ∇2

x f (x0) are estimated by sampling. The former can be achieved by evaluating the function values at x0 
with added noise vectors ξ sampled from a diagonal multivariate Gaussian distribution; this method is known as 
evolution strategy17 in computer science literature. Applying a second-order Taylor expansion on f(x) at x0 gives:

where ξT is the transpose of ξ . When sampling ξ from N(0, σ 2I) - being the diagonal multivariate Gaussian 
distribution with zero-mean and σ 2I being the covariance matrix—we neglect the higher-order terms O(ξ 3) , 
multiple both sides of Eq. (20) by ξ and take the expectation to give:

A Monte Carlo estimator for the gradient can then be constructed by drawing K I.I.D. samples from N(0, σ 2I):

With knowledge of this gradient, any first-order optimization methods (e.g., gradient descent) can be used 
to minimize the error function from Eq. (19). To take advantage of second-order optimization methods (e.g., 
Newton-Raphson), having faster convergence, this sampling approach can be extended to Hessian matrix 
estimation18 as following:

The emitter parameter values estimated in our recent work8 are used as initial values when solving the optimi-
zation problem. To ensure a physically meaningful value, an appropriate box constraint is applied to each emitter 
parameter. A small diagonal term may be added to the estimated Hessian matrix, to make it positive definite.

Figure 3 shows the result of introducing the thermal emitter calibration technique. It can be seen from the 
contour plot of the error function in Eq. (19), shown in Fig. 3a, that the evolution of the optimization processes 
converge into the minimum area of this error function. In addition, the Newton-Raphson algorithm demonstrates 
a faster convergence rate by exploiting second-order derivatives. As shown in Fig. 3b, the expected noiseless 
signal with optimized emitter parameter values gives a better match with the received noisy signal. This clearly 
demonstrates the adaptive nature of our calibration approach.

Synchronization under parameter mismatch.  Timing synchronization locates the temporal boundary 
for each received signal by searching for the optimal time delay δ . Poor synchronization misaligns the received 
signal to the transmitted symbol sequence and degrades the performance of calibration and demodulation. Two 
synchronization algorithms, using naive template matching and the matched filter, were introduced in the previ-
ous section. Both are based on template matching and assume the expected noiseless signal vtrain[t] correspond-
ing to a predefined training sequence is accurate. However, producing an accurate expected noiseless signal 
relies on the calibrated thermal emitter and PIR sensor parameters. The initial emitter and sensor calibration 
sequences have to be synchronized using inaccurate expected noiseless signals. In this subsection, a change-
point detection approach19 is exploited to improve timing synchronization for this initial scenario.

(19)f (WR, Ce , ke) =
1

N

N
∑

t=1

|vtrain[t](WR, Ce , ke)− v[t]|

(20)f (x0 + ξ) = f (x0)+ ξT∇xf (x0)+
1

2
ξT∇2

x f (x0)ξ + O(ξ 3)

(21)

Eξ∼N(0, σ 2I)

[

ξ f (x0 + ξ)
]

≈ Eξ∼N(0, σ 2I)

[

ξ f (x0)+ ξξT∇xf (x0)+
1

2
ξξT∇2

x f (x0)ξ

]

= σ 2∇xf (x0)

(22)∇xf (x0) =
1

Kσ 2

K
∑

k=1

ξkf (x0 + ξk)

(23)∇2
x f (x0) ≈

1

Kσ 2

K
∑

k=1

1

σ 2
f (x0 + ξk)ξkξ

T
k − f (x0 + ξk)I
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Change-point detection of a signal aims at finding some key timestamps at which a pre-defined pattern of 
the signal shows an abrupt change. This can be formulated as an optimization problem:

where I is a set of ordered timestamps 
{

Ik

}K

k=0
 , representing a specific way of segmentation; v is the complete 

discrete signal of length TH ; while v[Ik : Ik+1] is one of the segments under I that includes v[Ik] and excludes 
v[Ik+1] . For conciseness, I0 and IK are fixed to 0 and TH , respectively. Also, c(·) is a cost function that defines 
the changing pattern to be detected. Here, the number of change points |I | is set to a constant and the cost 
function is chosen to be:

This means that a piece-wise linear model, with a fixed number of knots, is fitted to the received signal and these 
knots are assigned to be the change points.

The improved timing synchronization now includes two phases: the template-matching phase, which achieves 
coarse synchronization due to the inaccurate expected noiseless signal corresponding to the transmitted train-
ing sequence; and the change-point detection phase. With the latter, the optimization problem in Eq. (24) is 
solved by dynamic programming, to obtain a set of change points 

{

I
v
k

}K

k=0
 from the received noisy signal pre-

synchronized by the template-matching phase. The revised time delay can be simply decided by δcp = δtm +I
v
1  , 

where the index of the first change-point (as a correction) is added to the coarse time delay δtm from the template-
matching phase.

The change-point detection phase is time-consuming and, thus, only used for the initial emitter and sensor 
calibrations. With the initially calibrated parameters, the expected noiseless signal will be accurate enough for 
simple template-matching based timing synchronization.

Figure 4 illustrates the operation with the improved timing synchronization. The emitter and sensor param-
eters are reset to their initial values when predicting the expected noiseless signal. Due to parameter mismatch, 
the time delay δtm given by template-matching based algorithms deviate from the optimal δ∗ shown in Fig. 2c&d. 
The deviation is then corrected by the change-point detection phase. In Fig. 4a, δtm = 411 ms, δcp = 424 ms and 
δ∗ = 422 ms. In Fig. 4b, δtm = 669 ms and δcp = δ∗ = 675 ms. This shows that change-point detection is capable 
of achieving ideal timing synchronization under parameter mismatch.

Introduction of neural network.  Combined with thermodynamics-based modelling, template-matching 
based algorithms (NTM and MF) are capable of significantly improving the operational figure of merit (Range × 
Bit Rate) for ‘THz Torch’ wireless communications links. However, these solutions have a number of shortcom-
ings:

•	 As given in Eq. (1), the received signal v[t] is distorted by the noise term vn[t] . Due to unmodelled behaviour 
(e.g., environmental noise) and system parameter mismatch (e.g., calibration error), the equivalent vn[t] may 
not closely follow the WGN assumption, which ultimately degrades the bit-error-rate performance.

(24)min
I

K−1
∑

k=0

c(v[Ik : Ik+1])

(25)c(v[Ik : Ik+1]) = min
α,β

Ik+1−1
∑

t=Ik

(v[t] − β − αt)2

Figure 3.   Thermal emitter calibration demonstrated for the 2 m single-channel ‘THz Torch’ wireless link field 
trial: (a) Contour plot of error function in Eq. (19) that depends on WR and Ce ( ke is fixed to 1.03× 10−3 W/K 
for visualization purposes). Optimization progress of the gradient descent and Newton-Raphson methods are 
indicated by the triangular and circle markers, respectively. (b) Synchronized received noisy signal with two 
expected noiseless signals that adopt the initial and optimized emitter parameter values.
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•	 When predicting expected noiseless signals vs1:(i−1)

S0  and vs1:(i−1)

S1  , for demodulating the i-th symbol si , initial 
conditions are decided by the demodulation results for its previous symbols s1:(i−1) . An error in s1:(i−1) will 
give the wrong initial condition, which may cause a chain of errors within the sequence.

•	 When numerically solving differential equations and integrals, there is a trade-off between computational 
complexity and accuracy. Although real-time communications is achieved, with low bit rates, a more light-
weight algorithm is preferred; making it possible to further ease computational hardware requirements.

To address all these shortcomings, we introduce a neural network (NN) based demodulator, which combines 
thermodynamics-based modelling with artificial intelligence. Unlike template-matching based algorithms, which 
employ a MLE rule, we exploit a Maximum A Posterior (MAP) rule. This directly approximates the posterior 
probability p(si = S1|v) using a neural network. Here, a neural network (NN) is essentially an expressive func-
tion approximator composed of manually designed, parameterized, non-linear functions (layers). Since the NN 
is fully differentiable, the parameters can be learnt by the backpropagation algorithm, which is an application of 
the ‘chain rule’ in multivariable calculus. The recurrent neural network (RNN)20 is a family of neural networks 
having a special structure that is tailored for time series analysis. Inputs at all time steps (waveforms associated 
with bits in our case) are processed by a shared network, while a concise representation of the history is extracted 
and passed forward in time. Here, the Long-Short Term Memory (LSTM)21, as a standard RNN architecture, is 
exploited. The complete LSTM-based Cognitive Demodulator is illustrated in Fig. 5a. Expressions for calculating 
the intermediate variables in Fig. 5a are:

Figure 4.   Improved timing synchronization using change-point detection demonstrated on the 2 m single-
channel ‘THz Torch’ wireless link field trial. Compared to Fig. 2c,d, the expected noiseless signal (in orange) is 
produced by mismatched emitter and sensor parameters. The coarse time delay δtm decided by the template-
matching phase is indicated (red dashed line). Black stars represent the detected five change points {I v

k }5k=1
 and 

the black dashed line indicates the improved timing synchronization δcp after the change-point detection phase. 
(a) Timing synchronization for initial PIR sensor calibration. (b) Timing synchronization for initial thermal 
emitter calibration.
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(26)

fi = Sigmoid
(

Wf [xi , hi−1]+ bf
)

ii = Sigmoid(Wi[xi , hi−1]+ bi)

gi = tanh
(

Wg [xi , hi−1]+ bg
)

oi = Sigmoid(Wo[xi , hi−1]+ bo)

ci = fi ⊗ ci−1 + ii ⊗ gi

hi = oi ⊗ tanh(ci−1)

Figure 5.   (a) Unrolled computational graph for the complete LSTM-based cognitive demodulator with emitter 
and sensor parameter inputs and received noisy signal (cyan curve) input across a sequence of N symbols. (b) 
Signal space decision boundaries for the LSTM-based demodulator (between the two colours) and the matched 
filter (green dashed line, mid-perpendicular of the line segment through S0 and S1) for six arbitrary sampled 
symbols.
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where i is used to index the waveform xi , associated with the i-th bit; Wf ,i,g ,o and bf ,i,g ,o are internal parameters 
for the LSTM; [xi , hi−1] represents the concatenation of xi and hi−1 ; Sigmoid(x) =

(

1+ e−x
)−1 is the sigmoid 

function; and ⊗ represents the Hadamard product. For each bit, the LSTM takes the synchronized measured 
waveform associated with this bit to update its cell state ci and hidden state hi from their previous states. While 
the updated states are passed to the next step, hidden state hi is concatenated with emitter and sensor parameters. 
The resulting vector, which includes both the features of the system and the representation of the measured 
waveform, is forwarded to a Multi-Layer Perception (MLP) to make a probabilistic decision for the current bit.

Two issues that prevent a direct application of LSTM-based Cognitive Demodulator are overfitting22 and 
domain-shift23. While LSTM has the potential to approximate sophisticated mapping from measured waveforms 
into binary bits, it may be overfitted to the collected training dataset (instead of capturing the real underlying 
mapping). The solution is to collect a large training dataset, but this may be time-consuming in a real system. 
Domain-shift occurs in the LSTM-based Cognitive Demodulator, as the ‘THz Torch’ wireless links have time-
variant emitter and sensor parameter values. A conventional learning-based demodulator may work poorly on 
the system with parameter values that are not covered by its training dataset. However, the complete thermo-
dynamics-based model, introduced in the previous section, can be employed to solve both the overfitting and 
domain-shift issues, by building a training dataset through simulations.

The Cognitive Demodulator is trained on this simulated training dataset by minimizing the well-known 
binary cross-entropy loss function:

where N is the number of frames in the training dataset; M is the number of bits per frame; sn,m is the ground-
truth binary value of the m-th bit in the n-th frame, while ŝn,m is the corresponding predicted probability of being 
binary one. Finally, the LSTM-based Demodulator can be directly deployed to the real ‘THz Torch’ wireless link. 
The internal parameters for the LSTM and MLP can be further fine-tuned by using measured waveforms and 
also emitter and sensor parameter values from the real system (known as transfer learning23).

To understand the underlying decision-making process, operated by the trained LSTM-based demodulator, 
Fig. 5b shows the decision boundaries for six arbitrarily sampled received symbols and makes a comparison with 
those from the matched filter. By inspection of the decision boundaries in Fig. 5b , it can be seen that the matched 
filter is always optimal with purely WGN. However, in practice, the system noise is not purely white Gaussian 
and it will be demonstrated in the next section that the LSTM-based demodulator gives a better performance 
when compared with the matched filter. Each decision boundary for the matched filter is obtained by equalling 
the probabilities of the received signal in Eq. (17) under two Gaussian distributions in Eq. (16), while the LSTM 
decision boundary is estimated numerically by computing ŝi = p(si = S1|v

s1:(i−1)
si [t]) over a signal space grid. 

Being different from the matched filter boundary, which is always the mid-perpendicular of the line segment 
through S0 to S1, the local LSTM boundary resembles a straight line whose position and rotation varies from 
symbol to symbol. Another noticeable pattern is that the LSTM boundary tends to be parallel to the first basis 
φi0 given in Eq. (15).

The LSTM-based Cognitive Demodulator overcomes the shortcomings of our recent work8, in several 
respects:

•	 The LSTM is independent of the emitter and sensor parameter values. The rationalé is that although these 
hardware parameter values may vary between systems, the measured waveforms have similar patterns for 
a particular sequence of bits. The LSTM will extract these meaningful patterns, instead of being distracted 
by variations in hardware parameter values. Therefore, demodulation can be less sensitive to calibration 
accuracy.

•	 Noise is taken into account by adding tailored artificial noise to the training dataset. This improves the 
demodulator’s resilience to noise.

•	 Demodulation of the current bit is not directly dependent on the correct result of the previous bit. Instead, 
the whole measured waveform within the complete frame is used; eliminating the possibility for a chain of 
errors.

•	 The computational cost is significantly reduced, to a simple forward pass of the NN.

Although artificial intelligence is exploited, demodulation remains rooted in the thermodynamics-based model. 
When making the final decision, the demodulator still takes the hardware parameter values into consideration, 
via the MLP. Furthermore, training is based on simulated data from the thermodynamics-based model. In 
another word, the Cognitive Demodulator process is distilled into the lightweight NN.

Enhanced performance demonstration.  Figure 6 show the operation of demodulation with three dif-
ferent algorithms. All the figures use the same test frame, which is collected from the single-channel 2 m link 
field trial, transmitting at 125 bps and composed of a four-symbol preamble followed by 50 pseudo-randomly 
generated symbols. The received noisy signal v[t] is shown in blue. For the naive template matching and matched 
filter algorithms in Fig. 6, two expected noiseless signals for each symbol si ( vs1:(i−1)

S0  and vs1:(i−1)

S1  ) are shown in 
black and red, respectively. In each figure, the correctness of the demodulated symbols is indicated by a sequence 
of green circles and red crosses. To highlight the contribution from the calibrator, we also compare two configu-
rations for each algorithm. The configuration with calibrated thermal emitter parameters is labelled with a prefix 
‘E’ and that without the prefix employs initial emitter parameters.

(27)Loss = −

N
∑

n=1

M
∑

m=1

sn,m ln
(

ŝn,m
)

+
(

1− sn,m
)

ln
(

1− ŝn,m
)
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An algorithm-level comparison reveals that the matched filter consistently outperforms our previously 
reported naive template matching8. This is achieved by employing the signal space concept to eliminate any 
noise component that is orthogonal to the two-dimensional signal space. In contrast, with LSTM-based demodu-
lation, there is no need to dynamically produce the expected noiseless signals; This has an ideal performance, 
resulting in error-free transmission for this particular test frame. In addition, both template-matching based 
algorithms (NTM and MF) show a chain of symbols with errors. As explained earlier, this pattern is caused by 
the dependency of the currently expected signals on previously demodulated symbols s1:(i−1) . Moreover, calibrat-
ing the emitter parameters can significantly enhance both template-matching based algorithms by providing 
more accurate ‘templates’. In contrast, with LSTM-based demodulation, good resilience is shown to parameter 
mismatch in this test scenario. This is because the LSTM network is trained to extract common signal patterns 

Figure 6.   Operation of demodulation demonstrated for the 2 m single-channel ‘THz Torch’ wireless link field 
trial. (a) NTM with initial thermal emitter parameters (16 symbol errors). (b) NTM with calibrated thermal 
emitter parameters (7 symbol errors). (c) MF with initial thermal emitter parameters (9 symbols errors). (d) 
MF with calibrated thermal emitter parameters (error free). The LSTM-based demodulator with and without 
calibrated thermal emitter parameters (error free) is also shown in (c,d). Here, the LSTM-based demodulator is 
only trained on the simulated dataset without any fine-tuning using data from the real system.
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shared between different parameters. Bit error rate (BER) measurements will show that combining the calibrated 
parameters through the MLP layers enhances the performance of the LSTM-based demodulator.

Figure 7 show the measured raw BER performances (without any additional error correction coding) for the 
single-channel 2 m wireless links in both the laboratory and non-laboratory environments. These measurements 
are performed by sending 2000 frames across the wireless link; each frame has a fixed four-symbol preamble for 
timing synchronization and 50 pseudo-randomly generated symbols. The fractionally spaced sampler is set to 20 
times the baud rate. The discrete PIR sensor output voltage signal for each frame is saved and then demodulated 
offline, using our six algorithms for comparison: (E)NTM, (E)MF, (E)NN. Again, with LSTM-based demodula-
tion, (E)NN are only trained on the simulated dataset, without any fine-tuning using data from the real system.

As a baseline, the NTM algorithm gives a BER of less then 9% at 125 bps. The ENTM algorithm maintains 
the BER to below 5%, which is still impractical for most applications. When operating at a low symbol rate, the 
EMF algorithm, enhanced by the thermal emitter calibration, shows a significantly improved performance. 
Introducing the neural network provides a step-change reduction in the BER, down to 1%; even with mismatched 
emitter parameter values. Finally, the ENN algorithm that combines all enhancement techniques consistently 
outperforms the other algorithms at higher bit rates, with measured BER less than 0.16% at 125 bps. When 
compared to our NTM baseline, its BER is improved by a factor of 108 within the laboratory environment and 
59 in the non-laboratory field trials. An additional non-laboratory experiment was performed over an extended 
2.5 m link, which demonstrated error-free transmission of data at 50 bps. Moreover, with a 1.5 m link, the ENN 
algorithm demonstrated a measured BER below 0.1% at 125 bps.

From the measured results, the following three conclusions are:

•	 With the non-laboratory demonstrators, the performance is slightly degraded due to sub-optimal spatial 
alignment and possibly more environmental noise.

•	 From the algorithm-level comparison, the match filter consistently outperforms naive template matching, 
while LSTM-based demodulation achieves best performance in all test scenarios.

•	 Emitter parameter calibration can enhance all three algorithms. The two template-matching based algorithms 
(NTM and MF) heavily rely on accurate parameters, while LSTM-based demodulation is more resilient to 
parameter mismatch.

From a batch test of 100 frames on a Intel Xeon 2.30 GHz CPU, with (E)NTM and (E)MF, the time taken 
for demodulation is approximately 2.54 seconds per frame; while with (E)NN the time taken is only 0.256 mil-
liseconds per frame. Therefore, introducing the neural network speeds-up demodulation by a factor of 9,922; 
allowing for real-time demodulation, while easing computational hardware requirements.

Discussion
In this work, several enhancements for cognitive demodulation are presented. By calibrating the thermal emit-
ter parameter values, using a zero-order optimization approach, the demodulation algorithm becomes more 
adaptive to component variations and environmental changes. Being an asynchronous wireless link, the timing 
synchronization technique that exploits change-point detection achieves a better temporal alignment between 

Figure 7.   Measured BER performance for the single-channel 2 m link. (a) in a laboratory (reference) 
environment with optical bench and precision alignment rails8. (b) in a non-laboratory (real-world) 
environment (office corridor) with laser alignment, as shown in Fig. 1a–d.
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the measured waveform and its associated frame. Finally, an LSTM-based demodulator is introduced, which 
significantly improves both the BER performance and computational efficiency.

This paper demonstrates a clear paradigm shift in the way BER can be reduced for the generic ‘THz Torch’ 
technology with software advances. Future work will focus on returning to improvements in hardware, to advance 
the operational figure of merit. For example, the miniature thermal emitter can be replaced by the more powerful 
Globar24, to increase signal power (albeit with a longer thermal time constant), which will increase both Range 
and Bit Rate.

System noise has various sources4: internal (e.g., from the PIR sensor, which includes the built-in transimped-
ance amplifier and external unity-gain voltage-follower) and environmental (e.g., electromagnetic interference, 
e.g., 50 Hz interference from mains power supply picked-up8; microphonic noise; and low frequency ambient 
temperature fluctuations8).

Assuming a noiseless PIR sensor, an anti-aliasing filter is not required at the ADC input. The reason is that 
our PIR sensor has peak responsivity at ∼ 3 Hz and a 20 dB/decade frequency roll-off characteristic. As a result, 
with transmission at 125 bps there is no significant frequency component at half the 2.5 kHz sampling frequency. 
However, given the broad frequency spectrum of our system noise, the introduction of a band-limiting filter 
would provide a significant enhancement to the signal-to-noise power ratio performance. In turn, both Range 
and Bit Rate can be increased, and could even facilitate M-ary amplitude shift keying signalling. For example, a 
simple anti-aliasing low-pass filter, having a 2.5 kHz cut-off frequency, was introduced for a sampling frequency 
of 5 kHz. The background noise was measured up to the Nyquist frequency, shown in Fig. 8, with and without 
the filter. From Fig. 8a, it can be seen that there is a factor of 10.02 reduction in RMS noise voltage, corresponding 
to a 20 dB reduction in noise power (i.e., resulting in the same enhancement of signal-to-noise power ratio). In 
practice, the anti-aliasing low-pass filter should be based on a Bessel approximation, since a constant differential-
phase group delay is required within the signaling passband to maintain the shape of the measured waveform.

The environment noise, which tends to dominant system performance, requires further investigation. For 
example, in Fig. 8b, electromagnetic interference can be seen at 50 Hz. With microphonic noise, anti-vibration 
material can be employed to package and mount the PIR sensor. The introduction of a 3D-printed shroud has 
already demonstrated a significant reduction in noise related to both microphonic and ambient temperature 

Figure 8.   Measured background noise within the laboratory environment with PIR sensor shrouded. (a) 
output noise voltage. (b) associated single-sided amplitude spectral responses. The red plots represent unfiltered 
measurements and the blue plots represents the addition of an anti-aliasing filter, inserted between the PIR 
sensor and ADC, having a cut-off frequency of 2.5 kHz.
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fluctuations. While a great deal of care went into shielding against relatively low frequency electromagnetic 
interference (and decoupling intrinsic electronic noise), there is more scope for further investigation.

Cognitive Demodulation (in its various forms) has been applied to thermal-based emitter and sensor front-
end hardware. However, the concept can potentially be adapted to any transmit-receive technologies, where 
sufficient sampling can be performed within the transient time of signalling. Enhancing operational speeds in 
this way could open-up many new applications for future communications and sensor technologies. With the 
later, our engineered thermal source can be replaced by bodies that naturally emit thermal radiation; monitor-
ing for specific thermal transients can find low-cost applications in non-destructive testing and remote sensing. 
For example, analysing temporal fluctuations in localized body temperature could provide useful informa-
tion in medical diagnostics; while within the aerospace sector, sensor arrays could be deployed for monitoring 
anomalous behaviour at a distance. An extreme example is with broadband (sub-)millimeter-wave astronomy, 
traditionally employing microbolometer arrays, where neural networks can be trained to detect the very early 
onset of astronomical events that can be modelled. Moreover, with room-temperature terahertz and thermal 
infrared cameras, which employ microbolometer arrays, the thermal time constant constraints of the detectors 
can be overcome by adapting the techniques presented here to significantly increase frame rates.

Methods
Thermal emitter.  The typical DC power consumption of the thermal emitter is WR = 134 mA × 6.7 V = 898 
mW. With a pseudo-random binary sequence of transmit bits, the time-average power consumed by the 1.7 mm 
× 1.7 mm = 2.89 mm2 thermal emitter is only approximately 450 mW. Emitter calibration is achieved by send-
ing a standard data frame through the wireless link and extracting the measured waveform associated with the 
frame header (preamble). The calibration procedure then optimizes the emitter parameter values to minimize 
the mean-absolute-error between the predicted and measured waveforms.

Analog to digital converter (ADC).  In our most recent work8, the ADC used was the 13-bits NI USB-
6009, giving a theoretical dynamic range of 80 dB. In this work, the 16-bit NI USB-6363 is used, giving an 
improved dynamic range of 96 dB. Moreover, previously8, the sampling frequency was fixed at 2 kHz for all bit 
rates; while here the sampling frequency is adapted to 20 × bit rate.

Neural network.  Given a frame containing a 4-bit preamble and 50 pseudo-randomly generated bits, the 
associated PIR sensor output voltage waveform can be simulated using our thermodynamics-based model, hav-
ing random values for the emitter and sensor parameters. A NN training sample consists of the frame and its 
corresponding simulated waveform; 10,000 of these training samples make up the complete NN training dataset. 
This is followed by injecting additive white Gaussian noise into the simulated waveform (attempting to mimic 
measured waveforms from the PIR sensor). The LSTM-based demodulator is then trained on this dataset for a 
maximum of 20 epochs. To prevent overfitting to the training dataset, 20% of the training samples are reserved 
as a validation dataset, for early stopping. The ‘Adam’ optimizer25 is employed with a learning rate of 3× 10−4 
and 100 samples per batch (with 100 batches per epoch in our case). Note that, for each training sample, the 
PIR sensor output voltage waveform could be measured from the ‘THz Torch’ wireless link. This would have the 
advantage of being more realistic (i.e., a real-world system, including both hardware and added noise contribu-
tions), however, collecting the training dataset would be more time consuming if random-valued emitter and 
sensor parameters are chosen for each frame.

BER measurement.  The raw BER is measured by sending 2000 frames across the wireless link; each frame 
has a ‘1110’ preamble and 50 pseudo-randomly generated bits. The received noisy signal for each frame is saved 
and then demodulated offline using our six algorithms for comparison: (E)NTM, (E)MF, (E)NN. The LSTM-
demodulator used for BER measurements employs only the simulated training dataset, which provides greater 
efficiency.

Noise measurement.  For the noise measurements, there was a 20 s sampling period with a sampling fre-
quency of 20 kHz in our recent work8; while here a 1 second sampling period is chosen with a sampling fre-
quency of 5 kHz. A passive first-order Butterworth low-pass filter was introduced, inserted between the PIR sen-
sor and ADC, consists of a series resistor (77 k � ) and shunt capacitor (820 pF), giving a -3 dB cut-off frequency 
of 2.5 kHz.
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