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Transmission and Reflection of Terahertz Plasmons
in Two-Dimensional Plasmonic Devices

Oleksiy Sydoruk, Kaushal Choonee, and Gregory C. Dyer

Abstract—Plasmons in two-dimensional semiconductor devices
will be reflected by discontinuities, notably, junctions between
gated and non-gated electron channels. The transmitted and
reflected plasmons can form spatially- and frequency-varying
signals, and their understanding is important for the design of
terahertz detectors, oscillators, and plasmonic crystals. Using
mode decomposition, we studied terahertz plasmons incident on a
junction between a gated and a nongated channel. The plasmon
reflection and transmission coefficients were found numerically
and analytically and studied between 0.3 and 1 THz for a range
of electron densities. At higher frequencies, we could describe
the plasmons by a simplified model of channels in homogeneous
dielectrics, for which the analytical approximations were accurate.
At low frequencies, however, the full geometry and mode spectrum
had to be taken into account. The results agreed with simulations
by the finite-element method. Mode decomposition thus proved to
be a powerful method for plasmonic devices, combining the rigor
of complete solutions of Maxwell's equations with the convenience
of analytical expressions.
Index Terms—Mode decomposition, plasmon, two-dimensional

channel, 2DEG.

I. INTRODUCTION

T WO-DIMENSIONAL (2-D) semiconductor structures
that support plasmons offer several applications for the

device-starved terahertz band. Plasmon nonlinearities can be
used in detectors [1]–[4], oscillators [5]–[9], mixers [1], [10],
[11], modulators [12], and plasmonic crystals [13], [14]. Also,
plasmons can be coupled to electromagnetic waves by grating
couplers and antennas, and their frequencies can be tuned in
a wide range by a dc voltage. On the other hand, graphene
combines the above properties with the promise of room-tem-
perature operation [15], [16].
A typical plasmonic structure may contain several sections of

gated and non-gated electron channels; see Fig. 1(a). The
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Fig. 1. (a) Plasmons propagating in gated and nongated electron channels have
different field distributions. A plasmon incident at the junction will give rise
to a reflected and a transmitted plasmon. In addition, radiation and evanescent
modes will be excited. Plasmon reflection and transmission is analogous to those
of waves in (b) dielectric and (c) metallic waveguide and can be described using
the same methods.

channels are embedded in a dielectric, which either interfaces
with air or is closed by a gate. The gate can control the electron
density in a channel, and a periodic array of gates can consti-
tute a grating coupler. Because of the different geometries and
electron densities, plasmons in the gated and non-gated chan-
nels may have different wavenumbers and field distributions.
As a result, plasmons will partially reflect and partially transmit
when incident on the junction between two sections. The re-
flected and transmitted plasmons will form frequency- and spa-
tially-varying amplitude distributions, providing a basis for res-
onators, oscillators, and plasmonic crystals [9], [13], [17].
Therefore, design of plasmonic devices requires under-

standing of how plasmons behave at the junctions. From the
electromagnetics point of view, the problem is analogous to
that of discontinuities in open dielectric [18]–[20] and closed
metallic [21] waveguides; see Fig. 1(b) and (c). Naturally, the
methods developed during decades of research in waveguides
could also be applied for plasmonic structures. And indeed,
mode decomposition has been used to study plasmons in metals
at optical frequencies [22], [23], and, more recently, for 2-D
THz plasmons in the presence of a dc current [9], [24]–[27].
Two-dimensional structures were also studied using the

Fourier analysis [28], a transmission-line model [13], [14],
[29], and finite-difference-time-domain simulations [30], [31].
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Although mode-decomposition techniques have been over-
looked for passive structures, they can offer several advantages.
In contrast to the transmission-line model of [13], [14], [29],
mode-decomposition relies on rigorous solutions of Maxwell's
equations, considers the plasmon fields in the dielectric as well
as in the channel, and takes non-plasmonic modes into account.
On the other hand, compared with full-wave numerical simula-
tions, mode-decomposition techniques offer the advantage of
fast calculations and even analytical approximations.
Using mode decomposition, this paper analyzes junctions

between a gated and non-gated electron channels. Section II in-
troduces the geometry and the model, and discusses the
mode spectra. Section III formulates the reflection problem,
and Section IV presents its solution by several approaches.
Section V draws conclusions.

II. GEOMETRY AND MODE SPECTRA
This section presents the plasmonic waveguide configuration

and discusses its eigenmodes. A 2-D electron channel, placed at
, is embedded in a dielectric with the relative permittivity

;see Fig. 1(a). The dielectric is unbounded below the channel.
For the nongated structure, the dielectric interfaces with air at

. For the gated structure, the dielectric is terminated at
by an electrically conducting gate. Air is also above

the gate. The nongated and gated channels can have different
electron densities, and , respectively.
For a TM electromagnetic wave, with the amplitudes of the

field components , and , the electron dynamics in the
channels can be described by Newton's equation of motion as

(1)

where is the amplitude of the ac electron velocity, is the
angular frequency, is the electron charge, and is the effec-
tive electron mass. Denoting the longitudinal wavenumber by

and the transverse wavenumbers in air and dielectric by
and , respectively, the dispersion relations are

(2)

where is the free-space wavenumber with de-
noting the vacuum light velocity. The fields obey the standard
boundary conditions. At , these are

(3)

where and are the amplitudes of the ac charge and current
density, respectively, and is the free-space permittivity. The
superscripts (1), (2), and (3) correspond to the space in the air,
in the dielectric above the channel, and in the dielectric below
it, respectively; see Fig. 1(a). The ac current density is

, where is the dc electron density. At and for the
nongated channel, the boundary conditions are

(4)

Fig. 2. Plasmon dispersion in a nongated channel depends on the GaAs–air
interface (solid line). It is different for homogeneous GaAs (dashed line).

The corresponding condition for the gated channel is
.

As is well known, both gated and nongated channels can
support plasmons, whose amplitudes decay away from the
channels. Their field distributions are different in the gated and
non-gated waveguides, and therefore, a plasmon incident on the
junction will give rise to a reflected and a transmitted plasmon.
However, and fields should match at the junction, which
cannot be achieved solely by the plasmons. As a result, other,
non-plasmonic, eigenmodes will be excited. These modes do
not obey the plasmonic dispersion relation and are not bound
to the channel.
The situation is analogous to discontinuities in traditional di-

electric and metallic waveguides; see Fig. 1(b) and (c). In the
former, an incident wave will excite an infinite number of re-
flected and transmitted waves that can be propagating or evanes-
cent. In the latter, an incident surface wave could excite other
surface waves as well as radiation and evanescent modes.
To solve the reflection problem one has, therefore, to know

the complete mode spectrum of the waveguide. Plasmonic
waveguides, like dielectric ones, support modes with a discrete
and a continuous spectrum, as discussed next.

A. Discrete Spectrum: Plasmons
Both gated and non-gated channels can support a single

plasmon. The plasmon wavenumbers are governed by disper-
sion relations, derived assuming an exponential field decay
away from a channel, using the equation of motion (1) and
applying the boundary conditions (3) and (4).
1) Nongated Waveguides: The plasmon dispersion relation

for nongated waveguides can be written as (see, e.g., [32])

(5)

where and .
Solved with (2), (5) gives at a chosen frequency a single solution
with real and imaginary . The solid line in Fig. 2 shows
the dispersion curve for a GaAs channel ( ,

, is the free electronmass) with cm
and (corresponding to recent experiments by Dyer
et al. [13], [14]).
If the dielectric above the channel extended to infinity, then
, and the dispersion relation would simplify to the standard

expression . The role of the dielectric-air interface at
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Fig. 3. Dispersion of the gated plasmons depends on the dc electron density,
controlled by the gate voltage.

depends on the dielectric thickness , the dc electron
density, and the frequency. The dashed line in Fig. 2 shows the
dispersion curve assuming a homogeneous dielectric around the
channel. It differs from the complete solution of (5), especially
at lower frequencies; at 0.6 THz, the difference between the
plasmon wavenumbers is around 30%.
For example, the amplitudes of the component can be

written as

(6)

where is a constant. The corresponding and compo-
nents can be readily found from Maxwell's equations.
2) Gated Waveguides: The dispersion relation for the plas-

mons in the gated channels is

(7)

where . A dc voltage applied
between the gate and the channel can control the dc electron
density and, hence, the plasmon dispersion. Fig. 3 shows
three dispersion curves for (solid line),
(dashed line), and (dotted line), where the value
of is the same as in Fig. 2, cm .
The amplitudes of the field are in the form

(8)

where is a constant.

B. Continuous Spectrum: Radiation and Evanescent Modes
Apart from plasmons, both configurations also support bulk

modes, whose amplitudes remain finite far from the channels.
The modes can have arbitrary real values of the transverse
wavenumber , constituting a continuous spectrum. The
corresponding longitudinal wavenumbers , found from the
dispersion relations, (2), are either real (radiation modes) or
imaginary (evanescent modes).
For the asymmetric geometries of Fig. 1(a), the spectrum can

be conveniently separated into bulk “top” and “bottom” modes

Fig. 4. Bulk modes of both gated and nongated waveguides can be separated
into (a), (c) top and (b), (d) bottommodes. The top modes are obtained assuming
a plane wave incident from above, and the bottom ones from below. The top and
bottom modes of the nongated waveguide extend everywhere in space, whereas
those of the gated waveguide are separated by the gate.

[22]. The top modes of the nongated waveguide are found as-
suming a plane wave incident from the top, a reflected wave in
the opposite direction, and a transmitted wave; see Fig. 4(a). The
bottom modes are found analogously, assuming incidence from
the bottom; see Fig. 4(b). The top and bottommodes of the gated
waveguide do not have a transmitted wave; see Fig. 4(c) and (d).
1) Nongated Waveguides: The components for the top

modes of a nongated waveguide can be written in the form

(9)

where is a constant, and , and

On the other hand, the bottom modes can be presented in the
form

(10)

where is a constant, and , and

2) Gated Waveguides: The components for the top
modes of a gated waveguide can be written in the form

(11)

where is a constant. On the other hand, the bottom modes
can be presented in the form

(12)

where is a constant and
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C. Mode Orthogonality, Overlap, and Power

Almost all mode-decomposition techniques rely on the
property of mode orthogonality. In the nongated waveguide,
for example, the plasmon and any bulk mode are orthogonal,
which can be written introducing the following scalar product
as

(13)

The plasmon and any bulk mode are also orthogonal in the gated
waveguide, which can be written, introducing a similar scalar
product for the gated channel, as

(14)

On the other hand, the orthogonality conditions for two bulk
modes with the transverse wavenumbers and can be
written in the form

(15)

where , , , , are constants, and
is the Dirac delta function. The scalar products in (15) are
the same as in (13) and (14), and

. All constants except can be
made equal to unity by a choice of , , , and
in (9)–(12). The same is true for and

.
On the other hand, pairs of modes from different waveguides

are not generally orthogonal. The mode overlap can be defined
using the same scalar products as in (13) and (14). For example,
the overlap between the two plasmons is of the form

(16)

and the overlap between the top modes is

(17)

Similarly, denotes the overlap between a topmode from
the non-gated and the plasmon of the gated waveguide,
the overlap between the plasmon from the gated waveguide and
a top mode from the non-gated one. The remaining overlaps are
denoted as , , , , and , where the first letter of
the subscript denotes the mode from the non-gated waveguide
(plasmon, top, or bottom) and the second letter, the mode from
the gated one.
The power carried by a mode can be found using the standard

expression , where the asterisk denotes
complex conjugation. It is non-zero only for the modes with real

(plasmons and radiation modes), for which it is proportional
to the scalar self-products defined above.

III. FIELDS AT THE JUNCTION
The complete mode spectra are now known and can be used

to present the fields in both waveguides. Assuming a single
incident plasmon in the non-gated waveguide, the total field
there will be a superposition of the incident plasmon, the re-
flected plasmon, and the bulk top and bottom modes. The field
in the gated waveguide will be a superposition of the transmitted
plasmon and the bulk modes. The and fields should
match at the junction, and the boundary conditions for the mag-
netic field can be written as

(18)

in the air and

(19)

in the dielectric. Here, the amplitude of the incident plasmon
is unity, is the plasmon (amplitude) reflection coefficient,

is the plasmon transmission coefficient, and , , ,
are the reflection and transmission coefficients of the bulk

modes.
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The boundary conditions for the electric field are of the form

(20)

and

(21)

where and are the plasmon wavenumbers in the non-
gated and gated waveguides, respectively.

IV. REFLECTION AND TRANSMISSION OF PLASMONS

Equations (18)–(21) are analogous to the boundary condi-
tions for open waveguides [19], [20], and can be solved by the
same methods. This section considers two such methods: a vari-
ational and a mode-matching one. It then compares the results
to each other and to finite-element simulations.

A. Variational Solution and Analytical Approximations

Variational methods are based on making a plausible guess
for the fields at a junction, and they are well established both
for open [20] and closed [21] waveguides. Our interest here is
in approximate analytical solutions, for which we need a simple
expression for the magnetic field, , at the junction between
the plasmonic waveguides. Because the power radiated at the
junction should be small, we can take as a combination of
two plasmons

(22)

where and are unknowns, found by substituting (22) into
(18)–(21). So, substituting into (18) and (19), multiplying by

, integrating over , and using the orthogonality conditions
gives for the reflection coefficient

(23)

On the other hand, multiplying by , integrating and
using the orthogonality conditions gives for the transmission
coefficient

(24)

Expressing similarly the bulk-mode transmission and reflection
coefficients from (18) and (19) and substituting the results into
(20) and (21) gives two linear algebraic equations of the form

(25)

where

Finding and from (25) yields, using (23) and (24), the
reflection and transmission coefficients.
1) Two Nongated Channels: The above results can be

simplified even further. If the plasmons are confined tightly to
the channel (e.g., at high frequencies), neither the gate for the
gated nor the air for the non-gated waveguide should play a
role. The configuration of Fig. 1(a) can be then replaced by two
non-gated channels in a homogeneous dielectric, see Fig. 5.
The plasmon fields are then proportional to
and . For them, and

. Also, if (‘small steps’),
a common approximation is to take the variational field at the
junction simply as that of the incident wave,
[33], [34]. Then

(26)

These expressions conserve power: the power of the incident
plasmon is equal to the sum of the powers of the reflected and
transmitted plasmons . In terms of the trans-
mission-line model [13], [14], [29], the condition
means small impedancemismatch between the twowaveguides.
2) Effects of DC Electron Density: Because the gated dis-

persion depends on the dc electron density (see Fig. 3), the
plasmon reflection and transmission can be controlled by a dc
gate voltage. The black lines in Fig. 6 show the plasmon power
reflection (solid lines) and transmission (dashed lines) coeffi-
cients, and , depending on the ratio at three fre-
quencies. The plasmon powers are calculated using the expres-
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Fig. 5. If the plasmons are confined strongly (which can occur when the fre-
quency is sufficiently high), the gate and air can be ignored. The configuration
of Fig. 1(a) can be seen as two nongated channels embedded in a homogeneous
dielectric.

Fig. 6. (a) Power reflection and transmission coefficients depend on the
ratio of the dc electron densities . For larger ratios, most of the power
reflects back to the nongated waveguide at all three frequencies. (b), (c) The
variational (black lines) and mode-matching (gray lines) solutions agree better
at higher frequencies.

sions for the fields, (6) and (8), so that, for example, the plasmon
reflected power is .
Fig. 6(c), for 1 THz, is the easiest to understand. At such a

high frequency, the plasmons are confined to the channel, so that
the configuration can be approximated by that of Fig. 5. If the
electron densities in both channels are the same, ,
there is no junction; the reflection coefficient is zero, the trans-
mission is unity. However, as decreases, the difference be-

Fig. 7. Power reflection coefficient depends on frequency and is different for
different ratios of the dc electron densities, . (a) The variational and
(b) mode-matching solutions agree.

tween the waveguides and, hence, the reflection coefficient in-
crease. At the limit , the gated channel is empty and
supports no plasmons. The incident plasmon should reflect back
with . Across a wide frequency range below 1 THz,
the plasmons behave similarly. For example, the reflection and
transmission coefficients at 0.5 THz, Fig. 6(b), differ from those
at 1 THz only when .
However, at the lowest frequency of 0.3 THz, the qualitative

picture of Fig. 5 is invalid, and the plasmon behavior is different,
see Fig. 6(b). When , about 20% of plasmon power
reflects from the junction. At this frequency, the gate influences
strongly the field distribution of the gated plasmons. As a re-
sult, the overlap between the gated and non-gated plasmons is
smaller and the reflection is higher than at the higher frequen-
cies. As decreases, the plasmon reflection coefficient first
decreases, reaches a minimum around , and only
then increases. The minimum can be seen as a result of a com-
pensation of the plasmonic mismatch due to the gate by a mis-
match of the electron densities. At low values of , it tends to
unity, like in Fig. 6(b) and (c).
The numerical calculations for all three Fig. 6 conserve power

with maximum 1% relative error and with better
accuracy at higher frequencies. As they also show, the power
radiated at the junction is negligible. This power is calculated
integrating the fields of the bulk modes. In these calculations,
the upper limits of the integrals in (25) were replaced by large
finite values.
3) Effects of Frequency: The dc electron densities in both

channel will determine how the reflection and transmission co-
efficients depend on frequency, as Fig. 7(a) shows for and
five values of : 1, 2, 5, 10 and 50. Above 0.6 THz,
changes little with frequency, and is larger for larger values of

. The behavior is more complicated at lower frequen-
cies, where the geometry plays a more important role. For ex-
ample, decreases with frequency for but in-
creases for .
In contrast to the power reflection coefficient , the ampli-

tude one has a complex value. Both its real and imaginary
parts change with frequency, as the black lines in Fig. 8 show
for 1 and 5.
4) Effects of Geometry: By solving Maxwell's equations in

the whole plane of the junction, the mode-decomposition ap-
proach can consider various geometries.
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Fig. 8. Amplitude reflection coefficient is complex, and both its real and imag-
inary parts depend on frequency. The agreement between the variational (black
lines) and mode-matching (gray lines) solutions is better for higher frequencies
and the lower value of .

Fig. 9. Mode-decomposition approach takes geometry into account. For ex-
ample, (a) an infinitely thick gate can be considered instead of the thin gate of
Fig. 1(a). However, (b) the power reflection and transmission coefficients are
almost the same for the thin (black lines) and thick (gray lines) gates. Also, (c)
a homogeneous dielectric (GaAs) can be considered instead of air. (d) The di-
electric–air interface modifies the power reflection and transmission coefficients
at low values of .

For example, the boundary conditions (18)–(21) and the re-
sults in Fig. 6–8 were obtained for a gate of zero thickness.
These can, however, be easily changed for a gate of infinite
thickness; see Fig. 9(a). It is done by replacing the boundary
conditions for at the junction with ; (18) is then
omitted and the right-hand side of (20) is replaced by zero. How-
ever, the results for the reflection and transmission coefficients
hardly change, as Fig. 9(b) shows for 0.3 THz. The black lines
for the infinitely thin gate almost coincide with the gray lines
for the infinitely thick one.
We also considered effects of the dielectric–air interface. As

Fig. 2 has already shown, the interface modifies the dispersion
relation. It also affects the transmission and reflection coeffi-
cients; see Fig. 9(d). At low values of the coefficients
are different depending on whether there is air or GaAs above

.

B. Mode-Matching Solution

The above variational approach gave analytical expressions
for the reflection and transmission coefficients. The cost, how-
ever, is the simplified approximation of the junction field, (22),

that can be inaccurate for arbitrary junctions. More accurate
methods exist, of which we discuss below the mode-matching
one.
Going back to the boundary conditions (18)–(21), the depen-

dence on the coordinate can be eliminated by multiplying the
equations by the fields of plasmons and bulk modes, and inte-
grating over . Mode orthogonality simplifies the expressions,
so that the boundary condition for the magnetic field gives the
following equations

(27)

(28)

(29)

and

(30)

On the other hand, the boundary condition for the electric field
gives the following equations:

(31)



SYDORUK et al.: TRANSMISSION AND REFLECTION OF TERAHERTZ PLASMONS IN TWO-DIMENSIONAL PLASMONIC DEVICES 493

and

(32)

and

(33)

and

(34)

The expressions for the overlaps between the bulk modes con-
tain terms proportional to . This singularity can be
avoided by multiplying (28) and (30) by and adding to or
subtracting from (33) and (34). The results, together with (27),
(29), (31) and (33), form a system of coupled integral equations.
We solved it numerically, first, by replacing the upper limits
of the integrals with a large but finite number and then by dis-
cretizing the integrals using the trapezoidal rule. The result is a
system of linear algebraic equations for the plasmon reflection
and transmission coefficients and for the discretized reflection
and transmission coefficients of the bulk modes. We then com-
pared the results of the mode-matching model with the varia-
tional solutions for the range of frequencies and electron densi-
ties of Figs. 6–8.
The gray lines in Fig. 6 show the plasmon power coefficients

depending on the dc electron density at three frequencies. These

behave similarly to the variational solutions (black lines). The
reflection coefficients are small at smaller values of
and tend to unity as larger values. The agreement between the
mode-matching and the variational solutions is better at higher
frequencies and lower values of . The reason is that the
expression for the variational field, (22), took only the plasmons
into account. It is more accurate when the plasmonic mismatch
is weak, which occurs at higher frequencies and small values
of . When the mismatch is strong, the variational solu-
tion could be expected to underestimate the reflection. A similar
behavior can be seen in Fig. 7(b) that shows the frequency de-
pendence of the power reflection coefficient at several values
of . Like for Fig. 6, the mode-matching solutions are
close to the variational ones, see Fig. 7(a), although their values
of are generally higher. In both Fig. 6 and Fig. 7(b), the
mode-matching solution conserves power .
The values of the amplitude coefficients, and , are com-

plex, as the dashed lines in Fig. 8 show for the reflection coeffi-
cient. However, the phases given by the mode-matching and the
variational (solid lines) solutions agree less well than their am-
plitudes, especially for the higher value of . A possible
reason is the approximate expression of variational field, (22),
which tends to underestimate the effects of the nonplasmonic
modes. These modes carry negligible power and should have
a limited effect on the amplitudes of the reflection and trans-
mission coefficient. They have, however, a greater effect on the
phases, as Fig. 8 shows.
In addition to the limitations of the variational solution, the

entire mode-matching approach of this paper uses several ap-
proximations. First, it ignored plasmonic loss, which is valid at
low temperatures and sufficiently high electron densities. How-
ever, the loss should increase for gated channels with low densi-
ties and, therefore, may dominate, in real structures, the reflec-
tion and transmission coefficients for large values of .
Second, our model assumed, as is usually done in the literature,
abrupt junctions between gated and non-gated channels. In real
devices, the fringing fields of the gate and electron diffusion will
create a continuous transition of the electron concentration from

to . Continuous transitions are often used as a means
to match waveguides and reduce reflections, see e.g. [35]. And
while the magnitude of the effect in real devices would require
an additional study, one could expect that the assumption of an
abrupt junction might overestimate the magnitude of the plas-
monic reflection coefficient.
As stated above, when a plasmon is incident on a junction,

the power radiated from the junction (i.e. the power converted
into continuous modes with real wavenumbers) is negligible.
This result could be expected: the plasmon wavenumbers in our
configurations exceed the radiative-mode wavenumbers by two
orders of magnitude, and the overlap between the plasmons and
the radiative modes is small. The fields are matched at the in-
terfaces by exciting the evanescent modes, which have higher
wavenumbers but do not carry power. This result also agrees
with experimental observations. Ever since the early work of
Allen et al. [36], experimentalists have been using special struc-
tures, such as grating couplers [37]–[40] and antennas [13], [14],
[41], to couple electromagnetic radiation to plasmons. In par-
ticular, grating couplers create a series of alternating gated and
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Fig. 10. Solutions by the finite-element method (orange lines) behave similarly
to those by the variational (black lines) andmode-matching (gray lines) methods
for (a) and (b) . The agreement is better between
the finite-element and the mode-matching methods.

non-gated channels, and can couple plasmons to electromag-
netic radiation due to their periodicity. It is in contrast to the
single non-periodic junctions considered here.
Although we concentrate here on junctions between gated

and non-gated channels, the mode-matching techniques are also
applicable to other geometries [27]. Practically important are, in
particular, contacts to the channels. Ideal, perfectly conducting,
contacts can be characterized by the boundary condition
. On the other hand, more realistic contacts can be charac-
terized by impedance boundary conditions of the form

. Contacts constitute device boundaries and so should be
analyzed when considering a complete device, which will be a
subject of future work.

C. Comparison With the Finite-Element Method

We also calculated the reflection coefficient using the fre-
quency-domain finite-element package Comsol Multiphysics.
The channels were described as a thin (20 nm) three-dimen-
sional plasma slab with a Drude permittivity. The electron den-
sity of the slab corresponded to the two-dimensional density of
the channels used above. The gate was modelled as a 10-nm-
thick perfect electric conductor. To close the computational do-
main, two perfect electric conductors were placed at 20 m
above and below the channels. This distance was large enough
not to affect plasmons. The other parameters were the same as
for the mode-matching analysis.
The calculations had two steps. First, the eigenmode solver

determined the dispersion of the gated and non-gated plas-
mons. They agreed excellently with the theoretical ones; see
Figs. 2 and 3. Then, a plasmon was launched from the non-
gated waveguide, the total field computed, and the reflection
coefficient evaluated.
Fig. 10 compares the results with the above solutions for the

power reflection coefficient. All three solutions are qualitatively
similar both for 1 and 2. The Comsol results (orange
lines) are closer to the mode-matching solutions (gray lines)
than to the variational solutions (black lines), which might be
due to the approximations of the latter.

D. Effects of Electron Collisions

The lossless equation of motion (1) describes well the plas-
mons observed experimentally at liquid-helium temperatures,
see, e.g., [42], [43]. At higher temperatures, electron collisions

will play a role depending on the relationship between the an-
gular frequency and the collision frequency . For ,
the mode profiles, and thus the reflection and transmission co-
efficients, will differ considerably from the lossless ones dis-
cussed here. On the other hand, for , the mode profiles
will be little affected by loss, similar to the situation in lossy
dielectric waveguides [44]. As a result, the reflection and trans-
mission coefficients will remain almost the same, and the effect
of collisions will be limited to propagation loss.
To check this qualitative picture, we employed the finite-el-

ement model of Section IV-C. The loss was taken into account
by a collision frequency in the Drude permittivity.
We then repeated the calculations for ; the
corresponding values of changed from around 20 to 60 be-
tween 0.3–1 THz, and the electron mobility was of the order of

. After accounting for the propagation loss, we
could calculate the values of . In agreement with our expec-
tations, they did not change appreciably compared to those of
Fig. 10. Analogous results were previously obtained for the re-
lated problem of lossy plasmons reflecting from contacts in the
presence of dc currents [26].

V. CONCLUSION

A plasmon will partially reflect and transmit when incident
upon a junction between a gated and nongated channels. Also,
it will excite bulk radiation and evanescent modes. As this
paper has shown, the plasmon reflection and transmission can
be studied by variational and mode-matching methods. The aim
of the variational method was to obtain analytical expressions,
whereas the mode-matching one gave numerical solutions.
The behavior of the plasmon reflection and transmission co-

efficients depended on the frequency. At higher frequencies,
the plasmons were confined tightly to the channels. As a re-
sult, the effects of geometry, such as the air-dielectric interface
and the gate, could be ignored. The channels can be seen as
non-gated ones surrounded by a homogeneous dielectric. In this
regime, the plasmon reflection coefficient could be increased by
increasing the difference between the channel electron densities.
At lower frequencies, however, the situation was more compli-
cated. For example, the reflection coefficient could increase or
decrease with frequency depending on the electron density. The
analytical expressions appeared to be more accurate at higher
frequencies, and both the variational and the mode-matching
methods agreed with finite-element calculations.
As the results show, mode decomposition is a powerful

method to study plasmons at junctions between gated and
non-gated channels. On one hand, the method is rigorous; it
relies on solving Maxwell's equations and can tackle various
geometries. On the other hand, it is easy to implement, fast,
and can even result in simple analytical approximations. These
results can be used further for the design of devices combining
several junctions, for example, plasmonic crystals, resonators,
detectors, and oscillators.
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