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The mathematical concept of strongly real functions of positive and
negative types is introduced to network theory for the first time. The
driving-point reactance/susceptance of a pure Foster network, made
up of only ideal positive inductance and capacitance elements, is a
strongly real function of real frequency of positive type. As a corollary,
for a pure non-Foster network made up of only ideal negative induc-
tance and capacitance elements, the driving-point reactance/suscep-
tance is a strongly real function of real frequency of negative type. It
is shown that a condition for a purely reactive passive network to
exhibit a positive or negative reactance/susceptance-frequency gradient
is that the driving-point immittance should have alternating poles and
zeroes lying on the real frequency axis. Finally, it is shown that either
purely Foster or non-Foster networks can be constructed by combining
ideal Foster and non-Foster reactive elements.

Introduction: The driving-point immittance (either impedance Z or
admittance Y) of a passive network realised using lumped elements
has only a positive real function [1, 2] of complex frequency s = jo,
where o = (0’ +jo"); o' is the damped angular resonance frequency
and 0" is the Napier frequency. As a result, immittance is represented
by a rational function of complex frequency, having polynomials with
real coefficients. Also, the right half of the s-plane is mapped into the
right half of the driving point Z- or Y-plane, with the immittance func-
tion being real for real . In the special case of a passive network that
contains frequency-invariant reactances [2], the right half of the
s-plane is also mapped into the right half of the driving point Z- or
Y-plane, but the immittance function is no longer real for real w.
Foster’s theorem also states that the driving-point immittance and
associated reactive elements are an odd rational function with the
Laplace transform [1, 3, 4] for LC circuits satisfying both of the follow-
ing conditions [5]
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where Xp-=J{ZAw)} is reactance and Br=JI{Z{w)} is susceptance;
subscript F represents the Foster condition, such that the networks
have positive reactance- and susceptance-frequency gradients.

As a corollary to Foster networks, the driving-point immittance and
associated reactive elements in non-Foster networks have the following
conditions [5]
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where subscript NF represents the non-Foster condition, such that the
networks have negative reactance- and susceptance-frequency gradients
[4, 5]. In practice, lossless non-Foster networks are traditionally
implemented by active circuits that can synthesise negative inductance
and negative capacitance elements [4, 5]. However, this has also been
achieved through the use of negative differential-phase group delay net-
works [5], originally introduced in [6, 7].

In this Letter, only purely reactive passive networks are considered.
Therefore, lossy Foster networks [8, 9] that exhibit driving-point immit-
tances with a positive reactance-frequency gradient, but without exhibit-
ing a positive susceptance-frequency gradient [9], or vice versa, thus
violating (1), are not considered further.

The mathematical concept of strongly real functions of positive and
negative types is introduced here to network theory for the first time.
From this, an additional property of ideal lossless Foster networks is
identified and then a new condition for networks to obey either (1) or
(2) is proven. Finally, examples are given.

Strongly real rational functions: This concept has four associated the-
orems [10, 11].
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Theorem 1: Let X(w) be a real rational function (having real coefficients)
of degree n

P(w)
X =—=
@ =50; 3

Then the following conditions are equivalent:

(i) Poles and zeroes of X(w) are interspersed on the ’-axis.
(i) X(w) is strongly real [i.e. X(w) is real only if @ is real].
(iii)) X(w) can be written as follows, where x; and b are real
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with either (@ <0 and ¢, <0) or (¢ >0 and ¢, >0).

Strongly real rational functions of positive and negative types: It is
important to note that any rational function obeying (i) will also obey
(i1) and (iii), and vice versa. This means that any rational function
with interspersed poles and zeroes lying on the w’-axis will exhibit a
positive or a negative gradient along the entire w’-axis between its
poles. However, this depending on the sign of a and ¢, in (iii). Owing
to (iii), the following will be either positive or negative for any o’ and
has no real critical points:
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Theorem 2: A strongly real rational function can only be one of two
types: positive type if ©” >0, implying that X>0 [i.e. mapping the
upper half of the w-plane in the upper half of the Z(w)-plane]; or nega-
tive type if ®” >0, implying that X <0 [i.e. mapping the upper half of the
w-plane in the lower half of the Z(w)-plane].

Theorem 3: A strongly real rational function of positive type is strictly
increasing in value between its poles, since a < 0 and ¢; <0, ensuring (5)
is always positive. A strongly real function of negative type has a >0
and ¢; >0 and must be decreasing in value between its poles.

Theorem 4: 1f X(w) is a strongly real function of positive(negative) type
then —1/X(w) will also be a strongly real function of positive(negative)
type [11].

By inspection of Theorems 1, 3 and 4, since B(w) = —1/X(w) for any
purely reactive network, two lemmata become evident

Lemma 1 (Foster/non-Foster behaviour theorem): Any purely reactive
network with poles and zeroes of its driving-point reactance/susceptance
alternate on the w’-axis exhibits either purely Foster behaviour (1) or
purely non-Foster behaviour (2) along the entire »’-axis.

Lemma 2 (combining Theorem 2 with Lemma 1): Since any driving-
point immittance for a purely reactive network can be obtained by mul-
tiplying its reactance/susceptance by the complex operator j (rotating the
w-plane by +90° to give the s-plane). Any driving-point immittance
with alternating poles and zeroes lying on the imaginary s-axis will
exhibit either purely Foster behaviour (1) or purely non-Foster behav-
iour (2).

If the network exhibits purely Foster behaviour, the right half of the
s-plane maps in the right-half plane of the driving-point immittance.
With purely non-Foster behaviour, the right half of the s-plane maps
in the left half of the immittance plane. To determine the kind of behav-
iour, immittance can be calculated for a single value of complex fre-
quency in the right half of the s-plane to observe its mapping.

Ideal lossless Foster networks: As stated in [1, 3, 9], for LC networks
(with always positive values for inductance L and capacitance C), the
driving-port reactance/susceptance has alternating poles and zeroes
along the o’-axis and additionally obey (1). For example, consider the
network shown in Fig. 1.
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Fig. 1 Typical LC network topology. Note that random values for L and C
would generally produce a network that does not obey either (1) or (2)

With values of inductances L, =1 H, L, =2 H and capacitances C3 =
3 F, C4, =4 F, the driving-point impedance at Port 1, having an open
circuit at Port 2, is given by:

1 + 1552 + 24s*
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The poles for reactance Xg(w) in (7) have purely real values of w at 0 and
+0.54. The zeroes are also found for purely real values of w at £0.741
and +0.275. As predicted by Foster’s theorem, there are four solutions
for zeroes alternating with the poles on the w’-axis. Also, as expected,
since inductive reactance X;(w) =wL is a rational function of positive
type, its reactance-frequency gradient obeys (1).

Ideal lossless non-Foster networks: For LC networks (with always
negative values for inductance L and capacitance C), the poles and
zeroes of the driving-point reactance/susceptance also alternate along
the w'-axis. In addition, the reactance/susceptance is represented by a
rational function of negative type, exhibiting non-Foster behaviour as
defined by Theorems 2 and 3.

Consider the network topology given in Fig. 1, with values of induc-
tances L, =—1 H, L, =-2 H and capacitances C3 =-3 F, C4,=—4 F.
The resulting driving point impedance at Port 1, having an open
circuit at Port 2, is given by
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Since the location of poles and zeroes of Xy-(@) alternate along the
o’-axis, it is a strongly real function of negative type. Therefore, a
single point in the right half of the s-plane can be calculated and,
using Lemma 2, checked to see that it maps into the left half of
Xyr)-plane, confirming Xy-(w) obeys (2). Alternatively, the gradient
can be determined by taking the derivative of (9); this will always be
negative.

Networks employing ideal Foster and non-Foster reactive elements
exhibiting Foster behaviour: Considering again the network topology
given in Fig. 1, with values of inductances L, =1 H, L, =-2 H and
capacitances C; =3 F, C, =4 F (representing a combination of ideal
Foster and non-Foster elements), the driving-point reactance/suscep-
tance still obeys (1). The resulting driving-point impedance at Port 1,
having an open circuit at Port 2, is given by
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The poles for X{w) have values of @ at 0 and £/0.54; while zeroes have
values of  at £0.475 and +70.429. The poles and zeroes are now either
purely imaginary or purely real. Therefore, X;{®) cannot be a strongly
real function, since it contains non-real roots. This implies that X-{®)
can take real values for non-real @ and that no conclusion can be
drawn on the reactance-frequency gradient with the previous theorems.
However, the gradient can be determined by taking the derivative of (10)
with respect to ’; this will still always be positive. Note that B{w) will
have the same behaviour since only purely reactive networks are con-
sidered here.

Networks employing ideal Foster and non-Foster reactive elements
exhibiting non-Foster behaviour: Consider again the network topology
given in Fig. 1, with values of inductances L, =—0.2 H, L, = —1 H and
capacitances C; = —1 F, C4 = 0.2 F. The result is a non-Foster behaviour
with the poles and zeroes not lying on the @’-axis and so the associated
driving-point reactance/susceptance will not be a strongly real function
of w. As a result, the behaviour of the reactance/susceptance-frequency
gradient must be checked first.

Conclusion: For a purely reactive network, with the use of Lemma 2, a
new condition for the driving-point immittance has been found in order
for it to exhibit either a purely Foster (1) or non-Foster behaviour (2).
This is by means of the mathematical concept of strongly real functions,
which to the best of our knowledge is new to network theory.
Exceptions to the conditions were also given by examples; a network
containing negative(positive) value inductances and capacitances that
also exhibit Foster(non-Foster) behaviour. These new properties may
give further insight into the behaviour of positive(negative) differential-
phase group delay networks that employ Foster(non-Foster) networks;
for example with the use of 3D Smith charts [12].
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