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A theoretical analysis is presented of plasmons in gated two-dimensional electron channels
supporting dc currents. In contrast to previous treatments, the model takes into account
complete mode spectra and transverse field distributions. Conditions for plasmon amplification
are determined, and asymmetric plasmonic oscillators are analysed. The results are compared
with the traditional treatment of the Dyakonov-Shur instability. The limitations of the
traditional treatment are thus revealed. The present electrodynamically rigorous model can be
used to design and analyse terahertz plasmonic oscillators. VC 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4879317]

I. INTRODUCTION

The pioneering works of Dyanokov and Shur on tera-
hertz (THz) generation1 and detection2 have rekindled inter-
est in plasmons in two-dimensional electron channels. The
proposal for THz sources is particularly interesting: high-
power and efficient THz generation has been notoriously dif-
ficult to achieve, and the existing sources are bulky and
expensive. The idea of Dyakonov and Shur1 relies on an
instability of plasmons propagating in a field-effect transistor
(FET) when a dc current flows through the channel. Plasmon
instabilities had been considered before, but mostly relying
on the travelling-wave interactions where plasmons grow
while propagating along the device, see for example
Refs. 3–5. In contrast, plasmons in the Dyakonov-Shur
model (reminiscent of the Pierce instability6) grow when
they reflect from the contacts.

Clearly, the properties of plasmon reflection determine
whether the instability can occur. To describe the reflection
theoretically, Dyakonov and Shur1 made several assump-
tions. First, they considered the boundary conditions at a sin-
gle point on the channel, ignoring the rest of the contact.
Second, because they found that symmetric boundary condi-
tions lead to no oscillations, they postulated asymmetric
boundary conditions, zero ac potential at the source and zero
ac current at the drain. This elegant and simple approach has
dominated the literature (see, for example, Refs. 7–11).

However, more rigorous models have emerged in recent
years. Solving Maxwell’s equations and using the Fourier
analysis and, Popov et al.12 studied plasmon generation and
coupling to electromagnetic radiation in one-dimensional
FET arrays. Sydoruk et al.13,14 developed a semi-analytical
model based on mode matching. The latter, in contrast to the
traditional treatment of Dyakonov and Shur, relies on elec-
trodynamic boundary conditions and takes into account the
field distributions along an entire contact. It has been used to
predict distributed gain in channels with multiple sections,13

to study plasmon amplification at contacts,14,15 and to con-
sider effects of electron collisions and diffusion.16

This paper develops further the mode-matching tech-
nique for plasmon amplification. It considers gated electron
channels: closed by a conductor on one side of the channel
but open on the other side. In contrast, previous papers con-
sidered either open channels15,16 or channels closed on both
sides.13,14 Section II introduces the model. Section III
considers reflection from a conducting boundary (a source
or a drain) and demonstrates plasmon amplification. Section
IV compares the mode-matching technique with the tradi-
tional model of Dyakonov and Shur. Section V draws
conclusions.

II. CONFIGURATION AND MODE SPECTRUM

This section discusses the theoretical model and considers
the mode spectrum. The configuration consists of a two-
dimensional electron channel placed at x¼ 0, see Fig. 1. The
channel is surrounded by a dielectric with the relative permittiv-
ity ed. A perfectly conducting gate is placed above the channel,
at x¼ d. Below the channel, the dielectric extends to x¼"1.

Electrons drift in the channel along the z-direction with the
dc velocity v0. They will interact with an electromagnetic wave
if the wave has an electric field component along the channel.
Therefore, TM waves will be assumed with the electric field
components Ez and Ex and the magnetic field component Hy.
They obey Maxwell’s equations in the dielectric above and
below the channel, and their amplitudes have the form

Eð1;2Þx ¼ Að1;2Þe"jkxx þ Bð1;2Þe jkxx

Hð1;2Þy ¼ xe0ed

kz
Eð1;2Þx

Eð1;2Þz ¼ " kx

kz
Að1;2Þe"jkxx " Bð1;2Þe jkxxð Þ:

(1)

Here, A(1,2) and B(1,2) are constants, and the superscripts (1)
and (2) refer to the space above and below the channel,
respectively. The longitudinal wavenumber is kz; the trans-
verse one is kx; the angular frequency is x; the vacuuma)Electronic mail: osydoruk@imperial.ac.uk
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permittivity is e0. The wavenumbers obey the dielectric dis-
persion relation is the form

k2
x þ k2

z ¼ ed
x2

c2
; (2)

where c is the light velocity in vacuum.
The fields obey the standard boundary conditions. At the

gate:

Eð1Þz jx¼d ¼ 0 (3)

and at the channel:

Eð1Þz jx¼0 ¼ Eð2Þz jx¼0

Eð1Þx jx¼0 " Eð2Þx jx¼0 ¼
en

e0ed

Hð1Þy jx¼0 " Hð2Þy jx¼0 ¼ J:

(4)

Here, e is the electron charge, and n and J are the amplitudes
of the ac electron charge and current density, respectively.
As is usually done, the ac quantities are assumed to be much
smaller than their dc counterparts: jnj & n0; jvj & v0, where
n0 is the dc electron density and v is the amplitude of the ac
electron velocity. The current density can then be linearized
leading to the expression J¼ en0vþ env0. The amplitude of
the ac velocity can be found from the linearized Newton
equation of motion as

v ¼ "j
e

m

Ezjx¼0

x" kzv0
; (5)

where m is the electron effective mass. Substituting the
expressions for the fields Eq. (1) into the boundary condi-
tions, Eqs. (3) and (4) give for the amplitude of the Ex field
below the channel

Eð2Þx ¼ A 1þ C" Ce"2jkxdð Þe"jkxx½

þ Cþ ð1" CÞe"2jkxd
! "

e jkxx(; (6)

where A is a constant and

C ¼ "j
X2

pkx

ðx" kzv0Þ2
(7)

with X2
p ¼ e2n0=ð2e0edmÞ.

In principle, the transverse wavenumber may be com-
plex, kx ¼ k0x þ jk00x . However, the fields cannot grow at
x¼"1 (although they may remain finite).17,18 This condi-
tion restricts the permissible values of kx, allowing the eigen-
mode spectrum to be separated into two parts, plasmons and
radiation modes, as discussed next.

A. Plasmons

If the transverse wavenumber kx has a non-negative
imaginary part, k00x > 0, the term in front of expðjkxxÞ in
Eq. (6) must vanish for the fields to remain finite, so that

Cþ ð1" CÞe"2jkxd ¼ 0 (8)

or, rearranging,

"j
e2n0

e0edm

kx

ðx" kzv0Þ2
¼ 1þ j cotðkxdÞ: (9)

Equation (8) is the dispersion relation for plasmons in gated
channels, and its solution gives imaginary values of kx and
real values of kz, so that the fields decay away from the chan-
nel. Ignoring retardation, kx¼ jkz, Eq. (8) reduces to the
expressions given by Theis19 and Tsui et al.20 in the absence
and by Crowne7 in the presence of drift.

So far, most attention in the literature has been paid to
two limiting cases: fully gated and open channels. For fully
gated channels, kzd ! 0. It has also been referred to as the
shallow-water limit by Dyakonov and Shur.1 The dispersion
relation reduces then to

x" kzv0 ¼ 6skz; (10)

where s is the phase velocity of the plasmons, which for the
fully gated channels is of the form s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2n0d=ðe0edmÞ

p
.

Open (or ungated) channels correspond to the opposite
limit kzd ! 1, also referred to as the deep-water limit.10

The dispersion relation is then of the form7,10,15,21

x" kzv0 ¼ 6Xp

ffiffiffiffi
kz

p
: (11)

Both Eqs. (10) and (11) have been derived ignoring
retardation.

Solutions of the dispersion relations Eqs. (9)–(11) are
different for the opposite directions, i.e., for the opposite val-
ues of kz. It means that counter-propagating plasmons may
have different phase and group velocities and, as will be
shown later, different field distributions.

Up two four plasmons described by Eqs. (9) and (11)
can propagate at the same frequency, two with low and two
with high wavenumbers. Some studies have indeed taken
all four of them into account.7,14 However, as numerical cal-
culations show,14 amplification upon reflection can be
explained solely by an interplay of the low-wavenumber
plasmons. Figures 2(a)–2(c) show their dispersion curves for
three values of the gate-to-channel distance d: 25, 75,
and 250 nm. All three figures were calculated for GaAs
channels (ed¼ 12.8, m¼ 0.067m0) with the electron
density n0¼ 1011 cm"2. The electron drift velocity was

FIG. 1. The plasmons propagating along and against the dc current in gated
electron channels have different wavenumbers and field distributions (shown
schematically in orange and black). Plasmon reflection from a contact will,
therefore, excite not only a reflected plasmon but also a continuum of radia-
tion modes (shown schematically in grey). For comparison with the tradi-
tional model of Dyakonov and Shur,1 the contacts can be either electric or
magnetic conductors.
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v0¼ 3) 106 cm/s. It is ten times smaller than the maximum
drift velocity achievable in GaAs and corresponds to the dc
current density of about 0.05 A/cm.

The dispersion curves are asymmetric: at the same fre-
quency, the plasmons propagating against the dc current
(negative kz) have higher wavenumbers than the plasmons
propagating along the current. Whether a solution of the gen-
eral dispersion relation Eq. (9) can be approximated either
by the solution for an open, Eq. (10), or a fully closed chan-
nel, Eq. (11), depends not only on the gate-to-channel dis-
tance but also on the frequency. So, for d¼ 25 nm, the exact
solution (orange lines) follows the fully closed-channel solu-
tion (straight gray lines) for frequencies below 0.25 THz, see
Fig. 2(a). Between 0.25 and 1.25 THz, the exact solution
deviates from both approximations. On the other hand, for
d¼ 75 nm, the exact solution follows the fully closed-

channel one up to 0.25 THz. It follows the open-channel so-
lution for frequencies above 1 THz, see Fig. 2(b). For
d¼ 250 nm, the exact and the open-channel solutions coin-
cide except for very low frequencies, see Fig. 2(c).

Once the wavenumbers are known, the plasmonic fields
can be calculated. So, the Ex components above and below
the channel are of the form

Eð1Þx ¼ A
cos½kxðx" dÞ(

sinðkxdÞ
Eð2Þx ¼ j Ae"jkxx:

(12)

The corresponding current density and the electron velocity are

J ¼ A
xe0ed

kz

e"jkxd

sinðkxdÞ

v ¼ " e

m

kx

kzðx" kzv0Þ
:

(13)

The fields of the counter-propagating plasmons will be dif-
ferent due to the different plasmon wavenumbers kx and kz.
Figure 3 compares the magnitude of the Ex component of the
counter-propagating plasmons. The frequency is 0.25 THz
and the other parameters are the same as in Fig. 2. For com-
parison of the decay rates, the fields above and below the
channel were normalized separately.

For d¼ 25 nm, the fields resemble most closely those
expected in fully closed channels. In particular, the fields for
the both plasmons are almost constant and coincide above
the channel, see Fig. 3(a). Nevertheless, the fields decay dif-
ferently below the channel. For d¼ 75 nm, the fields above
the channel decay before reaching the gate and they are
somewhat different for the counter-propagating plasmons,
see Fig. 3(b). For d¼ 250 nm, the plasmons have different
distributions above and below the channel, see Fig. 3(c).

The ac power carried by the plasmons is the sum of the
electromagnetic power due to the fields and the kinetic
power due to the electron motion.14,15,22,23 It can be written
in the form

P ¼ 1

2
Re

ðd

"1
ExH*y dxþ mv0

2e
ReðvJ*Þ

¼ jAj2 xe0ed

kzk00x sinh2ðk00x dÞ

"

k00x d þ sinhðk00x dÞek00x d

) 1þ 2k002x v0

kzðx" kzv0Þ

 !#

: (14)

FIG. 2. In the presence of dc current, the plasmon dispersion curves are
asymmetric. Depending on the gate-to-channel distance and on the fre-
quency, the exact solution (orange lines) can be approximated by the solu-
tions either for fully closed or open channels (grey lines).

FIG. 3. Counter propagating plasmons have different transverse field distri-
butions (black and orange lines) for all values of the gate-to-channel dis-
tance. This difference causes mismatched plasmonic fields at boundaries and
complicates plasmon reflection.
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B. Radiation modes

If the transverse wavenumber, kx, is an arbitrary real num-
ber, all of the terms in Eq. (6) remain finite at x¼"1. These
radiation modes form a continuous spectrum with the ampli-
tudes of the Ex fields above and below the channel of the form

eð1Þx ¼ A
cos½kxðx" dÞ(

sinðkxdÞ

eð2Þx ¼ A
cos½kxðx" dÞ(

sinðkxdÞ
þ 2jC cos kxx

% &
:

(15)

The corresponding amplitudes of the ac current density and
velocity are

J ¼ "2jA
xe0ed

kz
C tan kxd

v ¼ "A
e

m

kx

kz

tan kxd

x" kzv0
:

(16)

The following section uses the expressions for the ac fields,
Eqs. (12) and (15), to solve the problem of plasmon reflec-
tion. The expressions for the amplitude of the ac current and
velocity, Eqs. (13) and (16), are needed to calculate the ac
power, see Eq. (14).

III. REFLECTION FROM A CONDUCTING BOUNDARY

When a plasmon reaches a contact, it reflects and
propagates in the opposite direction. Assuming a

perfectly conducting electric contact at z¼ 0, the
boundary condition is the absence of the transverse elec-
tric field, Exjz¼0 ¼ 0. This condition should hold
everywhere at the contact, "1< x+ d. If no dc current
flows, the incident and the reflected plasmons have the same
transverse distributions and, hence, the same amplitudes.

However, they have different field distributions in the
presence of a dc current, see Fig. 3. Therefore, first, the inci-
dent and reflected plasmon can have different amplitudes
and, second, the radiation modes will be excited at the con-
tact to satisfy the boundary condition.13–16 So, the boundary
condition takes the form

EðiÞx þ REðrÞx þ
ð1

0

rðkxÞeðrÞx dkx ¼ 0: (17)

Here, the superscripts (i) and (r) correspond, respectively, to
the incident and reflected waves. The amplitude of the inci-
dent plasmon is unity, so R is the (amplitude) plasmon reflec-
tion coefficient; r(kx) is the amplitude of the radiation
modes.

Two methods to solve Eq. (17), one analytical and
one numerical, were previously considered in Refs. 13–16.
The analytical method assumes that the dc current is weak
and causes perturbations in the ac quantities that are
linear with the drift velocity. Relying on orthogonality of the
driftless modes, an approximate expression for the plasmon
reflection coefficient can be derived as (see Appendix A)

R ¼ "1þ 4kð0Þx v0

x
)

Cð0Þsin2ðkð0Þx dÞ kð0Þx d " 2jCð0Þsin2ðkð0Þx dÞ þ 2ðkð0Þx dÞ2cotðkð0Þx dÞ
h i

kð0Þx d " 2jCð0Þsin2ðkð0Þx dÞ
h i2

; (18)

where the superscript (0) denotes driftless quantities and
kð0Þx , jkð0Þz .

This expression simplifies greatly for open (kzd ! 1)
and fully closed (kzd ! 0) channels. In both limits, the
reflection coefficient is

R ¼ "1" 2
v0

sð0Þ
; (19)

where s(0) is the phase velocity of the driftless plasmon,
which is different for open and closed channels.

The second, numerical, method to solve Eq. (17) is
based on multiplying it consequently by EðiÞx ; EðrÞx , and eðrÞx
and integrating the expressions over x (see Appendix B). The
resulting equations depend only on kx and can be solved
numerically, for example, by presenting them in a truncated
matrix form or by the method of iterations.

Figure 4 shows the amplitudes of the reflection coeffi-
cient, jRj, depending on the dc current density. A current
density is positive when the plasmon is incident on the
boundary along the dc current. It is negative when the

plasmon is incident in the direction opposite to the dc cur-
rent. The results are for the channel with the same parame-
ters as above; for three values of the gate-to-channel distance
d and at three values of the frequency.

Figure 4(a) shows results calculated both numerically
(orange line) and the analytically (black line). The results
agree. The same agreement was observed for the parameters
of all other Fig. 4, so they show only the numerical curves.

Figure 4 reveals the following general trends. First, the
effect of the dc current (how much jRj deviates from unity)
increases with the dc current density. Second, the effect is
larger for higher frequencies. Third, at the same frequency, it
is larger for smaller gate-to-channel distances. These trends
can be explained by looking at the approximate expression
for the reflection coefficient, Eq. (19), and at the dispersion
diagrams of Fig. 2. At a fixed value of v0, the dc current
affects stronger the reflection coefficient of the plasmons
with lower phase-velocities. As Fig. 2 shows, the phase
velocities increase with the frequency, and they are the larg-
est for the smallest value of d.
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Comparing pairs of the results reveals further trends. In
the limit of fully closed channels, the phase velocity is con-
stant with frequency, and so should be the effect of the dc
current on the reflection coefficient. As, for example,
Fig. 2(a) shows, this limit is applicable for d¼ 25 nm at low
frequencies. And indeed, the curves in the corresponding
Figs. 4(d) and 4(g) are similar to each other.

Also, for fully closed channels, the effect of the current
increases as the square root of the gate-to-channel distance,
because sð0Þ -

ffiffiffi
d
p

. It is confirmed by Figs. 4(g) and 4(h), for
d¼ 25 and 75 nm. The maximum values of jRj are 1.25 and
1.14, so that 0:14=0:25 ¼ 1:79 , 1:73 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
75=25

p
, in agree-

ment with Eq. (19).
At 1 THz, the dispersion curves for d¼ 75 and 250 nm

are almost identical [see Figs. 2(b) and 2(c)], and so are the
corresponding curves in Figs. 4(b) and 4(c). On the other
hand, for fully open channels, the effect of the current should
increase linearly with frequency, since s(0)-x"1. And
indeed, for Figs. 4(c) and 4(f), the maximum values of jRj
are 1.25 and 1.14, so that 0.25/0.14, 2 which is the ratio of
the frequencies in these figures.

A resonator made from a homogeneous channel and two
electric conductors as mirrors will have the roundtrip gain of
G ¼ Rjv0

. Rj"v0
. The plasmons are incident along the dc cur-

rent (positive v0) for one conductor and against the dc current
(negative v0) for the other. For all of Fig. 4, Rjv0

. Rj"v0
¼ 1.

Such a symmetric resonator does not oscillate in the presence
of a dc current.

Although the amplitude reflection coefficients can char-
acterize resonators with multiple reflectors, they do not
describe completely the effects of single reflectors. To show
whether a single reflector can amplify plasmons, the power
reflection coefficient should be used, defined as

Rp ¼ jRj2
PðiÞ

PðrÞ
; (20)

where P(i) and P(r) are the power of the incident and the
reflected plasmons, Eq. (14) with jAj ¼ 1. Figure 5 shows
the power reflection coefficient for d¼ 25 nm at 1 THz, cor-
responding to Fig. 4(a). The plasmons are amplified for neg-
ative dc currents (flowing away from the conductor) and
deamplified for positive currents. The behavior is the same
as for open channels.15

IV. PLASMONIC OSCILLATORS AND THE
DYAKONOV-SHUR INSTABILITY

The above result that symmetric resonators do not oscil-
late agrees with the original conclusion by Dyakonov and
Shur.1 To circumvent the problem, they postulated a resonator
with asymmetric boundary conditions: zero ac potential at the
source and zero ac current at the drain. The electrodynamic
analogues are the perfect electric conductor for the source and
the perfect magnetic conductor for the drain, see Fig. 1. The
boundary condition for the magnetic conductor is Hy¼ 0 and
it can be written, analogously to Eq. (17), in the form

HðiÞy þ RmagHðrÞy þ
ð1

0

rmagðkxÞhðrÞy dkx ¼ 0: (21)

For TM waves, however, Hy ¼ ðxe0ed=kzÞEx, and Eq. (21)
can be rewritten as

EðiÞx þ Rmag
kðiÞz

kðrÞz

EðrÞx þ
ð1

0

rmagðkxÞ
kðiÞz

kz
eðrÞx dkx ¼ 0: (22)

Comparing Eq. (22) to Eq. (17) shows that once the reflec-
tion coefficient R for the electric conductor is known, the
reflection coefficient for the magnetic conductor can be
found, without solving Eq. (21), as

Rmag ¼
kðrÞz

kðiÞz

R: (23)

The roundtrip gain of the resonator from Fig. 1 is then

G ¼ Rjv0
. Rmagj"v0

¼
kzjv0

kzj"v0

Rjv0
. Rj"v0

¼
kzjv0

kzj"v0

(24)

FIG. 5. The power reflection coefficient shows that plasmons can amplify or
deamplify when reflecting from an electric boundary. They amplify when
incident on the boundary against the dc current (negative current density).

FIG. 4. The effect of the dc current on the amplitude reflection coefficient
jRj is larger for higher frequencies and lower gate-to-channel distances.
Numerical [orange lines] and analytical [black line in (a)] results agree. The
effects for the opposite values of the dc current cancel each other, which
implies that symmetric resonators do not oscillate.
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because Rjv0
. Rj"v0

¼ 1. In particular, for fully closed chan-
nels, G¼ (sþ v0)/(s" v0). The original treatment by
Dyakonov and Shur1 as well as many that followed7,8,10 con-
sidered the boundary conditions only at the channel (i.e.,
only at x¼ 0) and ignored the transverse field distributions.
They also ignored the radiation modes. Under these assump-
tions, the boundary conditions Eq. (17) and Eq. (21) become
simply

1þ R ¼ 0

1þ Rmag
kðiÞz

kðrÞz

¼ 0:
(25)

The roundtrip gain in the resonator of Fig. 1 is then

G ¼
kzjv0

kzj"v0

; (26)

which is the same as Eq. (24). Therefore, the model devel-
oped here and the Dyakonov-Shur model give identical
results for the roundtrip gain (and, hence, the instability in-
crement) of a resonator comprising an electric and a mag-
netic boundary. The results will also coincide for any “hard”
boundary with the surface impedance Zs, where the electric
and magnetic fields are linked by the expression Ex¼ ZsHy,
see, e.g., Ref. 8.

However, the agreement between the two models cannot
be expected to hold in general. In particular, the two models
would disagree for the resonators comprising multiple chan-
nel sections with different electron concentrations.13,14

Ignoring the transverse field distributions might not be justi-
fied in general. In fully closed channels, the transverse elec-
tric fields of the counter-propagating plasmons differ below
the channel, even though they almost coincide between the
channel and the gate, see Fig. 3(a). In partially or fully open
channels, the electric fields differ both above and below the
channel, see Figs. 3(b) and 3(c). This difference and the need
to satisfy the boundary condition everywhere along a bound-
ary will influence the plasmonic reflection coefficient.

V. CONCLUSIONS

Using the mode-matching technique, this paper has con-
sidered amplification of THz plasmons in gated two-
dimensional channels. The plasmons amplify when they are
incident upon an electric contact against the dc current, and
they deamplify when incident along the dc current. The
results have been obtained from electrodynamically rigorous
boundary conditions and taking into account the complete
field distributions. The amplification coefficient has been
found both numerically and analytically; the analytical treat-
ment has been further simplified for fully closed and open
channels.

In symmetric resonators, comprising a homogeneous
channel and identical boundaries, amplification at one con-
tact is compensated by deamplification at the other. As a
result, such resonators do not oscillate, in agreement with the
traditional treatment by Dyakonov and Shur.1 To compare
the two models further, this paper considered a resonator

whose source is an electric conductor and the drain is a mag-
netic conductor. Then, the boundary conditions correspond
to those postulated by Dyakonov and Shur. The two models
give identical results.

However, this agreement can be expected to hold only
for hard boundaries and not, for example, for resonators
whose channels comprise sections with different electron
concentrations. The latter are better candidates for asym-
metric plasmonic oscillators, as realizing a magnetic bound-
ary in practice would be a formidable challenge. Progress
was made previously in analyzing such oscillators by the
mode-matching technique.13,14 However, more work will
be needed, using the present results, to describe amplifica-
tion at the boundary between a gated and a non-gated
channel.
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APPENDIX A: ANALYTICAL SOLUTION OF
REFLECTION PROBLEM

All the drifting quantities can be expanded in the Taylor
series around v0¼ 0, and assuming the drift velocity is small,
only the linear terms can be kept, so that

kði;rÞz;x , kð0Þz;x þ v0dkði;rÞz;x

R , "1þ v0dR

rðkxÞ , 0þ v0drðkxÞ
Eði;rÞx , Eð0Þx þ v0dEði;rÞx

eðrÞx , eð0Þx þ v0deðrÞx :

(A1)

Substituting these into the boundary condition Eq. (17) and
keeping, again, only the terms linear in v0 gives

dEðiÞx " dEðrÞx þ dREð0Þx þ
ð1

0

drðkxÞeð0Þx dkx ¼ 0: (A2)

Multiplying Eq. (A2) by Eð0Þx , integrating
Ð d
"1 dx, and using

the property of mode orthogonality, gives

dR ¼ "

ðd

"1
ðdEðiÞx " dEðrÞx ÞEð0Þx dx

ðd

"1
Eð0Þx

2dx

: (A3)

The expressions for Eð0Þx and dEði;rÞx can be found from
Eq. (12) as

Eð0Þx ¼
cos½kð0Þx ðx" dÞ(

sinðkð0Þx dÞ

dEði;rÞx ¼ " dkði;rÞx

sinðkð0Þx dÞ
½ðx" dÞsin½kð0Þx ðx" dÞ(

þ d cotðkð0Þx dÞcos½kð0Þx ðx" dÞ(( (A4)
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above the channel and

Eð0Þx ¼ j expð"jkð0Þx xÞ
dEði;rÞx ¼ dkði;rÞx x expð"jkð0Þx xÞ

(A5)

below the channel. Substituting Eqs. (A4) and (A5) into
Eq. (A3) gives Eq. (18). Similarly, expanding the dispersion
relation Eq. (9) into a Taylor series and keeping only the
terms linear in v0 gives Eq. (18).

APPENDIX B: NUMERICAL SOLUTION OF
REFLECTION PROBLEM

The reflection problem Eq. (17) can be solved numeri-
cally by the following method. Multiplying Eq. (17) by EðrÞx
and integrating

Ð d
"1 dx gives

kðrÞx

CðrÞkðiÞx " CðiÞkðrÞx

kðiÞ2x " kðrÞx
2
þ R j

kðrÞx d

4 sin2ðkðrÞx dÞ
þ CðrÞ

2

 !

þ
ð1

0

rðkxÞkðrÞx

CkðrÞx " CðrÞkx

kðrÞ2x " k2
x

¼ 0: (B1)

Likewise, multiplying Eq. (17) by eðrÞx ð~kxÞ and integrating
gives

CðiÞ ~kx " ~CkðiÞx

kðiÞx
2 " ~k

2

x

þ R
CðrÞ ~kx

kðrÞx
2 " ~k

2

x

þ prð~kxÞ

) 1

4j sin2ð~kxdÞ
þ j~C

2 þ ~C cotð~kxdÞ
 !

þ
ð
"
1

0

rðkxÞ
~Ckx " C~kx

~k
2

x " k2
x

dkx ¼ 0; (B2)

where
Ð
" denotes Cauchy principal value. Equations (B1)

and (B2) can be solved numerically, for example, by discre-
tizing the integrals and presenting the equations in a matrix
form.
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