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The propagation characteristics of electromagnetic waves in waveguides implemented using the

“Fakir’s bed of nails” are investigated both analytically and numerically. The classical metal walls

of a parallel-plate waveguide are replaced by a Fakir’s bed of nails metamaterial having arbitrary

pin lengths on both walls; treated as a homogenized effective spatially dispersive dielectric. A

modal analysis of the electromagnetic fields is presented for the first time, and dispersion

expressions for the propagating modes are derived analytically and independently validated with

full-wave numerical simulations. An equivalent transmission line model is also given, and

similarities with the classical metal-dielectric-metal structure commonly used in optics are

discussed. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4863461]

I. INTRODUCTION

Waveguides have been an essential component in almost

every system operating across the electromagnetic spectrum,

including frequencies from microwaves to terahertz.1–3 At

such wavelengths, their significance becomes even more

obvious when considering circuits and subsystems that can

be implemented. One of the most widely used guided-wave

structures is the parallel-plate waveguide. Its behavior is

well-known and has been studied extensively.4 Despite its

simple geometry, it is used in a variety of applications,5

ranging from terahertz time-domain spectroscopy6,7 to lens

realization.8

In addition, from across many disciplines, there is a

great deal of activity in the area of metamaterials that have

already brought to light opportunities to engineer devices

with superior performance and unusual characteristics. One

of the most thoroughly studied classes of metamaterials is

the so-called wire medium, which has been known for over

six decades for emulating plasma behavior.9–14 King et al.15

used an array of metal pins attached to a ground plane, in

order to implement a surface reactance. However, spatial dis-

persion effects were neglected at that time. Thirty years later,

Belov et al.16,17 showed that the wire medium possesses

strong spatial dispersion characteristics, even at low frequen-

cies, which cannot be neglected. In addition to the transverse

electromagnetic (TEM) mode, an additional transverse mag-

netic (TM) mode is supported within the wire medium, as

shown by its amplitude A6
TM in Fig. 1. As a result, a rigorous

study of such metamaterials was then undertaken by

Silveirinha et al.18–26 This team accurately derived analytical

models, using additional boundary conditions and/or quasi-

static approximations, to eliminate the additional degree of

freedom due to spatial dispersion.

With wire media forming the basic ingredient for many

other metamaterials27 and impedance surfaces,28–30 together

with their extraordinary electromagnetic properties, led to

an explosion in new applications. For example, lenses for

near-field sub-wavelength imaging, based either on the con-

version of free-space evanescent fields into propagating

waves within the wire medium (i.e., operation in the canali-

zation region)31–38 or amplification of evanescent field com-

ponents,39 are commonly used to overcome the diffraction

limit. Other applications include the realization of negative

refraction media,40–42 broadband absorbers,43–45 increased

bandwidth backward-wave metamaterials with the use of

nanowire arrays,46–49 and the realization of perfect electrical

conductor/perfect magnetic conductor (PEC/PMC)-walled

waveguides; the latter one being an attractive solution for

(sub)millimeter-wave guiding structures. For example, the

ridge-gap waveguide (i.e., parallel-plate waveguide with a

ridge) can be used as an alternative to traditional metal pipe

rectangular waveguide technologies, because of advantages

in construction and performance.50–60

In this work, we derive generalized expressions that

describe the behavior of waveguides with bed of nails walls

and thus, expand existing models to describe more compli-

cated structures used for practical applications. We study,

both analytically and numerically, the propagation character-

istics in a parallel-plate waveguide with both plates being

replaced by the Fakir’s bed of nails. The behavior of such a

structure resembles a metal-dielectric-metal structure, where

coupling between the interfaces affects the performance;

both approaches are compared and contrasted. Geometric

parameter studies, highlighting the general behavior of the

Fakir’s bed of nails metamaterial waveguide structure, are

also undertaken and an equivalent transmission line model is

presented.

II. BACKGROUND ANALYTICAL FORMULATION

The “Fakir’s bed of nails” can be considered as a wire

medium with one end attached to a ground plane, as illus-

trated in Fig. 1, and has recently been in the spotlight.22 To

avoid replication of previously published work,22 the Fakir’s

bed of nails will be treated as an effective homogenized,
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spatially dispersive medium; only key aspects will be repro-

duced here. As has been previously shown, the Fakir’s bed

of nails can be described as a uniaxial medium, by the fol-

lowing non-local effective relative permittivity dyadic:17,22

��er; eff ¼ eh uxux þ eyyuyuy þ uzuzð Þ; (1)

eyy ¼ 1�
b2

p

b2
h � k2

y

; (2)

with eh and eyy being the effective relative permittivity of the

dielectric host medium and the wire medium along the

y-direction, respectively. Here, bh ¼ b
ffiffiffiffi
eh
p

and b¼x/c are

the wavenumbers in the host dielectric and free-space, respec-

tively, and ky is the component of the wave vector along the

y-direction (axis of the pins). The dependence of eyy on ky is a

manifestation of spatial dispersion. A good approximation for

the plasma wavenumber bp for square lattices is written as17

bp ffi
1

a

2p

ln
a

2pr0

� �
þ 0:5275

2
64

3
75

1=2

; (3)

where a and r0 are the lattice periodicity and pin radius,

respectively. In the air gap between the plates, the magnetic

field satisfies the following solution:22

H / kk � uy
� �

g y; kyð Þe�jkk�r; for y > 0 (4)

where g y; kyð Þ ¼ ec0y þ Re�c0y and kk ¼ kx; 0; kzð Þ is the

wave vector parallel to the bed of nails interface with the air

on the x-z plane at y¼ 0, c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
k � b2

q
is the free-space

propagation constant within the gap, and R is the reflection

coefficient for the magnetic field from the interface at y¼ 0.

Under the thin wire approximation (i.e., permittivity in the

x-z plane is that of the host medium), a transverse electric

(TE) polarized plane wave impinging on the Fakir’s bed of

nails does not interact with it, since there is no electric field

component along the PEC wires. Hence, the reflection coeffi-

cient R ¼ RTE is that of a dielectric slab with a ground plane

backing

RTE ¼ � cTE � c0 tanh cTELð Þ
cTE þ c0 tanh cTELð Þ

; (5)

where cTE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
k � b2

h

q
is the propagation constant for TE

polarization. On the other hand, a plane wave with TM polar-

ization excites currents along the pins and, hence, interacts

strongly with them. In this case, the reflection coefficient

R ¼ RTM is given by22

RTM ¼�
bhb

2
p tan bhLð Þ � k2

kcTM tanh cTMLð Þ þ ehc0ðb2
pþ k2

kÞ
bhb

2
p tan bhLð Þ � k2

kcTM tanh cTMLð Þ � ehc0ðb2
pþ k2

kÞ
;

(6)

where cTM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

p þ k2
k � b2

h

q
is the propagation constant for

a TM wave. For completeness, by solving for the poles in (6)

for kk ¼ kz, the calculated dispersion characteristics for a

plain Fakir’s bed of nails22 are shown in Fig. 2. This can be

compared to full-wave numerical simulation results obtained

using High Frequency Structure Simulator (HFSS
TM

), where

good agreement exists.

It can be seen, in Fig. 2, that there are solutions only to

the right of the light line, corresponding to bound surface

waves. This is intuitively expected, since such an open struc-

ture cannot normally guide energy in a particular direction,

as it is spatially unbounded. Thus, the energy must be guided

along the interface in the form of bound surface waves.

III. PARALLEL-PLATE WAVEGUIDE

A conventional parallel-plate waveguide, where both

bottom and top metal plates have been replaced by the

FIG. 2. Real part of kz for the Fakir’s bed of nails benchmark structure with

L ¼ 7:5 mm. Solid lines: analytical model.22 Discrete symbols: full-wave

numerical simulation results obtained using HFSS
TM

. The light line is plotted

with a dashed line.

FIG. 1. Perspective and side view illustrations of the benchmark Fakir’s bed

of nails structure.
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Fakir’s bed of nails metamaterial, is considered as shown in

Fig. 3. The structure can be treated as a classical parallel-

plate waveguide partially filled with a dielectric (wire me-

dium) and partially filled with air and, hence, the propagating

modes in general are not TE or TM. Instead they are hybrid

modes, which can be characterized as longitudinal section

electric (LSE) or longitudinal section magnetic (LSM)

modes, respectively.

A complete analysis of these types of modes is presented

in Ref. 61. The fundamental wave-guiding mode is an LSMy

mode Hy ¼ 0ð Þ and our derivation of the modal equation for

the LSMy modes will now be given here. A simple way to

express the field distributions begins from (4). As has already

been shown,22 (4) represents the magnetic field in the air

region, taking into account the reflection from the Fakir’s

bed of nails structure at y¼ 0. Thus, the waveguide modes

can be obtained if solutions of the form given in (4) are

combined and also taking into account the fact that the

wave-guiding modes have to satisfy the appropriate bound-

ary conditions at the interfaces at y¼ 0 and y¼ h. For exam-

ple, the superposition of plane waves with wave vectors

kx; 0; kzð Þ and �kx; 0; kzð Þ results in a magnetic field distribu-

tion of the form

H ¼ H0 �
kz

b
cos kxxð Þ; 0;� jkx

b
sin kxxð Þ

� �
g y; kk
� �

e�jkkz; (7)

with H0 being a constant related to the magnetic field. Next,

the electric field can be calculated from Ampere’s law as

follows:

Ex ¼ �g0H0

kx

b2
sin kxxð Þ dg y; kyð Þ

dy
e�jkzz; (8)

Ey ¼ g0H0

k2
k

b2
cos kxxð Þg y; kyð Þe�jkzz; (9)

Ez ¼ �g0H0

jkz

b2
cos kxxð Þ dg y; kyð Þ

dy
e�jkzz; (10)

where g0 is the intrinsic impedance of fee space. Here,

(7)–(10) must satisfy the appropriate boundary conditions at

y¼ 0; satisfying the following Leontovich boundary condition:

E� un ¼ Zs un �Hð Þ � un; (11)

where Zs is the surface impedance at the interface and un is

the unit normal vector pointing to the air gap. In our case,

(11) is equivalent to

Zs ¼
Ex

Hz

				
y¼0

¼ jc0

g0

b
R� 1

Rþ 1
: (12)

From (12), Zs can be used to give a general description of

surface impedance for the Fakir’s bed of nails, as long as the

pins are oriented along the y-direction. This is because (12)

contains only the reflection coefficient of the structure and is

invariant in translation along the y-direction. Moreover, at

y¼ h the modal fields also have to satisfy the appropriate

boundary conditions. Thus,

Zs ¼ �
Ex

Hz

				
y¼h

¼ j
g0

b
1

g y; kyð Þ
dg y; kyð Þ

dy
: (13)

Combining (12) and (13), the following relationship is

obtained:

dg y; kyð Þ
dy

� c0g y; kyð Þ
R� 1

Rþ 1

				
y¼h

¼ 0; (14)

where R is the reflection coefficient for the magnetic field

from the interface at y¼ h for the top bed of nails.

In the case of perpendicular polarization (i.e., there is no

electric field in the direction of the pins), the propagating

wave does not interact with the pins (i.e., with a thin wire

approximation) and the modal equation for the TE mode is

derived by substituting (5) into (13). Without loss of general-

ity, for the rest of the analysis, the pins are assumed to be

surrounded by air (i.e., eh ¼ 1); this helps reduce losses, as

the dielectric losses associated with the host medium are

removed. After some algebraic manipulations, the modal

equation for the TE mode reduces to

sin ky hþ L1 þ L2ð Þ

 �

¼ 0; (15)

where L1 and L2 are the length of pins at the bottom and top

plate, respectively, and hence the solutions are

ky ¼
np

hþ L1 þ L2

; n ¼ 0; 1;…: (16)

As can be easily seen, (16) gives the dispersion equation for

a classical parallel-plate waveguide, where the plates are

FIG. 3. Fakir’s bed of nails parallel-plate waveguide. (a) Perspective view;

(b) side view.
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separated by a distance hþ L1 þ L2. A more accurate

approach that accounts for the pin radii, by considering a

corrected permittivity model in the x-z plane, would

require a hybrid mode analysis and is out of the scope of

this work.

Our focus will be for the case of parallel-polarized

incoming waves, since this highlights the behavior of our

structure. By combining (6) and (14), we obtained the more

general transcendental equation given by (17). However,

when pin length is identical, (17) reduces to (18). While, for

the case that only one plate is populated with pins (i.e.,

L2 ¼ 0), (17) simplifies even further to the expression given

in Ref. 59. In the limit case where spatial dispersion effects

can be neglected (i.e., for densely packed pins, with

a=L! 0) then cTM ! 0, resulting in the modal equations for

L1 6¼ L2 and L ¼ L1 ¼ L2, respectively, given in (19) and

(20), respectively,

b2
p

b2
p þ k2

k
kyb tan bL1ð Þ �

kyk2
kcTM tanhðcTML1Þ

b2
p þ k2

k

� 
 þ
b2

p

b2
p þ k2

k
kyb tan bL2ð Þ �

kyk2
kcTM tanh cTML2ð Þ

b2
p þ k2

k

� 


�
bb2

p tan bL1ð Þ
b2

p þ k2
k
�

k2
kcTM tanh cTML1ð Þ

b2
p þ k2

k

2
4

3
5 bb2

p tan bL2ð Þ
b2

p þ k2
k
�

k2
kcTM tanh cTML2ð Þ

b2
p þ k2

k

2
4

3
5tan kyhð Þ þ k2

y tan kyhð Þ ¼ 0; (17)

2
b2

p

b2
p þ k2

k
kyb tan bLð Þ � 2

kyk2
kcTM tanhðcTMLÞ

b2
p þ k2

k

� 
 �
bb2

p tan bLð Þ
b2

p þ k2
k
�

k2
kcTM tanh cTMLð Þ

b2
p þ k2

k

2
4

3
5

2

tan kyhð Þ þ k2
y tan kyhð Þ ¼ 0; (18)

kyb tan bL1ð Þ þ kyb tan bL2ð Þ þ k2
y tan kyhð Þ

� b2 tan bL1ð Þ tan bL2ð Þ tan kyhð Þ ¼ 0; (19)

2kyb tan bLð Þ � b tan bLð Þ½ �2 tan kyhð Þ þ k2
y tan kyhð Þ ¼ 0: (20)

For each frequency in turn, (17)–(20) can be solved numeri-

cally for ky and, assuming propagation along the z-direction

for simplicity, the dispersion equation can then be obtained

from kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � k2

y

q
. As an example, the propagation char-

acteristics for the first two TM modes are given in Figs. 4

and 5, for a symmetric configuration with L ¼ L1 ¼ L2 and

an asymmetric configuration with L1 ¼ 2L2, respectively.

The latter corresponds to the special case of a PEC/PMC

combination. Clearly, the bandgap where surface waves are

suppressed can be controlled by adjusting the geometric

characteristics of the structure.

For comparison, the dispersion characteristics for a bed

of nails covered with a metal lid59 are shown in Fig. 6. This

structure was studied previously and serves as a convenient

benchmark to provide an independent validation of our more

general expressions.

As can be seen from Figs. 4–6, the dispersion character-

istics of the second mode can be changed dramatically by

adjusting the length of the pins (and also the separation

distance between the plates). This results in a wide range of

dispersion curves; whereby the second mode has a band-

width from �50 MHz (in Fig. 4) to �12 GHz (in Fig. 6). Its

FIG. 4. Real part of kz for L ¼ L1 ¼ L2 ¼ 7:5 mm. Solid lines: analytical

model. Discrete symbols: full-wave numerical simulation results using CST

MWS. The light line is plotted with a dashed line. Inset shows that the sec-

ond mode has a small but non-zero group velocity.

FIG. 5. Real part of kz for L1 ¼ 7:5 mm and L1 ¼ 2L2. Solid lines: analytical

model. Discrete symbols: full-wave numerical simulation results obtained

using CST MWS. The light line is plotted with a dashed line.
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cut-off frequency also changes, but this is a consequence of

the total length L1 þ hþ L2 not being constant, as will be

discussed in more detail later.

In contrast to Fig. 2, in Fig. 6 there are solutions to the

left of the light line, corresponding to radiating fast waves,

which is a result of the top plate. In this case, energy can be

guided within the air gap between the two plates. However,

as kz increases these loosely bound surface waves convert to

strongly confined surface waves.

The analytical model presented has been compared

against full-wave numerical simulations using two commer-

cially available software packages: HFSS
TM

, with results in

Fig. 2 only, and CST Microwave Studio (CST MWS) used

everywhere else. For the plain Fakir’s bed of nails structure,

the setup shown in Fig. 7(a) was used in order to employ

absorbing boundary conditions (i.e., perfectly matched

layers, PML). With the eigenmode solvers used with HFSS
TM

and CST MWS, a single unit cell having periodic boundary

conditions along the x and z-directions was adopted, as

shown in Fig. 7(b).

The electric field distributions for the aforementioned

structures are given in Fig. 8. As expected, there is a field

enhancement at the edge of the tips. It is interesting to note

that the second mode for the structures shown in Figs. 2 and 6

is a higher order mode, as can be seen in Figs. 8(e) and 8(f).

However, when both plates have equal length pins, the

field patterns (within the wire media) remain similar for both

modes, with surface waves at both bed of nails-air interfaces

(y¼ 0 and h) being excited. In the case that the pins have

different lengths, the field patterns remain the same, but the

interface supporting the surface wave changes. This is

because, in the frequency range where one interface supports

a surface wave, the other interface exhibits a bandgap where

no propagation is allowed. In Fig. 9, the electric field Ey

(along the pins) is plotted at the center of the pin (x¼ z¼ 0).

As seen in Fig. 9, the electric field decays exponentially

away from the interface, in a similar way to surface plasmon

polaritons with a metal-dielectric-metal (MDM) structure.

For example, the field decays exponentially and tends to zero

for the single bed of nails-air interface, as seen in Fig. 9(a);

analogous to a metal-dielectric interface. This is expected,

since the bed of nails has been modeled as an effective

dielectric medium with a plasma-like behavior. However,

when a metal plate is placed in close proximity to the Fakir’s

bed of nails, the field saturates to a value significantly higher

than zero, as shown in Fig. 9(b). For the symmetrical struc-

ture shown in Fig. 4, the two modes can be identified as

FIG. 6. Real part of kz for the benchmark structure with L1 ¼ 7:5 mm and

L2 ¼ 0. Solid lines: analytical model.59 Discrete symbols: full-wave numeri-

cal simulation results obtained using CST MWS. The light line is plotted

with a dashed line.

FIG. 7. Simulation setup. (a) HFSS
TM

; and (b) CST MWS. The parameters

used are: periodicity of the lattice a¼ 2 mm, air gap h¼ 1 mm, and pin ra-

dius r0¼ 0.5 mm.

FIG. 8. Electric field distributions at the pins for kza ¼ p. Top plots corre-

spond to the first mode and bottom plots correspond to the second mode.
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symmetric and antisymmetric, respectively, to the center of

the air gap, as shown in Fig. 9(c); resembling the field profile

in a symmetric MDM structure.

On the other hand, the asymmetric structure shown in

Fig. 5 does not support these types of modes and the field

decays exponentially away from the interface, as shown in

Fig. 9(d) (similar to Fig. 9(b)). This is in contrast to the

asymmetric MDM structure, where the field is similar to that

shown in Fig. 9(c), but with the structural asymmetry remov-

ing the field symmetry that was previously at the center of

the gap. The reason for this discrepancy is that one wall of

the Fakir’s bed of nails waveguide exhibits bandgaps and,

therefore, no surface waves are propagating; whereas a nor-

mal MDM would support surface waves at both interfaces.

In order to obtain a better physical grasp of the device

behavior, and how the various physical characteristics affect

its performance, several geometric parameter studies were

undertaken. In the first study, the distance between the ground

planes is kept constant and made equal to t ¼ L1 þ hþ L2

¼ 16 mm; with the rest of the parameters as given in Fig. 7

and L1, L2 allowed to vary. This corresponds to the transition

from the structure shown in the inset of Fig. 4 to a configura-

tion similar to that shown in the inset of Fig. 6. Under these

conditions, the frequency of the first mode increases monot-

onically as the air gap is shifted from the top (i.e., L1 ¼ 15

mm and L2 ¼ 0) to the center (i.e., L ¼ L1 ¼ L2 ¼ 7:5 mm),

with the surface wave resonance dictated by L1 shown in Fig.

10. However, the second mode does not change monotoni-

cally and its bandwidth can be controlled by adjusting both

lengths L1; L2. Bandwidth enhancement is obtained when

both plates are suitably textured; whereas, L1 ¼ L2 results in

minimum bandwidth (almost suppressed).

In the second study, the lengths are kept constant with

L ¼ L1 ¼ L2 ¼ 7:5 mm and the gap size h (or equivalently t)
is varied. As seen in Fig. 11, for smaller gap sizes the coupling

between surface waves at both interfaces is stronger, which

results in two distinct branches in the dispersion curve. With

larger gaps, the coupling between the bottom and top interfa-

ces is weaker and the two branches coincide for larger kz val-

ues. This resembles the split into two branches in the

dispersion characteristics with a MDM structure. However,

here there are always two distinct branches for small kz

values, which is in contrast to a classical MDM structure.

Similarly, the results for the asymmetric structure with

L1 ¼ 2L2 ¼ 7:5 mm are given in Fig. 12, where the surface

wave resonances are affected by the values of L1 and L2; the

cut-off frequency for the second mode can be tuned by chang-

ing the gap size. Finally, when the gap is varying with the

total distance being a constant t¼ 16 mm and L ¼ L1 ¼ L2,

the surface wave resonance is affected by the pin length.

Therefore, larger gap sizes result in weaker coupling, pushing

the dispersion curves closer together, as shown in Fig. 13.

IV. TRANSMISSION LINE MODEL

The behavior of the Fakir’s bed of nails metamaterial

waveguide can also be modeled using an equivalent
FIG. 10. Real part of kz for various L1;L2ð Þ combinations when L1 þ hþ
L2 ¼ 16 mm. The rest of the parameters are given in Fig. 7.

FIG. 11. Real part of kz for various gap sizes h when L1 ¼ L2 ¼ 7:5 mm.

The other parameters are given in Fig. 7.

FIG. 9. Normalized electric field Ey along the air gap. (a) for the structure

shown in Figs. 2, 8(a), and 8(e); (b) for the structure shown in Figs. 6, 8(b),

and 8(f); (c) for the structure shown in Figs. 4, 8(c), and 8(g); (d) for the

structure shown in Figs. 5, 8(d), and 8(h). Blue curves correspond to the first

mode and red curves to the second mode.
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transmission line circuit, as shown in Fig. 14. This has been

previously demonstrated, but for the simple structure shown

in Fig. 6.59 However, a more general model is required for

waveguides having both the top and bottom implemented

using Fakir’s bed of nails with arbitrary pin lengths.

The dispersion equation can be derived from a series

resonant network. Here, Zbottom
TEM and Zbottom

TM represent the

modal impedances seen at y¼ 0 (bottom interface), looking

towards the lower PEC ground plane (where the pins are

short circuited). Similarly, Ztop
TEM and Ztop

TM are the modal

impedances seen at y¼ h (top interface), looking towards the

upper PEC ground plane. Thus, (17) can be interpreted as a

transmission line resonant network as

Zbottom
TEM þZtop

TEMþZbottom
TM þZtop

TMþ

j
tan kyhð Þ

g0

Zbottom
TEM þZbottom

TM

� �
Ztop

TEMþZtop
TM

� �
þg2

0

h i
¼0; (21)

where

Zbottom
TEM ¼ jg0

bb2
p

ky b2
p þ k2

k

� 
 tanðbL1Þ; (22)

Ztop
TEM ¼ jg0

bb2
p

ky b2
p þ k2

k

� 
 tanðbL2Þ; (23)

Zbottom
TM ¼ �jg0

k2
kcTM

ky b2
p þ k2

k

� 
 tanh cTML1ð Þ; (24)

Ztop
TM ¼ �jg0

k2
kcTM

ky b2
p þ k2

k

� 
 tanh cTML2ð Þ: (25)

In the limit case, where spatial dispersion effects can

be neglected (i.e., by having densely packed pins), Zbottom
TM

¼ Ztop
TM ¼ 0 and (21) reduces to

Zbottom
TEM þ Ztop

TEM þ j
tan kyhð Þ

g0

Zbottom
TEM Ztop

TEM þ g2
0

� �
¼ 0: (26)

V. DISCUSSION AND CONCLUSION

Using modal analysis, the propagation of electromag-

netic waves in a parallel-plate waveguide employing the

Fakir’s bed of nails has been studied both analytically and

numerically. Here, we have expanded previously published

models to address the more general case for waveguides hav-

ing both the top and bottom implemented using the Fakir’s

bed of nails with arbitrary pin lengths.

The dispersion properties can be controlled by adjusting

the geometric parameters of the structure and, specifically,

FIG. 14. Equivalent transmission line model for the structure shown in

Fig. 3 having both the top and bottom implemented using Fakir’s bed of

nails with arbitrary pin lengths.

FIG. 13. Real part of kz for various gap sizes h when t ¼ hþ 2L ¼ 16 mm.

The other parameters are given in Fig. 7.

FIG. 12. Real part of kz for various gap sizes h when L1 ¼ 2L2 ¼ 7:5 mm.

The other parameters are given in Fig. 7.
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the length of the pins and their separation distance. The

bandwidth of the modes and the bandgaps can be easily

tuned with the more general waveguide structure investi-

gated here.

Although the simplified model used in our calculations

does not take into account the finite radius of the pins and

the resulting associated fringe capacitance (i.e., deviating

from thin wire approximation), the results are still very accu-

rate for most practical applications; this accounts for the

small discrepancies seen between the analytical and numeri-

cal results in Figs. 2–6.

An equivalent transmission line model has also been

presented for the more general waveguide structure. The dis-

persion characteristics have been compared and contrasted

with the classical metal-dielectric-metal structure commonly

used in optics. Moreover, our analytical modeling can be

modified to describe metal-pipe rectangular waveguides,

having two conventional parallel metal walls and the other

two walls replaced by the Fakir’s bed of nails.

Our analytical model provides a quick way to investi-

gate the behavior of waveguide structures that employ the

Fakir’s bed of nails walls, without the need for time-

consuming full-wave numerical modeling analysis. It is

believed that the work presented here can find diverse appli-

cations, such as the design of novel resonators, filters, and

mode converters.
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