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Abstract — This paper reports recent developments in the 
‘THz Torch’ technology, for short-range wireless data 
transfer. The ultra-low cost ‘THz Torch’ concept was recently 
introduced as an ultra-secure non-contacting technology in 
the physical layer. Previous results reported a 10 bits/s link 
over a single channel, across a distance of 1 cm. In this paper, 
some fundamental limitations of this technology are analyzed 
and potential methods are proposed to further increase the 
data rate and working distance of the communications link. 
The improved single-channel system demonstrates a bit rate 
of 380 bits/s over a 1 cm range, which presents a factor of 38 
improvement. 

Index Terms — THz Torch, low cost, terahertz, wireless 
link, short-range, contactless. 

I. INTRODUCTION 

The terahertz (THz) frequency spectrum is receiving 
increasing interest from within both the scientific 
community and engineering community. With the latter, 
there is real motivation for finding ubiquitous applications 
to commercially exploit the ‘THz gap’. To do this, 
improvements in our analytical [1-2] and numerical CAD 
[3] modelling techniques must be found, as well as in 
designing metal-pipe substrate integrated waveguides 
(SIWs) [4-6], antennas [7], terahertz multi-chip modules 
(T-MCMs) [8] and demonstrating new applications [9, 
10]. 

The ‘THz Torch’ technology was very recently 
introduced by the authors as an ultra-low cost alternative 
for short-range (i.e. contactless) wireless data transfer. 
The simplest form of the ‘THz Torch’ system is to 
implement basic ON-OFF keying digital modulation, 
having an architecture shown in Fig. 1. The first ever 
working proof-of-concept provided a maximum data rate 
of 5 bits/s over a 0.5 cm range [9]. This technology can be 
easily extended by utilizing multiplexing schemes, e.g. 
frequency division multiplexing (FDM) and frequency-
hopping spread spectrum (FHSS). A 4-channel FDM 
wireless communications system was later presented for 
the first time, demonstrating a 40 bit/s data rate over a 1.0 
cm range [10]. 

In this paper, we analyze some fundamental limitations 
of this technology to further improve the maximum bit 
rate and transmission range. Some possible improvements 
are proposed and verified experimentally. 

 
Fig. 1. Basic architecture for ultra-low cost ON-OFF keying 
‘THz torch’ wireless links [9]. 

II. BASIC THZ TORCH TECHNOLOGY 

Various approaches, based on either electronic or 
photonic technique, have been used to generate terahertz 
radiation. For ultra-low cost applications, blackbody 
radiation is considered to be the best option, due to its 
affordability, availability and tuneability. Here, we simply 
use miniature light bulbs (e.g. Eiko 8666-40984) to 
generate incoherent electromagnetic energy by thermal 
emission. Although miniature bulbs are not perfect 
blackbody radiators, because of the low emissivity of 
tungsten filament, high absorption of the glass envelope, 
and spatial radiation losses, etc., one can still obtain 
reasonable transmission rates for applications that include 
security key fobs and RFID. 

Two types of sensors are normally used for the 
detection of blackbody radiation, based on either photon 
detection or thermal effects. The former includes 
photoconductive and photovoltaic sensors, which have 
high sensitivity and fast response time, but are normally 
expensive and may need additional cooling. The latter 
include thermopile, bolometer and pyroelectric (PIR) 
sensors, which are cheaper and can work at room 
temperature. The pyroelectric sensor has been selected 
here, due to its low cost (e.g. less than one-tenth of that for 
a thermopile), simple structure and wide spectral response. 
The PIR sensor used in our earliest experiment is the 
Murata IRA-E710ST1 [9, 11]. 

Two identical bandpass filters are employed in both 
transmitter and receiver front ends, using commercially-
available 5 to 14 μm long wave pass silicon optical filters 
[9, 11]. In the frequency range from 25 to 50 THz, the 
transmittance is >70%.  
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The back-end processing of the rece
high gain low-noise amplifier (LNA), em
amplification (and DC blocking), and S
analogue-to-digital conversion. 

III. FUNDAMENTAL LIMITATIONS OF

TECHNOLOGY 

To further improve the maximum bit r
transmission range, the fundamental lim
Torch’ technology have to be investigate

A. Thermal Time Constant of the Filame

If the incandescent light bulb is mo
electrical signals [9], the first limitati
(cooling) thermal time constant of the 
defined as the time taken to go from 1
temperature difference between initial 
state temperatures. For a quiescent bias 
which gives the peak radiance at 80 T
heating and cooling thermal time consta
2,415 ms, respectively. Since the PIR
detect the change of temperature (∆T) 
increased bit rate will result in a smaller
bit rate on ∆T is as shown in Fig. 2. As
then •T decreases and so it becomes 
detect the signal. 

 

 
Fig.  2. The effect of bit rate on ∆T 
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Fig. 4. Experimental results for
an optical chopper 

B. Frequency Dependency of R

The Murata IRA-E710ST
frequency applications, normal
frequency dependency for resp
decreases dramatically as 
increases [11]. To further im
necessary to employ a faster 
responsively roll-off characteri

LME-553 from InfraTec has 
almost constant between 10 an
6 [12]. As a result, it is more 
applications. Furthermore, sinc
type sensor, its responsivity i
magnitude higher than those of
(e.g. IRA-E710ST1) [13]. 
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As shown in Fig. 4, the 
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Responsivity for PIR Sensors 

T1 is designed for low 
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onsivity, as shown in Fig. 5, 
the chopping frequency 

mprove the data rate, it is 
PIR sensor that has better 
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Fig.  5. Frequency dependence for resp
IRA-E710ST1 
 

Fig.  6. Frequency dependence of responsiv
 

Experiments using the LME-553 wer
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Fig. 7. Measured signals using the LME-5
bits/s operation 
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C. Absorption of Bulb Glass En
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Fig. 8. Atmospheric transmittanc
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higher data rates (e.g. several kbits/s) can be expected 
without adopting the use of expensive components. 

While still in its infancy, the ‘THz Torch’ technology 
will serve as inspiration for further R&D into similar 
systems, while potentially opening up this part of the 
electromagnetic spectrum to more ubiquitous commercial 
applications, such as ultra-low cost security systems and 
absorption spectrometers. 
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