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Abstract
Understanding the properties of plasmons in two-dimensional channels is important for
developing methods of terahertz generation. This paper presents a modal analysis of
plasmonic reflection in open channels supporting dc currents. As it shows, the plasmons can
be amplified upon reflection if a dc current flows away from a conducting boundary;
de-amplification occurs for the opposite current direction. The problem is solved analytically,
based on a perturbation calculation, and numerically, and agreement between the methods is
demonstrated. The power radiated by a channel is found to be negligible, and plasmon
reflection in open channels is shown to be similar to that in closed channels. Based on this
similarity, the oscillator designs developed earlier for closed channels could be applicable also
for open ones. The results develop the modal-decomposition technique further as an
instrument for the design of terahertz plasmonic sources.

(Some figures may appear in colour only in the online journal)

1. Introduction

The potential of semiconductor plasmas for sources of
electromagnetic radiation has been attracting attention for
over half a century. Early work in the 1960s concentrated
on the analogy between electrons in solids and in vacuum
electron beams. The effects considered include the two-stream
instability [1] and travelling-wave interactions with acoustic
[2] and optical [3] phonons and with artificial slow-wave
structures [4]. Experiments on the low-frequency acoustic-
wave amplifier [2] demonstrated the feasibility of the approach
but were eventually eclipsed by the progress in transistors and
diodes. Advances in fabrication revived the activity in the
late 1970s and in 1980s [5–7]. On the other hand, the most
recent upsurge of the interest in semiconductor plasmas [8–10]
has been motivated by the progress in the terahertz (THz)
technology and the need for new THz sources. Generation
mechanisms, such as travelling-wave interactions with slow-
wave structures [11, 12] and optical phonons [13–16], have
been revisited. Considerable attention has also been paid to
the plasma instability in field-effect transistors, whose original
treatment by Dyakonov and Shur [17] was further developed
by considering electron diffusion [18], non-uniform channels
[19, 20] and alternative geometries [18, 21, 22].

The behaviour of field-effect transistors, like that of
transit-time devices [23, 24], is determined by the channel
boundaries. The boundary conditions postulated by Dyakonov
and Shur [17] and adopted by the majority of studies are zero
ac potential at the source and zero ac current at the drain.
Although attractively simple, this approach is limited in several
ways. First, it defines the boundary conditions only at the
channel, ignoring the transverse distribution of the plasmonic
fields. Second and more important, it provides no recipe of
how these postulated conditions could be achieved. A more
advanced theoretical model is, therefore, desirable to describe
the plasmon behaviour at realistic boundaries and help design
plasmonic oscillators.

A promising alternative approach, introduced recently
[25, 26], is based on mode decomposition. It can be
summarized as follows. A plasmon incident in a two-
dimensional channel on a boundary (say, a perfect conductor)
will scatter, in the presence of a dc current, not only into a single
reflected plasmon but also into all eigenmodes propagating
in the opposite direction. The fields at the boundary are
given by the superposition of the incident and all reflected
modes. The modal reflection coefficients are then determined
from the rigorous electrodynamic boundary condition of no
tangential electric field. The model can also be generalized for
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Figure 1. When a dc current flows through a two-dimensional
channel, the plasmons propagating along and against the current
have different field distributions. As a result, a plasmon incident on
a conducting boundary excites not only a single reflected plasmon
but a spectrum of eigenmodes, including radiation and evanescent
modes.

junctions between two different channels [25], where the fields
at the boundaries are given by the superposition of an incident,
reflected, and transmitted modes, whose modal coefficients are
found from (again, electrodynamically rigorous) conditions
of field continuity at the junction plane. The knowledge
of the reflection and transmission coefficients can be further
used to design plasmonic oscillators, for example, comprising
distributed reflectors [25] or conducting boundaries combined
with two different channels [26].

Whereas [25, 26] have established the foundation of
the mode-decomposition technique for drifting plasmons,
they considered only closed structures. Most practical
configurations are, however, open and have to be studied
separately [27, 28].

As a step towards practical configurations, this paper
describes the reflection of plasmons propagating in open two-
dimensional channels, figure 1. The discussion will follow
the steps of the standard decomposition technique [27, 28],
which has, however, to be revisited to include the effects of
dc currents. Section 2 considers the mode spectrum in a two-
dimensional channel. It discusses the properties of drifting
plasmons and of radiation and evanescent modes. Section 3
considers reflection of a plasmon from a conducting boundary.
It formulates and solves the mode-decomposition problem,
deriving the values of the plasmonic reflection coefficients
and demonstrating plasmonic amplification. Section 4 draws
conclusions.

2. Mode spectrum in channels with dc current

This section discusses an infinitely long channel with a dc
current and the its eigenmode spectrum. The channel with the
dc electron density of n0 occupies the plane x = 0. Electrons
in the channel can drift with the dc velocity v0, whose sign
determines the direction. The dc current density is J0 = en0v0,
where e is the electron charge. A dielectric with the relative
permittivity εd surrounds the channel.

Drifting electrons can interact with electromagnetic waves
that have a longitudinal component of the electric field, and so
TM waves will be assumed, with the electric field components
Ex and Ez and the magnetic field component Hy . Above
and below the channel, the waves obey Maxwell’s equations

yielding the dispersion relation

k2
z + k2

x = k2
0εd, (1)

where kz and kx are the longitudinal and the transverse
wavenumbers, respectively, and k0 = ω/c, with the angular
frequency ω = 2πf and the vacuum light velocity c. At
the channel, the fields obey the standard electrodynamic
boundary conditions for the normal component of the
displacement

Ex |x=+0 − Ex |x=−0 = en

ε0εd
, (2)

and the tangential component of the magnetic field

Hy |x=+0 − Hy |x=−0 = J. (3)

Here, n and J are, respectively, the ac electron and current
densities. The standard expression for the linearized current
density is [12, 16, 17, 22]

J = en0v + env0, (4)

where v is the ac electron velocity for which the linearized
equation of motion yields

v = −j
e

m

Ez|x=0

ω − kzv0
, (5)

where j is the imaginary unit, and m is the effective electron
mass. The time variation is in the form exp(jωt) and the spatial
variation is in the form exp(−jkxx − jkzz).

Equation (5) ignores collisions and diffusion, which limits
its validity to low temperatures. This approach is, nevertheless,
desirable for the present analysis. Central to the discussion
below will be the question of power carried by individual
modes as well as that of power exchange between the modes.
The total power of a mode is the sum of its electromagnetic
and kinetic powers, which could flow in opposite directions.
The issue is complicated enough without considering power
dissipation. In addition, collisions can give rise to the resistive-
wall instability [29], which would further obscure the effects
considered here.

Another limitation of (5) is low drift velocities. As
experiments at drift velocities approaching the saturation value
showed [30], plasmons can deviate from the behaviour given
by the term ω − kzv0. However, the effects considered here
appear at low drift velocities; the maximum value of v0 used
in the calculations below was 6 × 106 cm s−1, five times less
than the maximum drift velocity in GaAs.

The next step is to find the eigenmodes subject to the
condition that their amplitudes remain finite at x = ±∞.
It will be done, following the standard approach [27, 28], by
assuming a frequency ω and finding the permissible values of
the wavenumbers kx and kz. Due to the transverse symmetry,
see figure 1, the modes can be separated into even and
odd ones.
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2.1. Odd modes

The fields of the odd modes are of the form

Ex = ±
(
Ae−jkxx + Bejkxx

)
e−jkzz

Hy = ±ωε0εd

kz

(
Ae−jkxx + Bejkxx

)
e−jkzz

Ez = ±kx

kz

(
−Ae−jkxx + Bejkxx

)
e−jkzz,

(6)

where the plus sign corresponds to the fields above the channel
and the minus sign, to the fields below it. Here and in the
following, the harmonic time variation is, as usual, implied.
Substituting the above equations into the boundary conditions
(2) and (3) yields

Ex = ±A
[
(1 − $)e−jkxx − (1 + $)ejkxx

]
e−jkzz

= ∓2A[$ cos(kxx) + j sin(kxx)]e−jkzz
(7)

where

$ = −j
e2n0

2mε0εd

kx

(ω − kzv0)2
. (8)

In principle, the transverse wavenumber could be complex, so
that kx = k′

x + jk′′
x . As analysis shows, however, the condition

that the fields remain finite restricts the permissible range of
kx to either purely real or purely imaginary values. It separates
the spectrum into two parts, a discrete and a continuous ones,
as discussed next.

2.1.1. Discrete spectrum: plasmons. Purely imaginary
transverse wavenumbers (kx = −jκx , where κx is real and
positive) correspond to plasmons. The amplitudes of the
relevant ac quantities for x ! 0 take then the form

Ex = Ae−κxx−jkzz

Hy = A
ωε0εd

kz

e−κxx−jkzz

v = A
e

m

κx

kz(ω − kzv0)
e−jkzz

J = 2A
ωε0εd

kz

e−jkzz.

(9)

The plasmons obey, from (7), the condition 1 + $ = 0 or

(ω − kzv0)
2 = &2

pκx, (10)

where &p = e2n0/(2mε0εd). Equation (10) is the classical
dispersion relation for two-dimensional plasmons [31] when
v0 = 0. The implications of drift were more recently discussed
by Crowne [18]. The values of kz and κx are not independent
of each other but linked by (1), the dispersion relation in
the dielectric. In particular, the condition κx = 0, which
would set the right-hand side of (10) to zero, implies, from
(1), kz = √

εdω/c leading to the left-hand side in the form
ω(1 − √

εdv0/c). Because v0 ' c, the left-hand side of (10)
does not vanish, ω − kzv0 (= 0. As a result, no singularities
will occur in (9).

Given (1), the dispersion relation (10) has, at any
frequency, four solutions for kz, each representing a plasmon.

Figure 2. In the presence of dc current, four plasmons can
propagate along the channel. All four have real wavenumbers below
point 5. The plasmons denoted by points 1–4 have different
wavenumbers. Plasmons 1, 3 and 4 propagate along the drift;
plasmon 2 propagates against the drift.

Their typical dispersion curves are shown in figure 2 for
positive v0 and for real kz. Most notably, the dispersion
curves are different for positive and negative values of kz.
Due to the linkage between kz and κx , the transverse field
distributions of plasmons propagating in opposite directions
are also different, see figure 1. As a result—and in stark
contrast to the driftless channel—a plasmon incident on a
perfectly conducting boundary cannot scatter into a single
reflected plasmon. Nor, as will be shown below, do the incident
and the reflected plasmons have equal amplitudes.

Because this paper concentrates on relatively low drift
velocities, it will discuss plasmon reflection for frequencies
below the one that corresponds to point 5 on the dispersion
diagram, figure 2. When the drift velocity decreases, point 5
moves to the left and upwards, thus increasing the frequency
range covered by the analysis. In this range, four plasmons
propagate with real values of kz. As their group velocities
suggest, the plasmons corresponding to points 1, 3, and 4
propagate in the positive z-direction (along the electron drift),
whereas the plasmon corresponding to point 2 propagates in
the negative z-direction. Hence, when plasmon 1 is incident on
a conducting boundary, it will excite a single reflected plasmon
2. However, when plasmon 2 is incident, it will excite three
reflected plasmons, plasmon 1, plasmon 3 and plasmon 4.

Further observations about the plasmon reflection can
be made by examining the dispersion diagram. Plasmons 1
and 2 have comparable absolute values of the wavenumbers,
and, hence, similar field distributions. Their wavenumbers,
however, differ from those of plasmons 3 and 4. For
example, kz1 = 16 rad µm−1, kz2 = −35 rad µm−1, kz3 =
978 rad µm−1, kz4 = −457 rad µm−1 for the channel with
n0 = 1011 cm−2, v0 = 5 × 106 cm s−1, εd = 12.8, m =
0.067m0 (corresponding to GaAs), and f = 1 THz. As a
result, only plasmons 1 and 2 can scatter effectively into each
other and provide a sustained reflection pattern in resonators.
This paper will, therefore, concentrate on the interplay between
these two plasmons, although all four will be included in the
numerical calculations.

2.1.2. Continuous spectrum: radiation and evanescent modes.
When kx is purely real, the relevant ac quantities take the form
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for x ! 0

Ex = −2A[$ cos(kxx) + j sin(kxx)]e−jkzz

Hy = −2A
ωε0εd

kz

[$ cos(kxx) + j sin(kxx)]e−jkzz

v = 2jA
e

m

kx

kz(ω − kzv0)2
e−jkzz

J = 4jA
ωε0εd

kz

$e−jkzz.

(11)

Unlike the discrete set of four values for the plasmons, kx can
now have arbitrary real values ranging from 0 to ∞. These
modes build a continuous part of the spectrum. From (1), both
kx and kz are real for 0 < kx <

√
εdk0. The corresponding

values of kz are 0 < kz <
√
εdk0. These radiation modes can

propagate along the z- and x-directions and are not bound to
the channel. Analogously to the plasmons, for the radiation
modes one obtains ω − kzv0 ! ω(1 − √

εdv0/c) (= 0 due
to the small values of the electron drift velocity v0. As a
result, no singularities occur in (11). For kx >

√
εdk0, kz

is imaginary corresponding to evanescent modes that decay
along the channel.

2.2. Even modes

For even modes, the transverse electric field component is in
the form

Ex =
(
Ae−jkxx + Bejkxx

)
e−jkzz (12)

both above and below the channel; the other ac components
can be derived following the same steps as for the odd modes.
Applying the boundary conditions (2) and (3) and the condition
that the fields are finite at x = ±∞, one obtains

Ex = A cos(kxx)e−jkzz

Hy = A
ωε0εd

kz

cos(kxx)e−jkzz

v = 0

J = 0.

(13)

Similar to the odd modes, the even modes build a continuous
spectrum with arbitrary real kx . The even modes, however,
do not couple to the drifting electrons. In addition, the
plasmons, being odd modes, can scatter only in other odd
modes. The even modes can, therefore, be ignored in the
following discussion.

2.3. Mode power

The total ac power carried by a mode can be written as the
following sum [26, 32, 33]:

P = Re
∫ ∞

0
ExH

∗
y dx +

mv0

2e
Re(vJ ∗), (14)

where the asterisk denotes complex conjugation. The first term
in (14) is the electromagnetic power due to the fields, and
the second term, proportional to the drift velocity v0, is the
kinetic power due to the electron movement. Substituting the

expressions for the ac plasmonic quantaties (9) into (14) yields
the power carried by a plasmon in the form

Pplasmon = |A|2 ωε0εd

kzκx

[
1
2

+
v0κ

2
x

kz(ω − kzv0)

]
. (15)

The total power of an odd mode from the continuous spectrum
can be written invoking the delta function, as it is done for
passive waveguides [28], in the form

P = 2πωε0εd
Re kz

k2
z

(1 + |$|2)|A|2δ(kz − k̃∗
z ), (16)

where kz and k̃z are two wavenumbers. The power of the
radiation modes, with real kz, is hence

Pradiation = 2π
ωε0εd

kz

(1 + |$|2)|A|2δ(kz − k̃∗
z ). (17)

On the other hand, the power of the evanescent modes,
with imaginary kz, is zero. Separately, however, the
electromagnetic and the kinetic power of the evanescent modes
are non-zero, but are equal and carried in opposite directions.

3. Reflection from a conducting boundary

As has already been discussed, the spectra of the waves
propagating in the opposite directions are different. A single
plasmon incident on a perfectly conducting boundary excites
not a single reflected plasmon but all possible reflected waves.
Assuming the dc current flowing towards the boundary placed
at z = 0, the boundary condition of zero total electric field
component Ex can be written in the form

e−κ (+)x + R e−κ (−)x

−2
∫ ∞

0
r(kx)[$ cos(kxx) + j sin(kxx)] dkx = 0 (18)

The first term represents the incident plasmon with unit
amplitude. The second term represents the reflected plasmon,
where R is the reflection coefficient. The third term, the
integral, represents the continuous spectrum of the reflected
modes, where r(kx) is their reflection coefficient. When the dc
current flows away from the boundary, the boundary condition
will have the same form but with three reflected plasmons, see
section 2.1.1.

The reflection coefficients are found below, first,
analytically by a perturbation approach and, second,
numerically.

3.1. Analytic solution

For small drift velocity v0, the solutions of (18) will differ little
from the driftless solutions. Hence, expanding in the Taylor
series and retaining only the terms proportional to the drift
velocity, one can write

κ (+) = κ (0) + δκ (+) · v0

κ (−) = κ (0) + δκ (−) · v0

R = −1 + δR · v0

r(kx) = 0 + δr(kx) · v0

$ = $(0) + δ$ · v0,

(19)
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where the absolute values of the second terms on the right-hand
sides are small, and the superscript (0) refers to the driftless
values. Substituting (19) into the dispersion relation (10) and
ignoring the terms proportional to v2

0 yields

δκ (+) = −δκ (−) = −2κ (0)2

ω
. (20)

Substituting (19) into (18), expanding the exponentials in the
Taylor series, and ignoring again the terms proportional to v2

0
yields

δr(kx) e−κ (0)x + (δκ (−) − δκ (+))x e−κ (0)x

−2
∫ ∞

0
δr(kx)[$(0) cos(kxx) + j sin(kxx)]dx = 0 (21)

Multiplying (21) by e−κ (0)x , integrating over x, using the
orthogonality conditions for the driftless modes and (20) yields
the plasmon reflection coefficient in the form

R = −1 − 2κ (0)v0

ω
. (22)

One the other hand, multiplying (21) by $̃(0) cos(k̃xx) +
j sin(k̃xx) and doing the same as above yields for the reflection
coefficient of the modes from the continuous spectrum

r(kx) = −4j
π

kxv0κ
(0)3

ω
[
k2
x + κ (0)2

]2 . (23)

Equations (22) and (23) are the solutions also when the dc
current flows away from the boundary.

3.2. Numerical solution

Similar to the standard approach of the mode-decomposition
technique, a numerical solution of (18) can be obtained as
follows. First, the spatial variation is eliminated by multiplying
(18) by the eigenmode functions, (9) and (11), and integrating
it over the x coordinate. Usually, the mode orthogonality
simplifies the result, but for the channel with a dc current, a
single boundary condition appears to be insufficient to employ
the orthogonality relationship [26, 34]. Thus, multiplying (18)
by exp(−κ (−)x) and integrating over x yields

0 = 1
κ (+) + κ (−)

+
R

2κ (−)

−2j
∫ ∞

0
r(kx)

kxv0

kz + k
(−)
z

2ω −
[
kz + k(−)

z

]
v0

(ω − kzv0)2
dkx. (24)

Multiplying (18) by $β cos(kxβx) + j sin(kxβx) yields

0 = j
kxβv0

kzβ + k
(+)
z

2ω −
[
kzβ + k(+)

z

]
v0

(
ω − kzβv0

)2 + jR
kxβv0

kzβ + k
(−)
z

×
2ω −

[
kzβ + k(−)

z

]
v0

(
ω − kzβv0

)2 + π

[

1 +
&4

pkzβ
2

(
ω − kzβ

)4

]

r(kzβ)

−2&2
p

kxβv0
(
ω − kzβv0

)2

∫ ∞

0
r(kx)

kx

kz + kzβ

×2ω − (kz + kzβ)v0

(ω − kzv0)2
dkx. (25)

Figure 3. Plasmonic reflection coefficients depend on the
magnitude and the direction of the dc current. The dependence is
stronger for 1 THz (a) than for 0.5 THz (b).

The second step is to discretize the integrals in (24) and
(25) and take a large value of kx as the upper limit. The simplest
discretization is in the form

∫ ∞

0
f (kx)dkz ≈ )kx

N∑

α=1

f (kxα), (26)

where )kx = kx α+1 − kxα . As a result, (24) and (25)
transform into an (N +1)×(N +1) matrix equation of the form
A · (R, r1, r2, ..., rN)T = B. The formulation is analogous
when the dc current flows away from the interface, but with
three reflected plasmons.

3.3. Example: amplification of the reflected plasmons

The numerical and analytical solutions can be employed for
various configurations. The parameters of the most interest are
the frequency and the dc current density (drift velocity). For
the frequency, the values 0.5 and 1 THz were chosen. The drift
velocity varied from 0 to v0 = ±6×106 cm s−1, corresponding
to the maximum current densities of about 0.1 A cm−1. The
two signs of the velocity correspond to the opposite drift
directions; the plus sign is taken when the dc current flows
towards the boundary. The parameters of the channel and the
dielectric were n0 = 1011 cm−2, εd = 12.8 and m = 0.067m0.

For numerical calculations, the continuous spectrum was
approximated by several thousand modes, see (26), with the
highest wavenumber equal to 100κ (0). The accuracy was tested
numerically and visually, by comparing Ex components of the
incident and the reflected fields. They typically coincided
for the distances up to 500 nm away from the channel, by
which point the fields decreased about 20 000 times. The sum∑

i |E
(+)
xi +E

(−)
xi |2 calculated at 100 points within this range did

not exceed 10−4 for moderate dc currents.
The important value is the reflection coefficient

corresponding to the plasmons shown by points 1 and 2
in figure 2. As both analytical and numerical calculations
show, the reflection coefficient is affected by the dc current,
exceeding unity for positive currents, see figure 3. The
dependence on the current is stronger for 1 THz than for

5
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Figure 4. The analytical and numerical reflection coefficients agree
for the continuous spectrum, both for positive (a) and negative (b)
current directions. The reflection coefficients for the radiation
modes (close to the origin) are small.

0.5 THz, because the plasmons are affected more by the current
at higher frequencies, see figure 2.

The discrepancy between the analytical and numerical
results is larger for the higher frequency and for the positive
currents. It is probably due to the approximate solution of the
plasmon dispersion relation (10). The perturbation solution
(19) assumed linear variation of the wavenumbers with the
drift velocity and ignored two of the four plasmons. This
approximation becomes increasingly weaker, however, as the
frequency increases and approaches point 5 in the dispersion
diagram figure 2. Most affected will be plasmon 2 whose
wavenumber will not only depend on the drift velocity in a
complicated manner but also become comparable to that of
plasmon 4. Because plasmon 2 is the reflected one for positive
currents, the poor analytical approximation of its wavenumber
may explain the higher discrepancy between the analytical and
numerical results for the positive currents in figure 3.

According to (22), the increase in the reflection coefficient
at one value of the dc current is the same as its decrease at
the opposite value. The numerical calculations confirm that
|RJ0>0 RJ0<0| ≈ 1.

As discussed above, a plasmon incident on the boundary
at a negative dc current (point 2 in figure 2) can scatter also into
two high-wavenumber plasmons (points 3 and 4 in figure 2).
The corresponding reflection coefficients are, however, small.
At 0.5 THz, for example, their absolute values are below 0.025
even for the highest dc current.

The analytical and numerical calculations agree well
also for the reflection coefficients of the continuous-spectrum
modes, as seen from figure 4 showing the reflection coefficients
at 0.5 THz for opposite dc currents. Both the form of the

Figure 5. The plasmon power reflection coefficients reveal
amplification for negative and de-amplification for positive currents.
The effect is stronger at 1 THz (a) than at 0.5 THz (b). Although the
channel is open, the plasmonic reflection coefficient (black line) is
almost the same as in a closed channel (grey line).

curves and the position of the maxima agree, although there is a
discrepancy is the maximum values. The reflection coefficients
are the largest for kx ≈ 0.6κ (0) = 0.6ω2/&2

p. In the radiative
part of the spectrum, kx <

√
εdk0, the reflection coefficients

are small.
Further understanding of the plasmon reflection can be

gained by looking at the power reflection coefficients. These
were calculated from the amplitude ones and using the
expression for the mode power (15). The power reflection
coefficient depends on the dc current, see figure 5: its absolute
value is larger than unity for negative dc currents and smaller
than unity for positive ones. This behaviour is the inverse
of that of the amplitude reflection coefficient, see figure 3.
The power reflection coefficient, however, is the true indicator
of the process nature. Hence, the plasmon is amplified on
reflection when the dc current flows away from the boundary.
It is de-amplified when the dc current flows towards the
boundary. A closer examination of the electromagnetic and
kinetic plasmon powers suggests the following explanation
of the effect [26]. The electromagnetic power flows in the
direction of plasmon propagation, towards the boundary for
the incident and away from the boundary for the reflected
plasmon. On the other hand, the direction of the kinetic power
flow is determined by the direction of the electron drift both
for the incident and the reflected plasmons. As a result, the
total power is higher when the plasmon propagates along the
drift, so that amplification occurs when the current flows away
from the boundary. The amplification is signalled by the power
reflection coefficient exceeding unity.

The situation is identical to the plasmon reflection
in closed channels, discussed in detail in [26]. As a
further demonstration of this similarity, figure 5(a) shows the
reflection coefficient in a closed channel at 1 THz (grey line),
where two conducting boundaries were placed at a distance of
200 nm above and below the channel, and the other parameters
were the same as for the open channel. The two reflection
coefficients have similar values. As could be expected, the
plasmon amplification and de-amplification are stronger at
1 THz, figure 5(a), than at 0.5 THz, figure 5(b).

6
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The power carried by all radiation modes turns out to be
negligible. It can be estimated from (17) and the analytical
expression for the reflection coefficient (23). For the radiation
modes, |$| ' 1 and kx ' κ (0) leading to

Pradiation ∼
v2

0

ω2

∫ √
εdk0

0

k2
x√

εdk
2
0 − k2

x

dkx ∼
v2

0

c2
, (27)

a very small value.
The difference between open and closed 2D channels

supporting dc currents lies, as it does for passive waveguides
[27, 28, 33], in different approaches to solve the reflection
problems due to different eigenmode spectra. In closed
channels, the eigenmode spectrum consists of an infinite
number of discrete modes: plasmons and waveguide modes.
Each mode carries a finite amount of power, and all modes are
mutually orthogonal. The reflection coefficients can be found
as solutions of a matrix equation. By contrast, the eigenmode
spectrum in open channels has both a discrete and a continuous
parts. The discrete modes are the plasmons, carrying finite
power. The continuous spectrum includes the radiative modes,
carrying infinite power, see (17), and the evanescent modes.
The resulting equations for the reflection coefficients, (24) and
(25), are integral equations, which can be transformed into
matrix ones by discretizing the integrals.

4. Conclusions

As the paper has shown, plasmons can be amplified upon
reflection in open two-dimensional channels that carry dc
currents. The analysis distinguishes itself by a rigorous
treatment of the boundary conditions and by considering the
complete spectrum of the eigenmodes. The amplification
occurs when the dc current flows away from a conducting
boundary; the opposite current direction leads to de-
amplification.

Both processes will occur equally in a homogeneous
channel confined between two conducting boundaries, and
although this (and similar) symmetric configuration forms a
plasmonic resonator, its roundtrip gain does not exceed unity.
In this respect, open resonators could be expected to behave
identically to the closed ones considered earlier [25, 26]. The
qualitative and quantitative similarity between the reflection
in open and closed channels, revealed here, suggests the same
solutions for the open plasmonic oscillators as developed in the
previous studies, for example, using channels with different dc
electron densities.

Despite being open, the channels radiate a negligible
amount of power during plasmon reflection. It confirms the
need for additional coupling devices in practical plasmonic
THz oscillators, such as grating couplers used in some
experiments [35].

The analysis presented here augments the modal
techniques developed earlier for closed resonators [25, 26].
Together, they provide a theoretical model that avoids
ad hoc boundary conditions, which have dominated the recent
research on plasmonic oscillators. Instead, they shift the
emphasis to the device structure, in particular, structural
asymmetry for achieving THz oscillations [25, 26].
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