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Abstract: Semiconductor plasmons have potential for terahertz gener-
ation. Because practical device formats may be quasi-optical, we studied
theoretically distributed plasmonic reflectors that comprise multiple inter-
faces between cascaded two-dimensional electron channels. Employing
a mode-matching technique, we show that transmission through and
reflection from a single interface depend on the magnitude and direction of
a dc current flowing in the channels. As a result, plasmons can be amplified
at an interface, and the cumulative effect of multiple interfaces increases
the total gain, leading to plasmonic reflection coefficients exceeding unity.
Reversing the current direction in a distributed reflector, however, has the
opposite effect of plasmonic deamplification. Consequently, we propose
structurally asymmetric resonators comprising two different distributed
reflectors and predict that they are capable of terahertz oscillations at low
threshold currents.
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1. Introduction

There has been increased interest in semiconductor plasmons [1–3] due to the rapid develop-
ment of terahertz science and technology, the most exciting prospect being the realization of
oscillators. Various generation mechanisms have been considered theoretically, including, for
example, plasmon interactions with quantum-wire gratings [4] or optical phonons [5–7], and
the Dyakonov-Shur instability [8]. The latter has inspired a number of theoretical [9–12] and
experimental [13–15] studies, but the terahertz power attainable was low (see Ref. [16] for a
review). Nevertheless, the lack of cheap and effective terahertz sources continues to motivate
further intensive search of plasmonic mechanisms.

Here, we propose quasi-optical terahertz oscillators that are based on distributed reflectors
comprising two-dimensional channels with different electron densities (see Fig. 1(a)). In stark
contrast to traditional Bragg lasers, the reflectors in our devices are responsible for both the
feedback and the gain. The gain occurs at an interface between two channels in the presence of
a dc current. Combining interfaces into a periodic superlattice increases the gain, resulting in
plasmonic reflection coefficients in excess of unity. Resonators formed by such reflectors are
able to oscillate in the terahertz range.

We describe the distributed plasmonic gain in three steps. Section 2, first, discusses a sin-
gle two-dimensional channel in the presence of dc current and emphasises its non-reciprocal
properties. Then, it discusses interfaces between two channels and demonstrates amplification.
Section 3 discusses distributed reflectors and shows how these can form oscillators. Section 4
draws conclusions.

2. Single plasmonic reflectors

Consider first an infinitely long electron channel with a dc electron density n0 surrounded by
a dielectric with a relative permittivity εd and sandwiched between two perfectly conducting
planes placed symmetrically at a distance w from the channel. The geometry is as shown in
Fig. 1(a) but with a single homogenous channel instead of a set of cascaded sections. The
role of the metallic boundaries is to control the mode spectrum. We assumed TM waves with
electric field components Ex and Ez, magnetic field component Hy, angular frequency ω , and
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Fig. 1. Cascaded two-dimensional channels form a distributed reflector (a). In the presence
of dc current, counter-propagating plasmons have different dispersion characteristics (b)
leading to different transverse field profiles, shown schematically on the dispersion curves.

wavenumbers kx and kz. The relationship between the wavenumbers is k2
x + k2

z = εdω2/c2,
where c is the light velocity. The boundary conditions are Ez|x=±w = 0 at the metal and

Ez|x=+0 = Ez|x=−0

Ex|x=+0 −Ex|x=−0 = en/(ε0εd)
Hy|x=+0 −Hy|x=−0 = J

(1)

at the channel. Here e is the electron charge; ε0 is the vacuum permittivity; n and J are, respec-
tively, the harmonically varying electron and current densities. Solution of Maxwell’s equations
in the dielectric yields the field components; for example, the amplitude of the magnetic field
above the channel is

Hy = A
coskx(x−w)

coskxw
, (2)

where A is a constant.
We described the electron dynamics using the standard linearized hydrodynamic model [4–

12] as follows. The total electron density, ntot, and velocity, vtot, have the form

ntot = n0 +n
vtot = v0 + v

(3)

where v0 and v are the dc and the ac electron velocities, respectively. As is usually done, we then
assumed that the amplitudes of the dc components are much smaller than their dc counterparts
and ignored the products of the small quantities n× v and v× v. Hence, for the total current
density we had

Jtot = e(n0 +n)(v0 + v)≈ en0v0 + en0v+ env0 , (4)

The first term of the right-hand side in Eq. (4) is the dc component of the total current density,
J0 = en0v0, and the sum of the last two terms is the ac component of the total current density,
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J = en0v+ env0. Note that the dc current density is independent of the ac components, but
the ac current density is affected by the dc components. The latter indicates coupling between
the plasmons and drifting electrons, which is responsible for the plasmonic gain discussed
below. If the amplitudes of the ac and dc components of the electron density and velocity
have comparable values, the term n× v in Eq. (4) can no longer be neglected. It would, in
particular, lead to a dc current due to the ac fields. We were, however, concerned with the onset
of oscillations when the ac terms are small and Eq. (4) is valid.

Under the above assumptions, the linearized lossless equation of motion has the form

j(ω − kzv0)v =
e
m

Ez|x=0 , (5)

where j is the imaginary unit, and m is the electron effective mass. Substituting Eqs. (2), (4),
and (5) into Eq. (1) leads to the dispersion relation in the form

Ω2
p

kx tankxw
(ω − kzv0)2 =−1 , (6)

where Ω2
p = e2n0/(2mε0εd). The dispersion relation’s salient feature is its dependence on the

electron drift velocity v0. Due to the Doppler term kzv0, waves propagating at the same fre-
quency in opposite directions have different values of kx and kz. Figure 1(b) shows this for
the dispersion curves of the plasmons propagating in opposite directions at low wavenumbers.
These are the solutions of the dispersion relation (6) yielding real values of kz and imaginary

values of kx. The parameters used are two different electron densities n(1)0 = 1011 cm−2 and

n(2)0 = 4×1011 cm−2, εd = 12.8, m = 0.067m0 (corresponding to GaAs), w = 100 nm, and the

same dc current density J0 = en(1),(2)0 v(1),(2)0 = 0.05 A/cm. The non-reciprocal nature of plas-
mon propagation is pronounced for the lower electron density, where the wavenumbers of the
counter-propagating plasmons at 1 THz differ by a factor of about 1.5. Hence, the decay lengths
of the two plasmons also differ, as shown schematically in Fig. 1(b).

Apart from the two plasmons shown in Fig. 1(b), the channel can, at low frequencies, support
two more plasmons that have higher wavenumbers and are analogous to the slow and fast space-
charge waves propagating on electron beams [17]. At 1 THz, for example, the corresponding
wavenumbers are 2463.8 and −1616.7 rad/μm for the channel with the dc electron density

n(2)0 . In addition, for the small value of w chosen, the dispersion relation yields infinite number
of solutions with complex-valued kz and kx. These represent evanescent modes that decay along
both the x- and z-directions. The fields in the channel are given, in general, by a superposition
of all modes, low- and high-wavenumber plasmons and evanescent waves, as discussed next.

Consider an interface between the two channels with electron densities n(1)0 and n(2)0 and
dc current J0 flowing through it. A plasmon incident on the interface partially reflects and
transmits, as shown schematically in Fig. 2 where the step represents the change in the dc
electron density.

To solve the problem of plasmon transmission and reflection, boundary conditions at the in-
terface z = 0 should be known. Our approach to the boundary conditions differed markedly
from the one usually used to describe reflection of drifted plasmons [8–12]. Instead of pos-
tulating the boundary conditions at the single point z = 0, x = 0 of the junction between the
channels, we consider them at the whole interface z = 0, x ∈ [−w,w]. Everywhere except the
junction, the interface is a continuous dielectric, and the standard field boundary conditions
apply

E(1)
x |z=0 = E(2)

x |z=0

H(1)
y |z=0 = H(2)

y |z=0
(7)
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Fig. 2. Schematic presentation (a) of an interface between two different channels, where
the step shows the change in the dc electron density. The presence of dc current affects the
(b) reflection and (c) transmission coefficients of the plasmon incident from the channel
with a larger electron density. Both coefficients can increase when the current flows away
from the interface.

To solve the problem in the presence of dc current, the boundary conditions for the ac current
and velocity at the junction z = 0, x = 0 should also be known. We discuss first the ac current
density. Due to the symmetry of the structure, Eq. (1) gives

J(1),(2)(z) = 2H(1),(2)
y (z)|x=0 , (8)

so that the boundary condition for the current should follow from the conditions for the mag-
netic field. To obtain these, we considered a cylinder of a small radius δ with the axis at the
junction as shown in Fig. 3. The surface of the cylinder is in the dielectric, where the magnetic

Fig. 3. To obtain the boundary conditions for the current, we surround the interface by a
cylinder with a small radius δ . As the radius decreases, the difference between the magnetic
fields at the cylinder surface vanishes leading to continuity of the current.
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field is a continuous function. Hence, as the radius of the cylinder decreases, δ → 0, one gets

H(1)
y |x=0

z=−δ → H(1)
y |x=δ

z=0

H(2)
y |x=0

z=δ → H(2)
y |x=δ

z=0

(9)

and because H(1)
y |x=δ

z=0 = H(2)
y |x=δ

z=0 , one gets H(1)
y |x=0

z=−δ → H(2)
y |x=0

z=δ , or, due to Eq. (9),

J(1)|z=−δ → J(2)|z=δ . As a point discontinuity of the current is implausible, the latter finally
leads to

J(1)|z=0 = J(2)|z=0 . (10)

Hence, the ac current density is continuous at the junction. As then follows from the continuity
equation, no line charge can accumulate at the junction. The same arguments are valid for the
Ex component, and hence, for the ac charge density at the interface, leading to

n(1)|z=0 = n(2)|z=0 . (11)

Finally, from Eqs. (10) and (11), the boundary condition for the electron velocity is

v(2)|z=0 =
n(1)0 v(1)|z=0 +(v(1)0 − v(2)0 )n(1)|z=0

n(2)0

. (12)

Due to the different decay lengths of the incident, reflected, and transmitted plasmons (see
Fig. 1(b)), other modes will be excited in addition to the plasmons to match the fields. Moreover,
because the decay lengths of the drifting and non-drifting plasmons are different, plasmon
reflection and transmission will depend on the dc current. We described the fields in the incident
channel as a superposition of the incident and reflected plasmons (see Fig. 1(b)), the reflected
evanescent waves, and the reflected high-wavenumber plasmons discussed above. For example,

for the magnetic field, we took H(1)+
y1 +∑α RαH(1)−

yα , where the superscripts + and − denote
the propagation direction; the subscript α denotes the mode number (the low-wavenumber
plasmons have α = 1). The amplitude of the incident plasmon is unity, and Rα are the mode

reflection coefficients. Analogously, for the transmitted magnetic field, we took ∑α TαH(2)+
yα ,

where Tα are the transmission coefficients, and the summation is for low- and high-wavenumber
plasmons and the evanescent waves. The boundary conditions (7) take then the form

E(1)+
x1 +∑

α
RαE(1)−

xα = ∑
α

TαE(2)+
xα

H(1)+
y1 +∑

α
RαH(1)−

yα = ∑
α

TαH(2)+
yα

(13)

Combining Eqs. (13) with the analogous expressions for the electron velocity and current den-
sity, which follow from Eqs. (10) and (12), and using the orthogonality relation [18]

∫ w

0

(
E(1,2)

xα H(1,2)
yβ +E(1,2)

xβ H(1,2)
yα

)
dx+

mv(1,2)0

2e

(
J(1,2)α v(1,2)β + J(1,2)β v(1,2)α

)
= 0, α �= β , (14)

we were able to follow the steps of standard mode decomposition techniques [19, 20] and find
numerically the values of the reflection and transmission coefficients.

As our calculations showed, the interface can amplify both the transmitted and the reflected
plasmons in the presence of dc current. Figure 2 shows the reflection and transmission coeffi-

cients of the plasmon incident in the positive z-direction from the channel with the density n(1)0
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upon the channel with the density n(2)0 . When the dc current flows away from the interface (is
negative), the values of the reflection and transmission coefficients can exceed those without
the current. Conversely, these values can reduce for opposite dc current. Although plasmons
are amplified at the interface, the effect is too weak to be used in oscillators. Indeed, a resonator
is capable of oscillations only if its roundtrip gain exceeds unity, which requires high reflection
coefficients. In the example of Fig. 2(b), however, the reflection coefficient increased from 0.46
to only 0.51 at 1 THz.

3. Distributed plasmonic reflectors and oscillators

To solve the problem of weak amplification at a single reflector, we combined multiple inter-
faces into a distributed Bragg reflector of Fig. 1(a). Optical Bragg reflectors made of dielectric
layers can have high reflection coefficients due to stop bands induced by the layer periodicity.
This effect was also observed in two-dimensional superlattices [21] similar to that of Fig. 1(a).
In addition, our plasmonic reflectors provide distributed gain, leading to reflection coefficients
larger than unity.

We analyzed the distributed reflectors by modifying the approach used in the optics of mul-
tilayers [22] as follows. Above, we obtained the transmission and reflection coefficients of
plasmons incident on the interface in the positive z-direction; we now denote these as t(+) and
r(+), respectively. Then, we reversed the incidence direction and obtained another pair of re-
flection and transmission coefficients, t(−) and r(−). If the lengths of the channels in a reflector
are large enough, the evanescent waves excited at one interface do not influence the field dis-
tributions at the neighboring interfaces. As numerical calculations showed, evanescent waves
in our examples can be neglected if the lengths exceed 200 nm. In addition, we ignored in the
following the high-wavenumber plasmons. Because of the large wavenumber difference, scat-
tering into these modes is ineffective, and their amplitudes are low. Under these assumptions,

the four coefficients, t(+,−)
i and r(+,−)

i , fully describe the i-th interface in a distributed reflector.

The transmission and reflection coefficients for a reflector comprising N interfaces, R(+,−)
N and

T (+,−)
N , can then be found by recursive Airy summation. For example, the reflection coefficient

for the plasmon incident on the reflector from the positive direction, is

R(+)
N = R(+)

N−1 +
T (+)

N−1T (−)
N−1r(+)

N e
−j

[
k(+)
N−1−k(−)

N−1

]
LN−1

1− r(+)
N R(−)

N−1e
−j

[
k(+)
N−1−k(−)

N−1

]
LN−1

, (15)

where k(+)
N−1 and k(−)

N−1 are the wavenumbers of the counter-propagating plasmons in the (N−1)-
th channel that has the length LN−1.

Following this approach, we analyzed a reflector consisting of seven channels with the den-

sities n(1)0 and n(2)0 , each 200 nm long, as shown schematically in Fig. 4(a). The plasmon was
incident from the left (positive z-direction). In the absence of dc current, the frequency variation
of the reflection and transmission coefficients has the expected Bragg-like form (see Fig. 4(b)).
In a number of frequency bands, the reflection coefficient is close to unity, and the transmission
coefficient is close to zero. The lack of periodicity in the curves is due to plasmon dispersion
(see Fig. 1(b)).

The presence of dc current affects the transmission through and reflection from the distrib-
uted reflector (see Figs. 4(c) and (d)). Notably, the reflection coefficient exceeds unity at a
number of frequencies when the current is negative (is opposite to the incidence direction),
Fig. 4(d). For example, |R(−)| = 1.09 at 1 THz for J0 = −0.05 A/cm. It is, however, less than
unity at the same frequencies for the positive dc current, Fig. 4(c). At 1 THz and J0 = 0.05 A/cm,
|R(+)|= 0.91.
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Fig. 4. The effect of the dc current depends on the structure of a distributed reflectors. In the
absence of the current, (b) and (f), the plasmonic reflection coefficient can be close to unity
in several frequency bands. It can increase and exceed unity for negative current densities,
(d) and (h), and decrease for positive current densities, (c) and (g). The effect of the dc
current is larger for the reflector (a) comprising channels with low electron density.

Because opposite currents have opposite effects on the reflection coefficient, resonators made
of two identical reflectors do not oscillate. Plasmons in a resonator are incident on the reflectors
from opposite directions, which is equivalent to having the reflectors at opposing currents.
Amplification at one reflector is compensated by deamplification at the other, and the roundtrip
gain in the resonator is the same as without the dc current. Referring to the above example, the
roundtrip gain is |G|= |R(−)R(+)|= 1.09×0.91 ≈ 1.

To obtain a resonator with the roundtrip gain exceeding unity, we had to mitigate the reduc-
tion of the reflection coefficient at positive currents while preserving its increase at negative
currents. To do so, we considered a second reflector consisting of seven channels with the elec-

tron densities n(2)0 = 4×1011 cm−2 and n(3)0 = 10×1011 cm−2 each 1000 nm long. It is shown
schematically in Fig. 4(e) where longer lines show the increased channel lengths. The effect of
the dc current on the transmission and reflection coefficients is now reduced (see Figs. 4(f)–(h)).
The absolute value of the reflection coefficient at 1 THz changes from 0.96 at zero current to
0.94 at the positive and to 0.98 at the negative current.

Consider now the structurally asymmetric resonator formed by the two reflectors as shown
in Fig. 5(a). For the dc current density of 0.05 A/cm, the roundtrip gain at 1 THz is equal
to the product of the reflection coefficients, 1.09 and 0.94, and exceeds unity. This resonator
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is, thus, capable of oscillations. The oscillation frequency can be intrinsically controlled by
the length of the middle section in the resonator. To further prove this point, we calculated
the transmission and reflection coefficients for the plasmons incident on the resonator from
opposite directions. To observe oscillations at 1 THz, we chose the length of the middle section
to be around 200 nm. In the absence of dc current, neither reflection nor transmission coefficient
exceeds unity (Fig. 5(b)). They grow as the current increases. The oscillations occur at J0 =
0.029 A/cm, when a high and narrow peak appears at 1 THz (see Fig. 5(c) and (d)).

Fig. 5. Two different reflectors form an asymmetric resonator (a) whose roundtrip gain
can exceed unity. The reflection and transmission coefficients of plasmons incident on the
resonator do not exceed unity in the absence of the dc current (b), but oscillations occur at
1 THz when the threshold current density is reached (c) and (d). The oscillation frequency
was controlled by choosing the length of the middle section.

The threshold behavior of the oscillations can be clearly seen from Fig. 6 that shows the
reflection coefficient of the plasmon incident from the right against the dc current density.
The circles are results of numerical calculations by the method exemplified by Eq. (15). The
solid line is obtained by polynomial interpolation of the reflection coefficients of the individual
interfaces and the plasmon wavenumbers of the individual channels. In each case, |R| rises
rapidly near the threshold current.

Fig. 6. A plasmonic reflection coefficient clearly shows threshold oscillation behavior. Os-
cillations occur at current densities exceeding 0.029 A/cm.

The presence of loss, eg. due to electron collisions, will decrease the roundtrip gain. If the
loss is small, the transmission and reflection coefficients of a single reflector discussed in the
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previous section are unlikely to be affected greatly. The loss will, however, play a role in distrib-
uted reflectors, where plasmons propagate in lossy channels. It can be accounted for in Eq. (15)
by replacing the values of the propagation constants by complex numbers of the form k′ − jk′′,
where k′′ is the attenuation constant. Assuming that the attenuation constants are equal for all
channels, we studied the effect of loss for the distributed reflector of Fig. 4(a). At 1 THz, the
reflection coefficients decreased linearly with small k′′. The decrease of |R| of 5%, from 1.09
to about 1.04, was reached for k′′ ≈ 2 rad/μm. For this value, we estimated ωτ ≈ 50, where τ
is the collision time. The corresponding mobilities are of the order of 105 cm2/(Vs), achievable
in GaAs channels at low temperatures.

4. Conclusions

We have proposed a terahertz oscillation mechanism based on distributed gain in plasmonic
reflectors that comprise cascaded two-dimensional channels. The plasmonic reflection coeffi-
cient exceeds unity when plasmons are incident in the direction opposite to the dc current flow,
leading to amplification. The opposite effect of deamplification occurs when the incidence di-
rection coincides with the dc current flow. In a resonator comprising two such reflectors, plas-
mons propagate in both directions and, therefore, both amplification and deamplification occur.
As our calculations showed, the plasmonic amplification and deamplification cancel each other
if the two reflectors are identical. However, the resonators comprising two different reflectors
were capable of oscillations. The threshold current density of 0.029 A/cm in our demonstrative
example corresponded to the maximum drift velocity of about 2× 106 cm/s and it could be
further decreased by increasing the number of sections in the distributed reflectors. The results
suggest a new way of realizing THz oscillators.
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