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AbstractAbstract
S b t t i t t d id (SIW) t h l h i i d• Substrate integrated waveguide (SIW) technology has experience increased
popularity in recent years, in the form of post-wall waveguides. However, the
roots of this technology go back almost two decades with integrated dielectric-
filled metal pipe rectang lar a eg ides One of the main dra backs ith SIWfilled metal-pipe rectangular waveguides. One of the main drawbacks with SIW
technology is the realisation of reconfigurable architectures at (sub-)millimetre-
wave frequencies. To this end, a paradigm shift in the way components, circuits
and front end subsystems can be realised will be presented using the newlyand front-end subsystems can be realised will be presented using the newly
proposed REconfigurable Terahertz INtegrated Architecture (RETINA)
technology. Here, ‘virtual’ side-walls within high resistivity silicon are created with
a photo-induced ‘metal-like’ plasma defined by light patterns than can bea photo-induced metal-like plasma, defined by light patterns than can be
changed in real time. This new class of SIW technology allows individual
components/circuits to be made tuneable and circuits/subsystems to be
reconfigurable, simply by changing light source patterns. While still in its infancy,reconfigurable, simply by changing light source patterns. While still in its infancy,
it is believed that for certain niche applications (e.g. where tuneability or
reconfigurability is more important than Q-factor/loss performance) this
technology could open up many new areas of (sub-)millimetre-wave research
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IntroductionIntroduction

 At THz frequencies, guided-wave structures and resonators can in general exhibit:

• high integration and low cost – at the expense of high losses

• low loss – at the expense of poor integration and high cost

 At THz frequencies, reconfigurable & multifunctional front-end architectures 
represents a major challenge:

• prohibitively expensiveprohibitively expensive

• impossible to integrate properly
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Commercial 94 GHz metal-pipe rectangular waveguide 
systems architecture for medical research applications y pp
[http://www.aerowave.net/Custom.html]
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Complete 60 GHz system-on-substrate receiverComplete 60 GHz system on substrate receiver 

K. K. Samanta, D. Stephens and I. D. Robertson, “Design and performance of a 
60 GHz multi chip module receiver employing substrate integrated waveguides”
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Illustration of a ‘futuristic’ MCM receiver architecture 
concept, with integrated scanning phased array antenna 

S. Lucyszyn, S. R. P. Silva, I. D. Robertson, R. J. Collier, A. K. Jastrzebski, I. G. 
Thayne and S. P. Beaumont, “Terahertz multi-chip module (T-MCM) technology for the 
21 t C t ?” IEE C ll i Di t M lti Chi M d l d RFIC L d
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Complete 24 GHz FMCW radar front-end SoS, 
with integrated phased array antennas

Z. Li and K. Wu, “24-GHz frequency-modulation continuous-wave radar front-
end system on substrate” IEEE Transactions on Microwave Theory and
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Examples of SoC technologies employing surface 
i hi i i f b i ti imicromachining microfabrication processing

Part of a 3 THz metal pipe
0.6 THz metal-pipe rectangular 

id iPart of a 3 THz metal-pipe 
rectangular waveguide array

waveguide receiver 

C. D. Nordquist, M. C. Wanke, A. M. Rowen, 
C L A i t M L A D G i “D i

Kazemi, S. T. G. Wootton, N. J. Cronin, S.
R. Davies, R. E. Miles, R. D. Pollard, J.

C. L. Arrington, M. Lee, A. D. Grine, “Design, 
fabrication, and characterization of metal 
micromachined rectangular waveguides at 3 
THz” IEEE AP S International Symposium

M. Chamberlain, D. P. Steenson and J.
W. Bowen, “Active micromachined
integrated terahertz circuits”, Int. J.
I f d d Milli t W l 20
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RETINA ConceptRETINA Concept

 Basic RETINA concept is based on creating virtual side walls

S Lucyszyn and Y Zhou “Reconfigurable Terahertz Integrated Architecture (RETINA)”S. Lucyszyn and Y. Zhou, Reconfigurable Terahertz Integrated Architecture (RETINA) ,
33rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2008),
Pasadena, USA, 2008.
Y Zhou and S Lucyszyn “Modelling of reconfigurable terahertz integrated architecture
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 Basic material parameters:

• Maximum photoconductivity – represents sidewall losses
• Dark conductivity – represents dielectric losses
• Carrier lifetime – defines the sidewall stabilityCarrier lifetime defines the sidewall stability
• Band gap energy – dictates minimum illumination wavelength

WFA: Integration and Technologies for mm-Wave Sub-systems IMS2012, Montreal, June 22, 2012 11



Stepan Lucyszyn and Yun Zhou, Centre for Terahertz Science and Technology, Imperial College London, UK

T i l ti f i d t t t t Typical properties of semiconductors at room temperature
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Carrier Density ModellingCarrier Density Modelling

Photoconductivity (PC) effect
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 Picosecond P lse PC Effect Picosecond Pulse PC Effect
x
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)( 0x  Continuous Wave PC Effect
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Sil ™ TCAD i l ti 2D L i Silvaco™ TCAD simulations: 2D Luminous

Beam Width = 50 m
Wafer Thickness = 100 m

Optical Incident Power Range: 10-100 W/cm2
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Electromagnetic Modelling
 HFSS™ simulations: comparison with two beams

Electromagnetic Modelling

Single Sided

 HFSS  simulations: comparison with two beams

Double Sided
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Wall Permittivity Modelling for Single Sided IlluminationWall Permittivity Modelling for Single-Sided Illumination
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 Single Sidedg
at 300 GHz
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 Double Sided Double Sided
at 300 GHz
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f G

 Single Sided  Double Sided

E-field Plots at 300 GHz

g

WFA: Integration and Technologies for mm-Wave Sub-systems IMS2012, Montreal, June 22, 2012 26



Stepan Lucyszyn and Yun Zhou, Centre for Terahertz Science and Technology, Imperial College London, UK

Wall CharacterizationWall Characterization

Equivalent Solid Wall
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Wave Port ExcitationWave Port Excitation
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RETINA W ll Ch t i ti
0

AttenuationRETINA Wall Characterization
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Loss Comparison with VariousLoss Comparison with Various 
Non-Tuneable/Reconfigurable SIW Technologies
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Cavity Resonators
Double Sided RETINA Cavity Resonators

Cavity Resonators
y
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TE101 TE201 TE202
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TE301 TE302
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Single Sidedg
Backside for

TE101 at 170 GHz
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Double Sided
Backside for

TE101 at 174 GHz
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Thermal ModellingThermal Modelling

 Using 2D finite difference 
solver in Matlab:so e at ab

Distribution of heat 
generation d e to lightgeneration due to light 
absorption, assuming:

• absorption length of 30 m

• no reflection at the bottom• no reflection at the bottom 
of the substrate
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 Distribution of 
temperature rise for a 100 
m wide virtual wall in a 
100 thi k b t t100 m thick substrate:

• 80 W/cm2 incident80 W/cm incident 
power
• good backside heatsink

Temperature rise in the 
RETINA substrate couldRETINA substrate could 
be kept below 1ºC under 
realistic illumination 

WFA: Integration and Technologies for mm-Wave Sub-systems IMS2012, Montreal, June 22, 2012 39

conditions



Stepan Lucyszyn and Yun Zhou, Centre for Terahertz Science and Technology, Imperial College London, UK

Proof of Concepts
 Simple proof-of-concept experiment at 200 GHz

Proof of Concepts
 Simple proof-of-concept experiment at 200 GHz
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 MPRWG design for conventional on-wafer probing at 200 GHz
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 RETINA exemplars: RETINA exemplars:
• right-angled bends
• power splitters
• SP3T switchesSP3T switches
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 Tuneable RETINA filters, Tuneable RETINA filters, 
with g/2 resonant cavities 
coupled by inductive irises
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 Other tuneable RETINA exemplars: 
• radiating tapered horn antennas
• variable power splitters
• tuneable short circuit stubs
• variable delay line
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 Hybrid scanning phased array antenna 
demonstrator at 200 GHz 
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 300 GHz RETINA phased array scanning antenna, 
with switchable transmit and receive modes, 
indicating calculated parameters and associated 
dimensions (all drawn to scale)
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Light TechnologiesLight Technologies

 The pattern of incident light can be controlled in a number of ways

Proximity shadow mask
• Very inefficient, with almost all incident optical power being wasted
• Non-tuneable components onlyp y
• Reasonable approach for an initial demonstration

Bespoke refractive or diffractive opticsp p
• very efficient
• non-tuneable components only
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S ti l Li ht M d l t (SLM)Spatial Light Modulator (SLM)
e.g. replacing the white light source in a Texas Instruments DLP® projector by a 
near-IR laser source:

• Versatile illuminator that could be interfaced with a PC
• Programmed using even a simple drawing package
• Power handle issues with dumped energy• Power handle issues, with dumped energy 

i.e. the energy not transmitted to the substrate
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Phase-modulated SLM
90% light tili ation efficienc• 90% light utilization efficiency. 

• Commercial liquid crystal on silicon (LCOS) SLMs, appear to be 
ideally suited for this application

Scanned focused laser
• Spot writing time for the complete pattern would have to be smaller 
than the electron-hole pair recombination timethan the electron-hole pair recombination time
• Challenging for large/complex architectures
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ConclusionsConclusions
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 RETINA can provide:

IntegrationIntegration

Reconfigurability

Tunability

 At the expense of: At the expense of:

Increased Losses

Increased Complexity (Optics)
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 Loss Reduction Techniques:

Bespoke transparent conductive oxide

O ti i b t t / l th/Optimize substrate/wavelength/power

Double-sided exposure

Over-sized waveguide

Superposition of CW and pulse excitationSuperposition of CW and pulse excitation
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Thank You !Thank You !
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