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As can be seen from Figure 1 and (1) the key to 
achieving high efficiency is to maximise k2Q1Q2. 

The coil Q factor can be maximized by choosing the 
correct operating frequency [10].  The analysis on the 
interactions of these key variables using both closed-
form mathematical expressions and more detailed 
numerical modelling in Matlab has yielded the 
following underlying principles for optimisation. 
 The loop radii should be the maximum possible to 

maximize the coupling factor k.   
 For a given constraint on loop dimensions there is 

an optimal frequency, which is approximately the 
point at which the radiation resistance begins to 
dominate over the skin-effect resistance. 

 The wire radius and the number of turns of the coils 
should be as large as possible (bearing in mind that 
the coils should remain electrically small to limit 
the electric field and hence the radiation). 

 In the case when the loops are not of equal size the 
optimal frequency will be mainly determined by the 
larger of the two coils. 

A. Q factor 

The coupling factor, k, is typically around 0.01 for 
medium range air-gaps (10s of cm), therefore, the Q 
factor of the coils has to be above 1,000 to achieve 
high transfer efficiencies above 90%.  Achieving these 
values can be difficult and commercially available 
coils can only achieve Q factors on the order of a few 
hundred.  The coil Q factor is: 

where  is the angular frequency, L is the self 
inductance of the coil, Rrad is the radiation resistance 
and Rskin is the skin-effect resistance.  The dominance 
of the different resistances depends on the size of the 
antenna and the frequency of operation.  Substituting 
the corresponding equations for L and Rskin into (2), 
gives the expression for Q factor when the ohmic 
losses dominate, as:  

where N  is the number of turns, a is the wire radius 
and r is the loop radius.  When the frequency is high 
enough for the antenna to start radiating then Rrad 
dominates and the Q factor is as follows, where 0 is 
the impedance of free space.   

For this application, it is very likely that the primary 
and secondary coils are limited to different sizes (the 
USV coil could be larger than that on the sensor node), 

and the optimal frequency will be therefore determined 
by the larger coil.  Beyond the frequency at which the 
radiation resistance begins to dominate the losses of 
the larger coil, the Q factor of the latter will decrease 
with 3 whilst the Q factor of the smaller coil will 
increase only with . 

The Q of the resonant circuit also depends on the Q 
factor of the capacitor that will be used to tune the coil 
to the selected operating frequency.  The total Q of the 
resonant circuit: 

where QL and QC are the Q factors for the inductor and 
capacitor respectively. 

B. Optimal Load Selection 

To optimize the power transfer efficiency, an 
optimal load impedance has to be selected.  To achieve 
this, analytical expressions were introduced in [2], 
where the optimal load will vary depending on the 
selected configuration, of which there are six.  The 
primary can be non-resonant, series resonant or 
parallel resonant and the secondary can be either series 
resonant or parallel resonant.  A series resonance can 
only be used if the self-capacitance or parasitic 
capacitance of the inductor is assumed to be negligible.  
In contrast, this assumption is not needed in the 
parallel case, since the resonant capacitor will parallel 
with the self-capacitance of the coil.  Furthermore, the 
secondary is always assumed to be operating at 
resonance, since in that mode the equivalent 
impedance on the primary due to the secondary will be 
purely resistive, affecting only the damping of the 
primary.  The factor, LRC20=   for a parallel resonant 
secondary for which Equation (1) is optimal is: 

Using αopt to calculate the optimal load gives: 

where L2 is the self inductance of the secondary. 
To further calculate the effect of the load on the 

damping of the system, the resistance, Req referred to 
the primary from the secondary is given in [2], as: 

where RP is the skin-effect and radiation resistance of 
the primary.  This expression is valid for all link 
configurations 

C. Simulation Results 

Based on the previous equations Matlab simulations 
were undertaken to provide a clear understanding of 
the efficiency that could be reached for the present 
design.  To achieve a higher precision during 
simulations, a numerical model for skin depth was 
used.  This model was originally explained by 
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