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Abstract: When compared to the over-simplified classical skin-effect model, the accurate classical relaxation-effect 
modelling approach for THz structures at room temperature can be mathematically cumbersome and not insightful. 
This paper briefly introduces various interrelated electrical engineering concepts as tools for characterizing the 
intrinsic frequency dispersive nature of normal metals at room temperature. This engineering approach dramatically 
simplifies the otherwise complex analysis and allows for a much deeper insight to be gained into the classical 
relaxation-effect model. Three example applications are given for the calculation of important parameters and 
associated errors with hollow metal-pipe rectangular waveguides (MPRWGs), hollow MPRWG cavity resonators 
and single metal planar shield. 
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1. Introduction  

Some well-known commercial electromagnetic modelling software packages currently employ 
over-simplified frequency dispersion models for the conductivity of metals used to predict the 
performance of THz structures at room temperature. For example, Ansoft's High Frequency 
Structure Simulator (HFSS™) is considered by some to represent a benchmark standard in 
electromagnetic modelling software, even though it can give anomalous results under certain 
conditions (e.g., electrically thin-walled MPRWGs [1] and THz MPRWG structures [2]).  

The MPRWG represents one of the most important forms of guided-wave structure for 
terahertz applications. Well-known commercial electromagnetic modelling software packages 
currently employ over-simplified intrinsic frequency dispersion models for the bulk conductivity 
of normal metals used in terahertz structures at room temperature. Various conductivity 
modelling strategies for normal metals at room temperature have previously been compared for 
characterizing rectangular waveguides and associated cavity resonators between 0.9 and 12 THz 
[2]. A quantitative analysis for the application of different models used to describe the intrinsic 
frequency dispersion nature of bulk conductivity at room temperature was undertaken [2]. When 
compared to the use of the accurate relaxation-effect model, it was found that HFSS™ (Versions 
10 and 11) gives a default error in the attenuation constant for MPRWGs of 108% at 12 THz and 
41% errors in both Q-factor and overall frequency detuning with a 7.3 THz cavity resonator. With 
the former, measured transmission losses are significantly lower than those predicted using the 
current version of HFSS™, which may lead to an underestimate of THz losses attributed to 
extrinsic effects. With the latter error, in overall frequency detuning, the measured positions of 
return loss zeros, within a multi-pole filter, will not be accurately predicted by HFSS™. For this 
reason, calculating the errors that result from using the over-simplified classical skin-effect 

Invited Paper 



Terahertz Science and Technology,  ISSN 1941-7411                                         Vol.4, No.1, March 2011 

 2

frequency dispersion model for normal metals at room temperature is important at THz 
frequencies. 

The use of the accurate classical relaxation-effect model for frequency dispersion in normal 
metals at room temperature with THz structures can be mathematically cumbersome and not 
insightful. The recent introduction of the Engineering Approach [3-5] demonstrated that it is 
possible to dramatically simplify otherwise complex analysis and allows for a much deeper 
insight to be gained into the classical relaxation-effect model. Here, the interrelated concepts of 
equivalent transmission line modelling, kinetic inductance modelling, Q-factor modelling and 
complex skin depth modelling are all introduced for the characterization of normal metals at 
room temperature for applications in THz structures [3]. For example, using the concept of 
Q-factor, the synthesized equivalent transmission line model was validated for a metal [4]. Then, 
using the concept of complex skin depth, analysis was performed on hollow MPRWGs and their 
associated cavity resonators [4]. This work proved that the mathematical modelling of THz 
structures can be greatly simplified by taking an electrical engineering approach to these 
electromagnetic problems. 

The engineering approach was then applied to investigate room temperature THz metal 
shielding [5]. It was shown that, with the simplest case of a uniform plane wave at normal 
incidence to an infinite single planar shield in air, all figure of merit parameters for the shield can 
be accurately characterized. The errors introduced by adopting the traditional and much simpler 
classical skin-effect model were also quantified. In addition, errors resulting from adopting 
well-established approximations have also been investigated and quantified. It was shown that 
the engineering approach allows analytical expressions to be greatly simplified and predictive 
equivalent transmission line models to be synthesized, to give a much deeper insight into the 
behavior of room temperature THz metal shielding. For example, it is shown that figures of merit 
and associated errors (resulting from the use of different classical frequency dispersion models) 
become essentially thickness invariant when the physical thickness of the shield is greater than 3 
normal skin depths.  

 

2. THz Metal-Pipe Rectangular Waveguide Modelling  

Fig. 1 shows a uniform hollow MPRWG defined within the Cartesian coordinate system xyz. 
Transmission is along the z direction, and over a distance d, with internal cross-sectional 
dimensions a and b. The structure in Fig. 1 has the ideal (i.e. lossless) dominant-mode guided 
wavelength given by the following textbook expression [15]:  
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where, λo is the free space wavelength; λc = 2a is the ideal cut-off wavelength; a is the internal 
width dimension of the MPRWG; acfc 2=  is the ideal cut-off frequency for the dominant TE10 
mode; and c is the speed of light in free space.   
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Fig. 1 Internal spatial variable definitions for a uniform hollow MPRWG [2]. 

The attenuation constant for this guided-wave structure can be obtained directly from the real 
part of the propagation constant, i.e. { }moγα ℜ= . For the dominant TE10 mode, the following 
expressions for attenuation constant can be calculated, based on the intrinsic frequency dispersion 
models for normal metals at room temperature. For the classical relaxation-effect model, 
variables are indicated by the suffix “R”; for the simple relaxation-effect model, variables are 
indicated by the suffix “R’ ”; and for the classical skin-effect model, variables are indicated by 
the suffix “o”. 

Classical relaxation-effect model  Simple relaxation-effect model  Classical skin-effect model 

{ } { }SRRRR Zf=ℜ= 1010 ; γγα     { } { }''10'10' ; SRRRR Zf=ℜ= γγα   { } { }Soooo Zf=ℜ= 1010 ; γγα  (2) 

Using (2) with the simple Power Loss approximation method [2], for calculating attenuation 
constant in terms of the real part of the surface impedance only, it is easy to calculate the 
percentage error in attenuation constant for the simple relaxation-effect model

'R
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Here, angular frequency ω =2πf, where f is the frequency of the driving electromagnetic fields, 
and the phenomenological temperature-dependent scattering relaxation time for the free electrons 
(i.e. mean time between collisions) τ in normal metals at room temperature.  

For simplicity, it will be assumed throughout that the MPRWGs will have a height dimension 
of / 2b a= . The attenuation constants and resulting errors have been plotted against frequency, 
and are shown in Fig. 2. To a first degree of approximation, it can be seen that the error increases 
linearly with frequency for the classical skin-effect model; with a 108% error at 12 THz. The 
error obtained with the simple relaxation-effect model is 373% at 12 THz. 

The engineering approach gives the following expressions: 

( )21
}{
}{

mR
R

R
cR QQ ξ

γ
γ

+=
ℑ
ℜ

=                              (4) 

where    1124 −−−− −++= uuuuξ
  

and    uQ
R

R
mR ==

ℑ
ℜ

= ωτ
γ
γ

}{
}{

2

2

          
 



Terahertz Science and Technology,  ISSN 1941-7411                                         Vol.4, No.1, March 2011 

 4

where cRQ and mRQ  are the component and material Q-factors, respectively, for a normal metal 
[3]. Now, ( )ωτξ f=  was found empirically to approximate a constant value of 0.539, resulting in 
a worst-case error of only 0.96% from dc to ωτ = 2. As a result, an expression for the error in 
attenuation constant when using the classical skin-effect model can be greatly simplified to the 
following [4]: 

( ) ( ) %100539.0%100%1001 ⋅≈⋅=⋅−= mRmRcR QQQE
o

ξωα

  
for 20 ≤≤ ωτ   (5) 

Using (5), the calculated error using this simple approximation is 110% at 12 THz (i.e. at 
046.2=ωτ ) and this can be compared with the exact calculated error, using (3), of 108% at the 

same frequency [4].  
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Fig. 2 Calculated attenuation constants for the dominant TE10 mode: (a) JPL bands; (b) our bands; and (c) resulting 
errors in attenuation constants [2]. 

 

3. THz Cavity Resonator Modelling  

For a hollow half-height MPRWG cavity resonator with 2d a= , the calculated and HFSSTM 
simulated values for unloaded Q-factor and overall frequency detuning are plotted in Fig. 3(a), 
for the dominant TE101 mode [2]. The resulting errors in unloaded Q-factor and overall frequency 
detuning, relative to the classical relaxation-effect model, are given in Fig. 3(b) and show an 
almost identical frequency response for both with the classical skin-effect model. Here, a 41% 
error is calculated for a 7.3 THz cavity resonator. A much lower error is found in the overall 
frequency detuning with the simple relaxation-effect model; with a worst-case value of 12% for a 
3.7 THz cavity resonator. However, a 63% error in the unloaded Q-factor has been calculated 
with the simple relaxation-effect model for a 7.3 THz cavity resonator. 
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  (a)                                      (b) 
Fig. 3 (a) Unloaded Q-factor and overall frequency detuning for TE101 cavity mode, at the resonant frequencies; and  

(b) resulting errors in Q factors and frequency detuning [2]. 
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With the unloaded Q-factor calculated using the over-simplified classical skin-effect model the 
resulting error, relative to the values calculated using the classical relaxation-effect model, was 
previously determined after undergoing a relatively lengthy process [2]. However, in contrast, a 
relatively simple expression for this error is derived using the concept of Q-factor for normal 
metals at room temperature [4]: 
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for 20 ≤≤ ωτ   (8) 

For example, using (8), the calculated error using this simple approximation is 40% at 7.3 THz 
(i.e. at 1.245ωτ = ) and this can be compared with the exact error determined using the lengthy 
technique described in [2] of 41% at the same frequency.  

 

4. THz Single Metal Planar Shield  

For simplicity, an infinite single metal planar shield in air will be considered, with uniform 
plane wave at normal incidence, as illustrated in Fig. 4. 
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             (a)          (b) 
Fig. 4 Uniform plane wave at normal incidence to an infinite single metal planar shield in air: (a) physical  
  representation; and (b) equivalent 2-port network model [5]. 

For the analysis of a single metal planar shield, an addition to the engineering approach was 

the introduction of the boundary resistance coefficient 1≥>>= c
S
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ratio of intrinsic impedance of free space to the surface resistance of the metal. Moreover, it is 
useful to represent the physical thickness T of the metal shield in terms of the number a of normal 
skin depths αδ /1=S (i.e. SaT δ→ ). Thus, it can be easily shown that the exponential decay for 
the intensity of the electromagnetic fields within the metal can be represented by the following 
exponent [5]:  
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Using the classical relaxation-effect model to describe frequency dispersion within a normal 
metal at room temperature, SRRaT δ= . Also, for the classical skin-effect model:  
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The transmission power isolation that results from a shield can be defined by its shielding 
effectiveness (SE). Using the exact expressions given [5], the overall shielding effectiveness has 
been calculated for gold at room temperature using the classical relaxation-effect model. The 
results are represented by the contour plot shown in Fig. 5(a). The results from Fig. 5(a) can be 
compared with those calculated using the classical skin-effect model (more traditionally 
associated with screening effectiveness calculations) using the following expression for the 
resulting error in shielding effectiveness ESE: 
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where SEdBR and SEdBo are the screening effectiveness calculated using the classical 
relaxation-effect and skin-effect models, respectively. Using the engineering approach, it can be 
shown the following more elegant expressions can be given for these figures of merit parameters, 
without introducing errors greater than 0.1% [5]: 
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The shielding effectiveness error results are represented by the contour plot shown in Fig. 5(b). 

 

    (a)          (b) 
Fig. 5 Screening effectiveness calculations: (a) using classical relaxation-effect model; (b) resulting error when 

compared to classical skin-effect model calculations [5]. 
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5. Conclusion 

The engineering approach was developed for accurately modelling intrinsic frequency 
dispersion within a metal. For example, it can explain how wavelength can increase 
proportionally with frequency at higher terahertz frequencies [3].Using the engineering approach, 
THz metal-pipe rectangular waveguides, associated cavity resonators and single metal planar 
shields have been accurately characterized and errors that result from the use of the 
over-simplified skin-effect model for describing the frequency dispersion within normal metals at 
room temperature have been calculated. It should be noted that the analysis given here is only a 
small representation of that covered in the cited papers from the same authors of this paper. 

While the focus has been on the characterization of normal metals (magnetic and non-magnetic) 
at room temperature, it is believed that the same methodology may be applied to metals operating 
in anomalous frequency-temperature regions, superconductors, semiconductors, carbon 
nanotubes and metamaterials. 
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