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Abstract. Due to their high plasma frequencies, drifting semiconductor plasmas interacting with slow
electromagnetic waves hold promise for terahertz amplifiers and oscillators. In these devices, the gain and
the type of instabilities are influenced by electron collisions. To study the effect of collisions, we developed
a two-wave model describing the interaction between drifting solid-state plasmas and electromagnetic
waves. This paper analyzes the two-wave dispersion relation for representative examples. As the examples
show, convective and absolute instabilities can occur at high and low collision frequencies depending on
the relationship between the collision frequency and the coupling coefficient. Surprisingly, an absolute
instability occurs when collision-dominated plasmas interact with backward waves. The model can be used
to determine the potential of a particular configuration in a solid-state amplifier or oscillator.

1 Introduction

When a slow electromagnetic wave interacts with drifting
electrons, its energy can grow. This principle is used to
amplify and generate electromagnetic waves in velocity-
modulated devices. Two examples of such devices are
the traveling-wave tube and the backward-wave oscilla-
tor where an electron beam in vacuum interacts with an
electromagnetic wave slowed down by a helix. Since the
advent of the velocity-modulated devices in 1940s, their
frequencies have gradually increased and span now three
decades from about 1 GHz to 1.5 THz, the latter achieved
in commercial vacuum backward-wave oscillators [1].

Further increase of the frequency in vacuum devices
has met difficulties, one of them being low electron con-
centration (106–109 cm−3 [2]) resulting in low plasma fre-
quencies. A possible solution is to replace vacuum beams
with semiconductor plasmas offering higher electron con-
centrations. In GaAs, for example, achievable electron
concentrations of 1015–1019 cm−3 [3] correspond to the
plasma frequencies between 350 GHz and 35 THz.

The first solid-state travelling-wave-type active de-
vice was the acoustic-wave amplifier where electrons in
a piezoelectric solid interacted with acoustic waves in the
MHz region [4,5]. A logical extension was the solid-state
traveling-wave amplifier [6–8]. Proposals were also made
for an amplifier based on the interaction between drifting
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electrons and optical phonons [9–11]; the idea has been
recently revisited by Riyopoulos [12,13]. Mikhailov con-
sidered the interaction between drifting solid-state plas-
mas and quantum-wire gratings [14]. Terahertz oscillators
based on semiconductor plasmas drifting in confined two-
dimensional channels were studied theoretically [15] and
experimentally [16].

Although solid-state plasmas offer the advantage of
high frequencies, there are also drawbacks. One of them
is electron collisions, absent in vacuum beams but present
in solids. An obvious detrimental effect of collisions is to
reduce gain. Another effect, important for practical appli-
cations, is on plasma instabilities. Instabilities can be of
two types: absolute and convective [5,17,18]. For a convec-
tive instability, a signal grows in time while propagating
along the structure. For an absolute instability, the signal
grows in time from a seed at a particular point in space
(Fig. 1). From the device perspective, absolute instabilities
lead to oscillators; convective instabilities, to amplifiers.

In collision-less vacuum devices, absolute and convec-
tive instabilities are signaled by the group velocities of
the waves. The convective instability of the traveling-wave
tube is due to the forward electromagnetic wave interact-
ing with a forward space-charge wave of the electron beam.
The absolute instability of the backward-wave oscillator,
on the other hand, is due to the backward electromagnetic
wave.

In solid-state devices with collisions, the group ve-
locities are no longer sufficient to indicate absolute and
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Fig. 1. (Color online) For absolute instability, a signal grows in
time remaining at the place where it appeared. For convective
instability, the perturbation grows in time while propagating
along the structure.

convective instabilities. To analyze the instabilities and,
thus, to determine practical prospects of various solid-
state configurations, a careful study involving rigorous cri-
teria [5,17,18] is required.

This paper discusses the instabilities arising from inter-
actions between slow electromagnetic waves and drifting
plasmas in the presence of collisions. We emphasize that
although the rigorous criteria for instabilities [5,17,18]
have been around for a long time, they have not been
applied to active high-frequency devices in the presence
of collisions. From a practical point of view, for designing
any experiments, it is imperative to know the type of insta-
bility that will occur. We shall present an analysis based
on a two-wave model that, being mathematically simple,
describes a wide range of phenomena. In Section 2 we for-
mulate the dispersion relation; in Section 3, we describe
criteria for the existence of instabilities; in Section 4, we
apply these criteria to the dispersion relation. We divide
the treatment into four parts: the space charge wave is a
forward wave, but it may propagate under low collisions
and high collisions, and the circuit wave may be forward
or backward. We also investigate the effect of the phase of
the coupling coefficient. In Section 5, we draw conclusions.

2 Formulation of the dispersion relation

Our aim is to derive a simple dispersion equation that
takes collisions into account. We start with electrons
drifting along the z-axis in an infinite medium and dis-
regard the effects of magnetic fields, i.e. when the elec-
tronic contribution is carried by cyclotron waves rather
than space-charge waves. The only field component is Ez ,
the longitudinal component of the electric field. The rele-
vant Maxwell equation is then

Jz + ε
∂Ez

∂t
= 0. (1)

Here, t is time, ε is the permittivity of the material, and
Jz is the current, Jz = env, where e is the electron charge,
n is the electron density, and v is the electron velocity. We
also need the equation of motion that takes collisions into
account

dv

dt
+ vγ =

e

m
E, (2)

where γ is the collision frequency, and m is the electron
mass. Next, we assume that Ez , v, and n have constant

parts and small time-varying parts

(Ez , n, v) = (Ez0, n0, v0) + (Ẽz , ñ, ṽ) exp(jωt),

where ω is the frequency, j is the complex unity, and quan-
tities with index 0 are constants. Substituting this into
equations (1) and (2), neglecting products of small quan-
tities, using Poisson’s equation, and introducing the wave
number kz with the relation exp(−jkzz), we obtain the
dispersion relation in the form

(ω − kzv0)2 − jγ(ω − kzv0) = ω2
p, (3)

where ωp is the plasma frequency ω2
p = e2n0/(εm). Solv-

ing equation (3) for the wave number, we obtain

kz1 =
1
v0

(
ω − j

γ

2
+ ωp

√
1 − γ2

4ω2
p

)
, (4)

and

kz2 =
1
v0

(
ω − j

γ

2
− ωp

√
1 − γ2

4ω2
p

)
. (5)

In the absence of collisions, equation (4) represents the
slow space-charge wave and equation (5), the fast space-
charge wave. In vacuum tubes, the slow space-charge wave
is responsible for instabilities, whereas the fast space-
charge wave leads to passive interactions [2]. In the model
we are aiming at, the fast wave can be disregarded.
Another simplification is disregarding diffusion, which,
again, does not fundamentally influence the operation of
velocity-modulated devices.

Next, we consider the dispersion relation for the slow
electromagnetic wave (often called the circuit wave). We
take it in the form of the linear dependence

kz =
ω + ωs

vs
, (6)

where ωs is a constant and vs is the group velocity. For
practical circuit waves with more complicated dispersion
relations, equation (6) can be regarded as the first-order
series expansion of the dispersion relation.

Equations (4) and (6) represent the uncoupled disper-
sion relations for the slow space-charge wave and the cir-
cuit wave. They interact when coupled to each other. The
coupled-wave dispersion relation can be written as
[
kz − 1

v0

(
ω − j

γ

2
+ ωp

√
1 − γ2

4ω2
p

)] [
kz − ω + ωs

vs

]
=

C exp(jΦ), (7)

where C exp(jΦ) is the coupling coefficient, which we as-
sume to be complex. It is convenient to introduce the nor-
malized parameters

K =
kzv0

ωp
, Ω =

ω

ωp
, Γ =

γ

ωp
,

Ωs =
ωs

ωp
, β =

v0

vs
, A =

v2
0

ω2
p

C.

(8)
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The normalized dispersion relation is then

[
K −

(
Ω − j

Γ

2
+

√
1 − Γ 2

4

)]
[K − β(Ω + Ωs)] =

A exp(jΦ). (9)

In Section 4, we analyze the instabilities born by this dis-
persion relation.

As a complex function, the normalized wave number
K(Ω) has two branches. The branch points (the complex
values of Ω at which the values of two branches of K
merge [5,17,18]) are

Ωbr 1,2 =
1

1 − β

×
[
βΩs + j

Γ

2
−

√
1 − Γ 2

4
±

√
A exp

(
j
Φ + π

2

)]
. (10)

These are used for identifying absolute instabilities as dis-
cussed in the next section.

3 Formulation of the criteria for instabilities

An unstable system can be easily identified from the dis-
persion relation (9): one has to show that for real values
of the wave number, K, solutions for the frequency, Ω,
exist for which Im Ω < 0. A problem more complicated
is to determine the instability type. As mentioned in the
introduction, there are two types of instabilities, absolute
and convective, differing in spatial behavior, see Figure 1.
The instability type can be determined from the criterion
for absolute instability [5,17,18], see Section 3.1. On the
other hand, ImK < 0 does not necessarily mean spatial
growth (just as ImK > 0 does not mean decay). To de-
termine whether solutions for K(Ω) represent growing or
decaying waves, one can apply the criterion for spatial
growth [5,17,18], see Section 3.2.

3.1 Criterion for absolute instability

To apply this criterion, one solves the dispersion relation 9
for K assuming complex Ω. The instability will be abso-
lute if the following conditions are met:

1. For ImΩ → −∞, the solutions ImK1 and ImK2 have
opposite signs.

2. The imaginary part of one of the branch points (10) is
negative.

The first condition means that the uncoupled slow space-
charge wave (4) and the circuit wave (6) propagate in
opposite directions. Because the space-charge wave is a
forward wave, absolute instability can occur only if the
circuit wave is a backward wave.

Fig. 2. (Color online) Absolute instability can be identified by
plotting ImK versus Im Ω. There is absolute instability if the
trajectories merge in the left half-plane but not if they merge
in the right half-plane.

Fig. 3. (Color online) Spatial growth can be identified by plot-
ting Im K versus Im Ω. If a trajectory crosses the Im K = 0
axis, the wave will grow in space.

A way to illustrate this criterion is to plot ImK versus
Im Ω fixing Re Ω = Re Ωbr and changing ImΩ from −∞
to Im Ωbr, see Figure 2. For an absolute instability, one of
the trajectories starts in the upper and the other one, in
the lower half-plane, and they merge at a negative value
of Im Ω.

3.2 Criterion for spatial growth

Spatial growth, corresponding to a convective instability,
can only occur when there is no absolute instabil-
ity [5,17,18]. Once that is ascertained, the criterion for
spatial growth may be obtained from the solution of
the dispersion equation (9) for K(Ω). Spatial growth is
present for a particular value of Re Ω if Im K changes
sign while Im Ω varies from −∞ to 0. The criterion can
again be represented by plotting Im K versus Im Ω. If the
trajectory of ImK starts and ends on different sides of the
Im K = 0 axis (see Fig. 3) the wave will grow in space.

4 Analysis of the dispersion relation

This section analyzes the dispersion relation (9) by apply-
ing the criteria for absolute instability and spatial growth.
The dispersion relation depends on five parameters, Γ , β,
Ωs, A, and Φ, and even in the simple two-wave model, the
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Table 1. Values of the parameters used in calculations.

Low collision frequency High collision frequency

Forward Backward Forward Backward
circuit wave circuit wave circuit wave circuit wave

Γ 0.1 0.1 10 10
A 0.05 0.05 0.001 0.001
Φ π 0 π/2 3π/2
β 2 −2 2 −2
Ωs 0 2 0 2

number of possible combinations is enormous. For this rea-
son, rather than attempt a general analysis, we consider
only representative combinations (see Tab. 1).

The first parameter is the normalized collision fre-
quency, Γ . In semiconductors with collision frequencies
in the range 1–30 THz and plasma frequencies in the
range 0.5–50 THz [3,19], Γ can be as low as 0.02 and as
high as 60. Most practically significant are the configura-
tions with low collision frequencies (high plasma frequen-
cies, low temperatures) and with high collision frequencies
(low plasma frequencies, room temperatures). We focus,
therefore, on the values Γ = 0.1 (Sect. 4.1) and Γ = 10
(Sect. 4.2).

The second parameter is the coupling coefficient. Its
absolute value, A, determines the interaction strength.
The two-wave model, equation (9), implies weak inter-
action, A � 1; one also expects greater values of A at
low collision frequencies than at high collision frequen-
cies. We take, therefore, A = 0.05 for the former and
A = 0.001 for the latter case. The phase of the cou-
pling coefficient, Φ, takes values 0, π/2, π and 3π/2 in,
respectively, the dispersion relations of the backward-
wave oscillator [2], the acoustic-wave amplifier [4,5], the
traveling-wave tube [2], and the optical-phonon ampli-
fier [10,11]. These values correspond to either purely real
or purely imaginary positive and negative coupling coeffi-
cients. In general, however, due to collisions, the coupling
coefficient can be complex, as for example in the resistive
medium amplifier [20]. We will, therefore, investigate the
whole range of values 0 < Φ < 2π.

The remaining parameters, β and Ωs, characterize the
circuit wave. As Section 3 shows, the instability type
depends on whether the circuit wave is a forward or a
backward wave. We take β = 2 and Ωs = 0 for forward
circuit waves and β = −2 and Ωs = 2 for backward cir-
cuit waves, so that the interaction frequencies for both lie
around Ω = 1 (ω = ωp).

4.1 Instabilities at low collision frequencies

For low collision frequencies, Γ � 1, the dispersion rela-
tion (9) simplifies to[

K −
(

Ω + 1 − j
Γ

2

)]
[K − β(Ω − Ωs)] = A exp(jΦ).

(11)

Fig. 4. (Color online) Dispersion diagrams for Ω(K) and
K(Ω) (a)–(c) show the presence of instability and spatial
growth when drifting electrons with low collision frequency
(Γ = 0.1) interact with a forward circuit wave. Criterion for
spatial growth (d) confirms amplification of the circuit wave.

Below, we consider the instabilities arising from the in-
teraction with forward circuit waves (β > 0) and with
backward circuit waves (β < 0).

Forward circuit waves

Using the parameters from the first column of Table 1,
the dispersion equation for complex Ω(K) versus real K
is plotted in Figures 4a and 4b. One of the branches of the
dispersion diagram has Im Ω < 0 indicating an instability.
It is a convective instability, because the waves propagate
in the same direction. Convective instability leads to spa-
tial growth. To determine the rate of growth, we solve the
dispersion equation for K(Ω) where K is complex and Ω
is real. In one of the solutions, ImK > 0, see Figure 4c.
The imaginary parts of Ω and K characterize the rates of
temporal and spatial growth. Both have their maxima at
the synchronism point, where the phase velocities of the
uncoupled waves coincide and the uncoupled dispersion
relations cross, as shown in Figure 4a by dashed lines.

The criterion of Section 3.2 provides further confirma-
tion of spatial growth. To apply the criterion, we take
ReΩ = 1.1 and plot ImK versus Im Ω in Figure 4d. As
Im Ω changes from a negative value to zero, one of the
trajectories for K crosses the Im K = 0 axis. The value of
Im K at Im Ω = 0 gives the normalized growth rate.

The growth rate depends also on the phase of the cou-
pling coefficient. Figure 5 shows max(Im K) as a function
of the phase, Φ. The maximum occurs at Φ = π, corre-
sponding to the real negative coupling coefficient we chose
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Fig. 5. The growth rate depends on the phase of the coupling
coefficient. There is no growth for phases close to 0 and 2π.

Fig. 6. (Color online) Dispersion diagrams for Ω(K) and K(Ω)
(a)–(b) show the presence of instability when drifting electrons
with low collision frequency (Γ = 0.1) interact with a backward
circuit wave. The instability is absolute (c).

above. The gain is absent not only for Φ = 0 and 2π but
also for narrow regions in their vicinity.

Backward circuit waves

Using the parameters from the second column of Table 1,
the solutions of the dispersion relation are plotted in
Figures 6a and 6b for the real and imaginary parts of Ω
assuming real K. In one of the branches, ImΩ < 0 indi-
cating, again, an instability. The rate of temporal growth,
| Im Ω|, reaches maximum at the synchronism point.

The two branch points, equation (10), are Ωbr 1 =
1.00 + 0.17j and Ωbr 2 = 1.00 − 0.13j. The second one,
lying in the lower part of the complex Ω-plane, satisfies
the first condition for absolute instability, see Section 3.1.
The second condition involves mapping of the line Ω =
Re Ωbr 2+j ImΩ, with ImΩ varying from −∞ to Im Ωbr 2,
upon the complex K-plane. The two solutions for complex
K emerge from different sides of the complex K-plane and

Fig. 7. The rate of temporal growth and the type of instability
depend on the phase of the coupling coefficient.

converge upon the branch point, for which ImΩ is nega-
tive, Figure 6c.

The type of instability depends on the magnitude of
the coupling coefficient [18]. The transition from absolute
to convective instability occurs when the imaginary parts
of both branch points become non-negative. From equa-
tion (10), the condition is

A <
Γ 2

16
. (12)

With our parameters, it occurs when A < 6.25 × 10−4.
As may be expected, the temporal rate of growth de-

pends on the phase of the coupling coefficient. Figure 7a
shows the variation of −min(ImΩ) for A = 0.05. The
maxima occur at Φ = 0 and 2π. In the vicinity of Φ = π
the behavior is different, as shown in Figure 7b. As Φ
approaches π, the absolute instability first turns into con-
vective instability and then into no instability at all, and
the other way round as Φ increases beyond the value of π.
The disappearance of the absolute instability follows from
equation (10). The imaginary parts of both branch points
turn non-negative when

cos
Φ

2
<

Γ

4
√

A
. (13)

For our parameters chosen, there is no absolute instability
for 0.93π < Φ < 1.07π.

4.2 Instabilities at high collision frequencies

The dispersion equation (9) for high collision frequency
simplifies to[

K −
(

Ω − j
1
Γ

)]
[K − β(Ω − Ωs)] = A exp(jΦ) . (14)

This dispersion relation differs from the low-collision one,
equation (11), in one important respect. The loss term
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Fig. 8. (Color online) Dispersion diagrams for Ω(K) and
K(Ω) (a)–(c) show the presence of instability and spatial
growth when drifting electrons with large collision frequency
(Γ = 10) interact with a forward circuit wave. Criterion for
spatial growth (d) confirms amplification of the circuit wave.

1/Γ in equation (14) declines as the collision frequency
increases. This may sound as a paradox: collisions are usu-
ally associated with losses. At the other end of the scale,
however, high collisions mean that the electrons have no
chance to accelerate to high velocities, and therefore, the
conductivity, σ = ω2

p/γ, declines – and it is the conduc-
tivity that determines the loss.

Forward circuit waves

The dispersion diagrams for Re Ω(K) and for ImΩ(K)
are shown in Figures 8a and 8b for the parameters from
the third column of Table 1. There are two solutions,
but we have shown in Figure 8b only the one for which
Im Ω < 0 indicating, again, an instability. It is of the
convective type, because the interaction is between two
forward waves. The circuit wave grows in space as may be
seen from the solution for ImK(Ω) presented in Figure 8c:
Im K may be larger than zero. The rigorous criterion for
spatial growth may be gleaned from Figure 8d. We take
Re Ω = 0.2 and change ImΩ from a large negative value
to zero. As seen from the Im K versus Im Ω diagram, ImK
changes sign as Im Ω reaches zero.

Similarly to the low-collision-frequency regime, the
growth rate depends on the phase of the coupling coef-
ficient, Φ, but this dependence is now stronger. Figure 9
shows the variation of max(ImK) for A = 0.001 with Φ
changing from 0 to 2π. The growth is maximum for Φ = π.
There is no growth for 1.5π < Φ < 2π and for Φ close
to zero.

Fig. 9. The maximum growth rate depends on the phase
of the coupling coefficient. The growth disappears for phases
larger than 3π/2.

Backward circuit waves

The solutions of the dispersion equation Ω(K) for real
K are shown in Figures 10a and 10b for the parameters
from the fourth column of Table 1. In the backward-wave
branch, ImΩ < 0 for K > 1.33. The instability region has
thus a low-wave number cut-off, in contrast to previous
examples.

Applying the criterion of Section 3.1, we find no ab-
solute instability. Both branch points have positive imag-
inary parts: Ωbr 1 = 1.35 + 0.05j and Ωbr 2 = 1.32 + 0.02j.
In Figure 10c, ImK is plotted versus ImΩ for Re Ω =
ReΩbr 2. Although the trajectories for K start in different
half-planes of complex K, both branch points are in the
upper half-plane of complex Ω. The backward wave is ex-
pected to grow in space for Ω < 1.33, where Im K < 0, as
suggested by the dispersion diagram for K(Ω), Figure 10d.
Similarly to the solutions for Ω(K), the growing-wave re-
gion also has a cut-off, but at high frequency.

Spatial growth of the backward wave at low frequencies
is confirmed by the criterion of Secetion 3.2. For Re Ω =
1.3, the trajectory of K corresponding to the backward
wave crosses the axis Im K = 0 as Im Ω changes from a
large negative value to zero, see Figure 10e. For Ω > 1.33
neither of the two trajectories of K crosses the Im K = 0
axis; hence, there is no spatial growth at those frequencies.

If the collision frequency, Γ , increases, the loss 1/Γ
decreases, and the instability can turn from convective to
absolute. The transition occurs when the imaginary part
of one of the branch points, equation (10), becomes nega-
tive. For Φ = 3π/2, this condition is

Γ >
1√
2A

. (15)

We demonstrate the effects of higher collision frequency by
taking Γ = 50 and keeping the remaining parameters from
the previous example. The dispersion diagrams for Ω(K)
are shown in Figures 11a and 11b. The real part of Ω is
more or less the same as in Figure 10a but for a small gap.
The curves for the imaginary part of Ω are quite different.
There is now a point at which ImΩ changes abruptly.
Negative imaginary values of Ω for one of the branches
indicate instability. The instability is absolute, as shown
in Figure 11c. One of the branch points has Im Ωbr < 0,
and the curves merge from different sides of the K-plane.
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Fig. 10. (Color online) Dispersion diagrams for Ω(K) (a)–(b)
show the presence of instability when drifting electrons with
moderate collision frequency (Γ = 10) interact with a back-
ward circuit wave. The instability is convective (c); the pres-
ence of spatial growth is confirmed by the dispersion diagram
for K(Ω) (d) and by the corresponding criterion (e).

5 Conclusions

Applying the rigorous instability criteria to the two-wave
dispersion relation, we determined when the interaction
between drifting solid-state plasmas and circuit waves lead
to absolute and convective instabilities. This model is gen-
eral, and being applied to a particular configuration, it
can identify whether this configuration has potential for a
solid-state traveling-wave amplifier or oscillator.

As the analysis showed, the dispersion relation at low
collision frequencies behaves similarly to the collision-
less dispersion relation: under certain conditions, forward
circuit waves lead to convective instabilities; backward cir-
cuit waves, to absolute instabilities. There are also differ-
ences. When the phase of the coupling coefficient changes
in the presence of collisions, an absolute instability may

Fig. 11. (Color online) Dispersion diagrams for Ω(K) (a)–(b)
show the presence of instability when drifting electrons with
high collision frequency (Γ = 50) interact with a backward
circuit wave. The instability is absolute (c).

turn into a convective one and then to no instability at
all; there is no such effect in the absence of collisions.

Low collision frequencies, however, might not always
be practically attainable. The normalized collision frequ-
ency could be high, for example, at room temperatures
or at lower plasma frequencies. Depending on the rela-
tionship between the collision frequency and the coupling
coefficient, the instability can be either convective or abso-
lute, with absolute instability occurring at higher collision
rates. Somewhat surprisingly, high collisions turned out to
be beneficial for absolute instability and, hence, for a THz
oscillator, which could be based, for example, on optical
phonons [12,13].
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