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Traveling-wave interaction between optical phonons and electrons drifting in diatomic
semiconductors has potential for amplification and generation of terahertz radiation. Existing
models of this interaction were developed for infinite materials. As a more practically relevant
configuration, we studied theoretically a finite semiconductor slab surrounded by a dielectric. This
paper analyzes the optical-phonon instability in the slab including the Lorentz force and compares
it to the instability in an infinite material. As the analysis shows, the slab instability occurs because
of the interaction of surface optical-phonon polaritons with surface plasmon polaritons in the
presence of electron drift. The properties of the instability depend on the slab thickness when the
thickness is comparable to the wavelength. For large slab thicknesses, however, the dispersion
relation of the slab is similar to that of an infinite material, although the coupling is weaker. The
results could be used for the design of practical terahertz traveling-wave oscillators and
amplifiers. © 2010 American Institute of Physics. �doi:10.1063/1.3486524�

I. INTRODUCTION

Developing sources of terahertz radiation is one of the
major tasks of today’s terahertz science and technology. Re-
cent years have seen considerable progress in this direction,
and many ways to generate terahertz are now known. One of
the most popular and well-developed methods is the use of
photoconductive switches, where radiation is generated by
illuminating a photoconductive material with low carrier life
time by a femtosecond laser.1 Another method, receiving
considerable attention, is generation by quantum-cascade
lasers.2,3 Vacuum electronic sources are being developed for
high-power applications.4 On the other hand, semiconductor
plasmas5 are attractive for lower output powers. For ex-
ample, a semiconductor oscillator was studied theoretically6

and experimentally7,8 where terahertz radiation is generated
by reflection of plasma waves from the device boundaries.

Moreover, because plasma frequencies in semiconduc-
tors can lie in the terahertz range, semiconductor plasmas
have potential for terahertz solid-state analogs of vacuum
traveling-wave tubes and backward-wave oscillators. In
these devices, electrons drifting in a semiconductor interact
with slow backward or forward electromagnetic waves.9–11

In vacuum tubes, the electromagnetic waves are usually
slowed down by a helix or another artificial slow-wave
structure.12 In solids, a possible choice for the slow wave is
optical phonons, which are particularly suited for terahertz
applications because optical-phonon frequencies of most di-
atomic semiconductors lie in the terahertz range. High-
mobility diatomic semiconductors, such as InSb, can support
both optical phonons and drifting electrons. Traveling-wave
interaction between the phonons and electrons drifting in the
same material could lead to instability and thus it can be used

to amplify and generate terahertz radiation. First considered
theoretically in the 1960s,13–16 this effect has been recently
revisited by Riyopoulos, who derived and analyzed the dis-
persion relation in an infinite material using the
hydrodynamic17 and the kinetic18 approaches.

While previous studies of this optical-phonon instability
considered infinite materials, practical realizations are, of
course, finite and may have properties different from those of
infinite ones. First, the gain in a finite configuration could
depend on its dimensions. Second, boundaries between a
semiconductor and a dielectric in a finite configuration can
support surface optical-phonon polaritons �SOPPs� and sur-
face plasmon polaritons �SPPs�,19,20 whose properties differ
from those of their bulk counterparts. In the third place, finite
configurations can support electron movement not only in
the longitudinal direction, parallel to the applied electric
field, but also in the transverse directions. Due to this move-
ment, magnetic field, which does not play a role in infinite
materials, may influence the properties of finite configura-
tions.

The obvious choice of a finite system is a semiconductor
slab confined in one direction but infinite in the other two,
see Fig. 1. This paper discusses the instability in the slab
arising when SOPPs interact with drifting electrons.

Instability means that signals in a system grow in time.
For a harmonic time-varying signal of the form exp�j�t�
�where � is the frequency, t is the time, and j is the imagi-
nary unit�, it implies complex frequency with a negative
value of the imaginary part. Whether such solutions exist can
be determined by solving the dispersion equation, relating
wave numbers and frequencies of the waves propagating in
the system. To study the slab instability, we derive the dis-
persion equation in Sec. II and then analyze it in Sec. III,
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where we determine conditions for the optical-phonon insta-
bility, discuss how the gain depends on the slab thickness
and the plasma frequency, and find the field distributions in
the slab. In Sec. IV, we draw conclusions.

II. DERIVATION OF THE DISPERSION RELATION

To derive the dispersion relation, we solve Maxwell’s
equations in the semiconductor and the dielectric subject to
boundary conditions. In the presence of ac electric, E, and ac
magnetic, H, fields, the equation of motion can be written as

�v

�t
+ �v · ��v =

e

m�
�E + �L�0v � H� , �1�

where v is the electron velocity, e is the electron charge, m�

is the electron effective mass, and �0 is the free space per-
meability. The term with the magnetic field H in Eq. �1�
describes the Lorentz force. Later, we will compare the dis-
persion relations derived with and without the Lorentz force.
For this reason, we multiplied the Lorentz force in Eq. �1� by
�L that is equal to 0 when the Lorentz force is neglected and
to 1 when it is taken into account. We also ignored electron
collisions and diffusion in the equation of motion, which
could be justified for high-mobility semiconductors at low
temperatures. For a discussion of the effects of diffusion, see
also Ref. 18.

Moving electrons create a current with the density

J = env , �2�

where n is the electron density. Equations �1� and �2� are
nonlinear. To linearize them and obtain the dispersion rela-
tion, we assume, as it is usually done, that the electron den-
sity and velocity have a constant part and a small time-
varying part,

n = n0 + ñ exp�j�t�, �ñ� � n0,

vz = v0 + ṽz exp�j�t�, �ṽz� � v0, �3�

vx = ṽx exp�j�t�, �ṽx� � v0,

where v0 is the electron drift velocity, see Fig. 1, and n0 is
the dc electron density, which we take constant across the

slab. Then, substituting Eq. �3� into Eqs. �1� and �2�, we
ignore products of small quantities, so that the z-component
of the ac current density, for example, has the form Jz

=en0ṽz+eñv0.
Effects of the optical phonons can be included into the

permittivity of the semiconductor. We take the optical-
phonon permittivity in its usual form,

�phon = ��

�2 − �L
2

�2 − �T
2 , �4�

where �L and �T are the longitudinal and transverse optical-
phonon frequencies, and �� is the high-frequency permittiv-
ity. Assuming TM waves with the field components Ez, Ex,
and Hy, substituting Eqs. �1�–�4� into Maxwell’s equations,
and assuming the spatial variation of all ac quantities in the
form exp�−j�kzz+kxsx��, we obtain the following dispersion
relation:

kz
2 + kxs

2 = k0
2�eff1, �5�

where k0=� /c0 �c0 is the light velocity� and

�eff1 = �phon − ��

�p
2

�� − kzv0��� − �1 − �L�kzv0�
. �6�

Here, �p is the plasma frequency defined as

�p
2 =

e2n0

�0��m�
, �7�

where �0 is the free-space permittivity.
In the dielectric, we assume the spatial variation of the

fields in the form exp�−j�kzz+kxdx��. The solution of Max-
well’s equations gives then the standard dispersion relation,

kz
2 + kxd

2 = k0
2�d, �8�

where �d is the permittivity of the dielectric. Comparing Eqs.
�5� and �8�, we can call �eff1 in Eq. �5� an effective permit-
tivity of the semiconductor. This effective permittivity de-
pends on whether the Lorentz force is taken into account, see
Eq. �6�.

For the fields in the dielectric to vanish at infinity, kxd

must be imaginary, such that kxd=−j	xd. Similarly, we will
assume imaginary kxs in the semiconductor, kxs=−j	xs. Then,
Eqs. �5� and �8� change to

kz
2 − 	xs

2 = k0
2�eff1,

�9�
kz

2 − 	xd
2 = k0

2�d.

To obtain the complete dispersion relation for the slab, we
have to take boundary conditions into account. These condi-
tions should include the ac charges accumulating on the
boundaries due to the transverse movement of the electrons.
The surface charge density, 
surf, can be expressed as12


surf =
Jx

j�� − kzv0�
, �10�

and the corresponding surface current density as Jsurf

=v0
surf. It needs to be emphasized here that in the case of
slab with drifting electrons, both surface charge and surface

FIG. 1. �Color online� A semiconductor slab of thickness d is surrounded by
a dielectric. The semiconductor supports optical phonons and drifting elec-
trons. Interaction between them can lead to a terahertz instability.
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current should be taken into account. In our model, the
boundary condition for the magnetic field takes then the form

Hyd�x=�d/2 =
�eff2

�eff1
Hys�x=�d/2, �11�

where Hyd and Hys are the magnetic fields in the dielectric
and in the semiconductor, and

�eff2 = �phon − ��

�p
2

�� − kzv0�2 . �12�

When deriving Eq. �12� in the presence of the Lorentz force,
�L=1 in Eq. �1�, we assumed that v0

2 /c2, the relativistic cor-
rection, is much smaller than unity.

Using Eq. �11� together with the condition that Ez is
continuous at the boundaries, we can write the slab disper-
sion relation as

tanh
	xdd

2
= −

	xs�d

	xd�eff2
,

�13�

coth
	xdd

2
= −

	xs�d

	xd�eff2
,

respectively. The form of Eq. �13� is identical to that of the
dispersion relations of SPPs and SOPPs.19,20 In the follow-
ing, we will refer to the first solution as tanh-mode and to the
second one as coth-mode.

Equation �13� can be simplified. First, we notice that the
electron drift velocities achievable in semiconductors are
much smaller than the light velocity c0 �for example, the
highest drift velocity reported for InSb is21 v0 max�c0 /300�.
Estimating the wave number at which the instability occurs
as kz=Re � /v0, we have kz�k0, and given Im ��0, the
term proportional to k0 in Eq. �9� can be ignored, yielding

	xs = 	xd = kz. �14�

Equation �14� transforms Eq. �13� into

tanh
kzd

2
= −

�d

�eff2
,

�15�

coth
kzd

2
= −

�d

�eff2
,

respectively. Equations �14� and �15� have the same form
regardless of whether we take the Lorentz force in the equa-
tion of motion, Eq. �1�. It means that, provided Eq. �14� is
true, including the Lorentz force does not influence the in-
stability.

A further simplification comes from considering large
slab thicknesses, d. If kzd�1, tanh�kzd /2��coth�kzd /2��1,
and Eq. �15� yields �d=−�eff2. Taking into account the defi-
nition of �eff2, Eq. �12�,

1 −
�L

2 − �T
2

�2 − �T
2 −

�p
2

�� − kzv0�2 = −
�d

��

, �16�

followed by

��L
2 − �T

2��� − kzv0�2 + �p
2��2 − �T

2�

= �1 +
�d

��
	��2 − �T

2��� − kzv0�2. �17�

Rearranging the terms, we obtain

�� − kzv0�2
��L
2 − �T

2� − �1 +
�d

��
	��2 − �T

2�� + �p
2��2 − �T

2�

= 0. �18�

Then, we multiply both terms by 1+�d /�� and expand the
second term by writing

�1 +
�d

��
	��2 − �T

2� = �1 +
�d

��
	�� − �T

2� − ��L
2 − �T

2�

+ ��L
2 − �T

2�

to obtain


��L
2 − �T

2� − �1 +
�d

��
	��2 − �T

2��
�� − kzv0�2�1 +
�d

��
	

− �p
2� = − �p

2��L
2 − �T

2� . �19�

Diving both sides of this expression by �1+�d /���2, we re-
cast the dispersion relation in the form


�2 −
���L

2 + �d�T
2

�� + �d
�
�� − kzv0�2 −

���p
2

�� + �d
�

=
��

2

��� + �d�2�p
2��L

2 − �T
2� , �20�

which is standard for coupled-wave interactions. The first
bracket on the left-hand side corresponds to the SOPPs. The
second bracket corresponds to the SPPs in the presence of
drift. It has the form analogous to the dispersion relation of
bulk space-charge waves with the reduced plasma
frequency,12,22

�p
�reduced� =� ��

�� + �d
�p. �21�

The term on the right-hand side is the coupling coefficient.
The dispersion relation Eq. �20� does not depend on the slab
thickness. It means that the surface waves propagating on the
different sides of the slab do not interact with each other; the
slab behaves like a semi-infinite material.

III. ANALYSIS OF THE DISPERSION RELATION

Dispersion relation Eq. �13� and its simplified forms Eqs.
�15� and �20� describe the interaction between SOPPs and
drifting SPPs. Analyzing the dispersion relation, we can de-
termine when this interaction becomes unstable.23 To do so,
we solve the dispersion relation for the frequency �, assum-
ing real wave numbers, kz. The resulting values of � are, in
general, complex. An instability is signaled by solutions with
Im �
0, and the value �Im �� shows how fast the corre-
sponding wave grows in time, i.e., characterizes the temporal
gain.
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In this section, we analyze the dispersion relation, first
for large, and then for small slab thicknesses. For numerical
calculations, we take parameters corresponding to InSb, see
Table I.

A. Instability at large slab thicknesses

As argued above, the dispersion relation Eq. �13� can be
simplified for large slab thicknesses to the form of Eq. �20�.
The corresponding condition is kzd�1. Assuming kz

=�L /v0 and taking the parameters from Table I, we obtain
the estimate d�30 nm.

We start analyzing the dispersion relation by setting the
electron drift velocity to zero. Then, the interaction between
the SPPs and SOPPs can only be passive. The dispersion
curves given by Eq. �20� are two horizontal lines, as seen in
Fig. 2, for fp=�p / �2��=1 THz and �d=1. They correspond
to the frequencies 5.70 and 0.91 THz, which differ from fL

�5.71 THz� and fp �1 THz� due to the plasmon-phonon inter-
action and the presence of the boundary. The wave number
in Fig. 2 is normalized to the lattice constant, a.

Figure 2 was plotted using Eq. �20�, but as confirmed by
numerical calculations, the complete dispersion equation, Eq.
�13�, gives the same result for the range of the wave numbers
shown. However, for small wave numbers comparable with
k0 �not seen in the scale of Fig. 2� solutions of Eq. �13�
deviate from straight lines and follow the usual SOPP and
SPP dispersion curves, the latter rising from �=0, k=0.19,20

These solutions are of no interest in the present context, and
we will not show them.

When the electrons drift, the SPP dispersion curves ro-
tate counterclockwise by an amount proportional to the value
of the drift velocity, as shown in Fig. 2 by orange lines for
v0=c0 /3000. This value of the drift velocity is too low for
the SPP dispersion curves to cross the phonon dispersion
curves. Consequently, there is still no instability in the region
shown.

As the drift velocity increases, the dispersion curves of
the SPPs can cross those of the SOPPs giving rise to the
optical-phonon instability, as shown in Figs. 3�a� and 3�b� for
v0=c0 /300. The other parameters are the same as in Fig. 2.
The presence of the instability is confirmed by the negative
values of Im �, shown in Fig. 3�b�. The instability exists
between 5.20 and 6.02 THz; the temporal gain is maximal at
5.62 THz.

As follows from Eq. �20�, the coupling between SOPPs
and SPPs increases with increase of the plasma frequency.
Larger coupling coefficients lead to stronger instabilities,
with larger gains and wider frequency ranges. This effect is
demonstrated in Figs. 3�c� and 3�d� for fp=5.5 THz, which
lies between fL and fT, and Figs. 3�e� and 3�f� for fp

=10 THz, which is larger than fL. The maximum value of
−Im f increases from 0.4 THz for fp=1 THz to 0.9 THz for
fp=5.5 THz and further to 1.2 THz for fp=10 THz. The
value of the frequency at which this maximum is reached is
roughly independent of the plasma frequency, but the un-
stable frequency range increases from 0.82 to 1.83 THz and
to 2.44 THz.

On the other hand, increasing the permittivity of the di-
electric, �d, decreases the coupling coefficient and also
changes the coupled phonon-plasmon frequencies, see Eq.
�20�. Smaller coupling coefficients lead to weaker instabili-
ties, as shown in Fig. 4 for �d=11.6 �corresponding to
silicon24� and fp=1 THz. The instability occurs between
5.23 and 5.8 THz, and the maximum value of −Im f is 0.27
THz, smaller than the values corresponding to �d=1, see
Figs. 3�a� and 3�b�.

The polynomial form of the dispersion relation Eq. �20�
allows direct comparison between the dispersion relation for
the slab and the dispersion relation for an infinite material.
The dispersion relation for an infinite material has the
form17,18

��2 − �L
2���� − kzv0�2 − �p

2� = �p
2��L

2 − �T
2� . �22�

Apart from different frequencies for the bulk and the surface
waves, Eqs. �20� and �22� differ in the coupling coefficient.
The coupling coefficient for the slab is smaller than that of

TABLE I. Parameters used in numerical calculations correspond to InSb.

Longitudinal phonon frequency, fL=�L / �2�� 5.71 THz

Transverse phonon frequency, fL=�L / �2�� 5.37 THz

High frequency dielectric constant, �� 15.7

Electron effective mass, m� 0.014m0

Drift velocity, v0 c0 /300=106 m /s

Lattice constant, a 0.648 nm

FIG. 2. �Color online� In the presence of drift, the dispersion curves for the
SPPs rotate by an amount proportional to the drift velocity. There is no
instability when the drift velocity is zero or small.
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the infinite material which leads, as could be expected, to
weaker instability. However, if ����d, the difference be-
tween the coupling coefficients is small, and the two insta-
bilities behave identically.

B. Instability at small slab thicknesses

When the slab thickness decreases and becomes compa-
rable to the value d=v0 /�L �30 nm for our parameters�, the
approximation of Eq. �20� fails. One has to take the complete

dispersion relations in the form of Eq. �13�. As numerical
calculations for small thicknesses show, dispersion diagrams
for both tanh-mode and coth-mode, Eq. �13�, look qualita-
tively similar to those of Fig. 3; the largest difference occurs
at small wave numbers, insignificant for the instability. Nu-
merical calculations also show that Eqs. �13� and �15� give
the same results for the unstable parts of the dispersion dia-
grams, confirming that the simplified dispersion relation Eq.
�15� provides an adequate description of the instability.

On the other hand, the temporal gain depends on the slab
thickness, as shown in Fig. 5 for the tanh-mode and coth-
mode. We took fp=1 THz, �d=1 for Fig. 5�a� and �d=11.6
for Fig. 5�b�, and the remaining parameters from Table I.
When the thickness is large, the gains of both modes are
equal, and they remain constant until the thickness decreases
to approximately 100 nm. As the thickness decreases further,
the gain of the tanh-mode decreases, whereas that of the
coth-mode increases. This behavior is due to the reduced
plasma frequency, see Eq. �21�, which now depends on the
slab thickness. For the coth-mode the reduced plasma fre-
quency increases with decrease of the thickness, hence the
growth of the gain. For the tanh-mode, the opposite happens.

The dependence of the maximal gain on the thickness is
more pronounced for higher permittivity. For 50-nm-thick
slabs, the difference between the gains of the coth-mode and
tanh-mode for �d=11.6 is 0.05 THz, Fig. 5�b�, whereas it is
only about 0.01 THz for �d=1, Fig. 5�a�.

When the slab thickness is small, the interaction between
the waves propagating on the different surfaces leads to the
field distributions in the slab in the form of hyperbolic sine
and cosine functions. Outside the slab, the fields decay ex-
ponentially. At any value of the wave number, kz, four waves
will propagate. Each wave will generally have its own fre-
quency, given by Eq. �13�, and field distribution. We are
interested, however, only in the growing wave. Figure 6
shows the field distributions for the tanh-mode and coth-
mode of the growing wave for fp=1 THz, �d=1, and d
=100 nm; the wave number chosen is kz=0.008 54� /a
yielding f ��5.62−j0.38� THz. The distributions of Ez and
Ex are of the same type as those of nondrifting SPPs,20 but
the distributions of Hy, being discontinuous at the boundary,

FIG. 3. �Color online� The interaction between SOPPs and SPPs leads to a
terahertz instability when the drift velocity is sufficiently large. The insta-
bility is signaled by the negative values of Im f . The instability is stronger
for higher values of the plasma frequency. ��a�, �c�, and �e�� Real and ��b�,
�d�, and �f�� imaginary parts of the frequency against the wave number
normalized to the lattice constant, a.

FIG. 4. �Color online� Increasing the permittivity of the dielectric surround-
ing the slab leads to weaker instability, with narrower frequency range and
smaller growth rates, as shown on the dispersion diagrams for �d=11.6,
compare with Figs. 3�a� and 3�b�.

102103-5 Terahertz instability of surface optical-phonon polaritons… Phys. Plasmas 17, 102103 �2010�

Downloaded 08 Dec 2010 to 155.198.134.161. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



are different. This discontinuity is born by the ac surface
current, which changes the boundary conditions in the pres-
ence of drift, see Eq. �11�.

IV. CONCLUSIONS

In contrast to an unbounded semiconductor, where the
instability arises due to the interaction of bulk waves, the
instability in the semiconductor slab is due to the interaction
of surface waves: surface plasmon polaritons and surface
optical-phonon polaritons. When the slab thickness is much
larger than the wavelength, the dispersion relation of the slab
differs from that of an infinite material in the frequencies of
the waves and the coupling coefficient. The two dispersion
relations, however, have the same form, and the properties of
optical-phonon instability in the slab are analogous to those
in unbounded materials, as considered previously.17,18 The
influence of the Lorentz force upon the instability can be
disregarded.

When the slab thickness is small, the analogy with the
infinite material breaks down. The temporal gain depends on
the slab thickness, and it is different for the two surface-
wave modes supported by the slab. Because the gain of the
coth-mode, with an asymmetric distribution of the longitudi-
nal electric field Ez, grows as the slab thickness decreases,
using this mode might be preferable for practical applica-
tions.

For stronger instabilities, one has to choose materials
with large plasma frequencies and large differences between
the longitudinal and transverse optical-phonon frequencies,
see Eq. �20�. Whereas, the value of the plasma frequency in
a material can be varied by doping, the optical phonon fre-
quencies are fixed. The choice of materials is further reduced
by the requirement of having drifting electrons and phonons
in the same material. This problem could be overcome by
designing stacked structures where optical phonons and drift-
ing electrons are provided by different materials. Such con-
figurations could lead to practical designs of terahertz solid-
state oscillators and amplifiers.
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