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Abstract: An algorithm is presented for seed function combination selection for chained function filters on the
basis of pre-defined manufacturing limitations. To this end, and for the first time, combinatorial analysis
methods have been applied to computer-aided filter design routines. A fundamental Monte-Carlo margin has
been discovered that represents an upper-bound on the worst-case pass-band return-loss responses that
cannot be exceeded. This can be exploited to extend the state-of-the art in tuningless high-performance filter
implementations towards higher frequencies and smaller fractional bandwidths or, alternatively, to lower the
accuracy and manufacturing cost for a given set of filter specifications.
1 Introduction
Manufacturers are under constant pressure to reduce the
development time and cost of front-end microwave and
millimetre-wave hardware. One of the most expensive
components are high-performance filters – due to the
associated costs of high quality (Q)-factor materials, any
precision assembly and, more significantly, any post-
manufacturing tuning. In the context of such filters, this
effort has resulted in considerable progress in the area of
advanced electromagnetic (EM) simulation tools. However,
the simulation accuracy that is now available has diverted
attention to the manufacturing process. This is because, in
order to draw the full benefits from the increased
simulation accuracy, hardware must be manufactured with
low tolerances. This, in turn, can significantly increase the
final filter costs.

With current practice, the available filter computer-aided
design (CAD) techniques do not take into consideration
the limitations of the manufacturing process at the initial
filter approximation stage. As a result, engineers must first
design a filter and then find the most appropriate
manufacturing technology for practical implementation.
This approach often requires the use of computationally
intensive EM codes, together with fabrication process
optimisation and/or post-manufacturing tuning.
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Through simulations only, one recent attempt to address
the issue of reduced fabrication sensitivity, by changing the
filter functions, was reported by Jayyousi et al. [1]. The
algorithm given here is an alternative to this approach, by
using chained function (CF) filters to address the
limitations of the available manufacturing technology at the
initial approximation stage [2, 3]. This can reduce, or even
eliminate, the need for lengthy fabrication process
optimisation and post-manufacture tuning. Indeed, a
practical measured demonstration of our proposed
methodology has already been published [4], but is not
reproduced here. The key feature in the proposed algorithm
is that it changes the existing filter CAD approach to select
the most suited filter transfer function to satisfy the
electrical requirements within the limitations imposed by
the available manufacturing technology.

The design of a filter usually starts with the selection of a
suitable transfer function that will satisfy a set of given
electrical specifications. The next step is to translate the
computed transfer function into an ideal electrical network
representation of the filter, involving lengths of
transmission lines (if the filter is to be implemented using
distributed components) and impedance inverters. Finally,
the ideal network elements are implemented by real
components that, when assembled together, exhibit the
required electrical behaviour. It is in this final stage that the
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manufacturing tolerances are usually taken into account
using, for instance, accurate EM simulators. In general,
however, manufacturing errors will change the electrical
performance of the real components, so that additional
adjustments are required using either fabrication process
optimisation and/or post-manufacture tuning [5].

The most common form of amplitude approximation for
microwave filters is the generalised Chebyshev approximation.
Using Chebyshev transfer functions, however, once the
appropriate function has been identified, it will require a
specific manufacturing tolerance and a specific unloaded Q for
the individual resonators that cannot be changed or modified.
In particular, an important consideration for achieving a first-
pass result with this family of filters is the relative frequency
separation of the pass-band return-loss (RL) zeros. It is
known that the smaller the separation of the RL zeros the
higher the sensitivity to any structural parameter variation.

One way to overcome this problem is to address the sensitivity
to manufacturing tolerance at the filter’s approximation stage
using, for instance, a CF transfer function [2, 3]. As already
shown both in theory [2] and practice [3], the chained filter
transfer function concept provides a variety of transfer
functions that can meet all the target filter specifications. With
the same filter order, different frequency-domain, time-
domain and implementation characteristics can be achieved.
Also, unlike the conventional Chebyshev (CC) filter, an
optimal filter can be designed having a reduction in sensitivity
to manufacturing errors, resonator unloaded Q factor and filter
0
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losses [3]. This feature, however, comes at a price. When
emulating conventional high-order Chebyshev filters, with
CFs, to achieve the same level of out-of-band rejection, the
total order of the CF needs to be increased. It can be shown
that increasing the total filter order by one is sufficient,
without incurring a loss penalty [3, 6]. Indeed, contrary to
expectations, when compared to an nth-order Chebyshev filter,
the pass-band insertion loss can be less with an
(n + 1)th-order CF filter. For example, a conventional ninth-
order all-pole (i.e. a filter with no finite transmission zeros)
Chebyshev filter can be emulated with a tenth-order all-pole
CF filter, formed by the product of low-order (having much
lower sensitivity) seed functions. There are, however, many
different combinations of seed functions that can be used to
emulate the given filter order. In theory, for a tenth-order
filter, there are 42 different seed function combinations, with
each having different characteristics. The objective of this
paper is to present an algorithm for seed function combination
selection. For the first time, combinatorial analysis is used
for the selection of the most appropriate seed function
combination, based on pre-defined manufacturing limitations.

2 Algorithm description
The flow diagram for the complete design procedure for CF
filters is shown in Fig. 1. The proposed algorithm is enclosed
within the dotted border. As with standard filter design
algorithms, the input parameters are a set of electrical
specifications (e.g. total filter order, number of seed
functions, multiplicity of each seed function, number of
Figure 1 Complete flow diagram for designing CF filters
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transmission zeros (or attenuation poles), number of group
delay equalisation zeros, worst-case pass-band RL levels,
pass-band slope, etc.), the given manufacturing technology
restrictions (e.g. available Q-factor, tolerance, etc.) and
physical constraints (e.g. size and aspect ratio restrictions,
monolithic or hybrid filter integration, etc.).

A physical structure that is most likely to satisfy the given
combination of electrical and physical constraints is chosen.
This choice is made from what is effectively a database of
circuit structures, available to the filter designer. It should be
mentioned that more than one structure can be selected at
this stage, so the designer is able to check the available
manufacturing technology effects on different filter structures.

The process of finding the optimum seed function
combination can then be initiated. From the restricted sets of
possible seed function combinations, the physical filter
parameters (e.g. line widths, lengths, separations, etc.) can be
evaluated. The required physical structure(s) can then be
applied to Monte-Carlo analysis. As soon as the optimal seed
function combination has been identified, the final response
optimisation (to the filter poles-zeros) can be initiated to fit
the filter response to a given frequency mask [6].

3 Seed function combinations
The first step in developing this algorithm is to find the total
number of possible seed function combinations, SFC(nT), for
a given total CF filter order nT. As shown in [3], both the
total filter order nT and the seed function orders, ns(k), are
integers; thus, the number of combinations can be defined as

SFC(nT) = number of ways of partitioning nT into ns(k)

(1)

This equivalence can be expressed mathematically by applying
combinatorial analysis techniques and using partition
functions [7–12]. In general, a partition is a way of writing
an integer k as a sum of positive integers without regard to
order, possibly subject to one or more additional constraints.
There are three types of partition functions used in the
proposed algorithm. The first is the partition function P(k),
which gives the number of unrestricted decompositions of an
integer number k (i.e. the CF total order) as a sum of smaller
integers (i.e. seed function orders) without regard to the
order. This function can be used to generate all possible seed
function combinations. The second is the restricted partition
function PR(k), which gives the number of ways of writing
the integer k as a sum of integers without regard to the order
and with the constraint that all integers in the sum are
distinct. This function can be used to restrict the seed
function combinations to either distinct sums or to powered
solutions (i.e. solutions such as cubed second-order, etc.).
This will be made clear later in this paper. The third is the
unordered partitions of k into s parts, P(k,s) (i.e. assuming
that one wishes to use three seed functions only and the
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designer needs to know how many combinations exist), which
can be used to assist in the enumeration process.

3.1 Partitioning the CF total order

The number of unrestricted partitions of an integer k appears
in the expansion of a generating function given by Euler.
Consider the q-series, involving coefficients of the form [7–12]

(q)1 ;
∏+1

m=1

(1 − qm) =
∑+1

l=−1

(−1)lql(3l+1)/2 (2)

One can define a function, F1(q), as F1(q) ¼ 1/(q)1, and obtain
its Taylor polynomial approximation about the point q ¼ 0.
Finally, the number of unrestricted partitions of the integer k
appears as the coefficient of qk, and thus [7–12]

P(k) = 1

k!

∂kF1(q)

∂qk

∣∣∣∣
q=0

(3)

A useful recurrence relation that exists in a form suitable for
computer implementation has the form [7–12]

P(k) = 1

k

∑k−1

m=0

s1(k− m)P(m) (4)

where P(0) ¼ 1, and s1(k) is the divisor function defined as
[7–12]

s1(k) =
∑M

i=1

di (5)

where di are the divisors of k and M is the total number of
divisors. Similarly, the generating function F2( g) for the
restricted partitions of an integer k, PR(k), is [7–12]

F2(g) =
∏1
m=1

(1 + gm) =
∏1
m=1

1 − g2m

1 − gm
(6)

The number of restricted partitions appear as the coefficient of
gk in the Taylor polynomial approximation of F2( g). A
recurrence relationship suitable for computer implementation
is given as [7–12]

PR(k) = 1

k

∑k
m=1

s(o)
1 (m)PR(k− m) (7)

where PR(0) ¼ PR(1) ¼ 1 and s1
(o)(m) is the odd divisor

function, defined as the sum of powers of odd divisors of a
number such that [7–12]

s(o)
1 (m) = s1(m) − 2s1(m/2), if m is even

s1(m), if m is odd

{
(8)

Here s1(m) is the divisor function as defined in (5). Finally, the
unordered partitions of k into s parts, P(k, s) must be
801
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considered. The proposed recursive formula has the form
[7–12]

P(k, s) = P(k− 1, s − 1) + P(k− s, s) (9)

where P(k, s) ¼ 0, for k , s, P(k, k) ¼ 1 and P(k, 0) ¼ 0.
Equation (9) can be given explicitly for the first few values of
s in the simple forms of

P(k, 1) = 1

P(k, 2) = k

2

⌊ ⌋

P(k, 3) = k2

12

⌊ ⌋ (10)

Table 1 shows the calculated number of unrestricted, P(nT),
and restricted, PR(nT), seed function combinations for
different CF total order, nT.

3.2 Enumeration of CF partitions

One way of enumerating all possible seed function
combinations is to generate the combinations using a fixed
number of nT seed functions, then reduce this number by
one (i.e. nT 2 1) and enumerate all the possible
combinations, and so on. Eventually, this process will end
when one enumerates the combinations using only one
seed function. The starting point of the enumeration
algorithm is the solution nT = 1 + 1 + · · · + 1. Here, a set
is defined as follows

MnT ,1 =
{

1, 1, . . . , 1︸︷︷︸
nT

}
(11)

Alternatively, any combination of seed functions of orders
first, second, third, . . ., nT could be a possible solution to
the algorithm. This can be seen by bracketing the different
terms together in the set MnT,1. To do this, one needs to

Table 1 Number of unrestricted P (nT) and restricted PR(nT)
seed function combinations

nT P (nT) PR(nT) nT P (nT) PR(nT)

4 5 2 13 101 18

5 7 3 14 135 22

6 11 4 15 176 27

7 15 5 16 231 32

8 22 6 17 297 38

9 30 8 18 385 46

10 42 10 19 490 54

11 56 12 20 627 64

12 77 15 21 792 76
2
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define the consequent sets as Mi,j, where i is the total
number of seed functions whose orders will sum up to nT.
For example, if i ¼ 3 then there will be three seed
functions and when the orders of these three seed functions
are summated they will be equal to nT. Thus, i ¼ 1, 2, . . .,
nT, while j is the corresponding combination index with
j ¼ 1, 2, . . ., P (nT,i). Therefore the next sets, in sequence,
will consist of the combinations of two seed functions
formed as:

M2,1 =
{

1, 1, . . . , 1︸︷︷︸
nT−1

, 1︸︷︷︸
1st

}
= {(nT − 1), 1}

M2,2 =
{

1, 1, . . . , 1︸︷︷︸
nT−2

, 1, 1︸︷︷︸
2nd

}
= {(nT − 2), 2}

..

.

M2,nT/2 =
{

1, 1, . . . , 1︸︷︷︸
nT/2

, 1, 1, . . . , 1︸︷︷︸
nT/2

}

= nT

2
,

nT

2

{ }
if nT is even

M
2,

(nT +1)
2

=
{

1, 1, . . . , 1︸︷︷︸
nT +1

2

, 1, 1, . . . , 1︸︷︷︸
nT −1

2

}

= nT + 1

2
,

nT − 1

2

{ }
if nT is odd

(12)

In a similar manner, one can form the sets for three, four or
more seed function combinations as

M3,1 =
{

1, 1, . . . , 1︸︷︷︸
nT−2

, 1, 1

}
= {(nT − 2), 1, 1}

M3,2 =
{

1, 1, . . . , 1︸︷︷︸
nT−3

, 1, 1︸︷︷︸
2nd

, 1

}
= {(nT − 3), 2, 1}

..

.

M4,1 =
{

1, 1, . . . , 1︸︷︷︸
nT−3

, 1, 1, 1} = {(nT − 3), 1, 1, 1

}

M4,2 =
{

1, 1, . . . , 1︸︷︷︸
nT−4

, 1, 1︸︷︷︸
2nd

, 1, 1

}
= {(nT − 4), 2, 1, 1}

..

.

(13)

The set M1,1 ¼ {nT} completes the calculation cycle of the
sets Mi,j. Table 2 shows the calculated seed function
combinations for nT ¼ 8. It should be noted, from Table 2,
that not all decompositions are possible solutions to the
approximation problem, since CFs need to be formed by
IET Microw. Antennas Propag., 2010, Vol. 4, Iss. 6, pp. 799–807
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the product of lower order (than the emulated filter) seed
functions. Bearing in mind that the CF’s total order is
greater than the emulated filter’s order by one, some
solutions that consist of seed functions of orders equal to, or
greater than, n need to be rejected. Thus, the decomposition
for nT into a single integer will give a single seed function
having an order nT, which needs to be rejected from the
possible solutions set. Moreover, the decomposition of nT

into two seed functions will have the form

nT = (nT − 1) + 1 = (nT − 2) + 2 = · · · (14)

The first solution, in (14), will give two seed functions; one of
which will have an order of (nT 2 1) ¼ n and, thus, needs to
be rejected. The decomposition of the total filter order nT

into combinations of three (or more) seed functions needs
no further reduction at this stage. The reason for this is that
these solutions will have the form

nT = (nT − 2) + 1 + 1 = (nT − 3) + 2 + 1 = · · · (15)

Therefore this ensures that the seed function orders will be
smaller, by at least one, compared to the order of the filter
being approximated. The number of all possible seed
function combinations, dnT

, available to the filter designer
can be expressed as

dnT
= P(nT) − 2 or PR(nT) − 2 (16)

4 Seed function parameter
evaluation
Since the out-of-band response is of great importance, one
can define a frequency interval where the two responses
(i.e. the CC and the CF) must have minimum deviation. It
can be shown that the filter emulated using CFs will have a
slightly slower roll-off rate just above the cut-off frequency,
Vc [3]. However, after a frequency Vx (where Vx . Vc), it
will have a faster roll-off rate than the conventional filter

Table 2 Seed function combinations for nT ¼ 8

Seed function Seed function orders

2 {4, 4}, {3, 5}, {2,6}

3 {2, 3, 3}, {2, 2, 4}, {1, 3, 4}, {1, 2, 5},
{1, 1, 6}

4 {2, 2, 2, 2}, {1, 2, 2, 3}, {1, 1, 3, 3},
{1, 1, 2, 4}, {1, 1, 1, 5}

5 {1, 1, 2, 2, 2}, {1, 1, 1, 2, 3 },
{1, 1, 1, 1, 4}

6 {1, 1, 1, 1, 2, 2}, {1, 1, 1, 1, 1, 3}

7 {1, 1, 1, 1, 1, 1, 2}

8 {1, 1, 1, 1, 1, 1, 1}
Microw. Antennas Propag., 2010, Vol. 4, Iss. 6, pp. 799–807
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(since nT . n). The frequency range from Vc up to Vx is
the frequency interval for which the two responses must
have minimum deviation. Now, Vx is different for every
unique seed function combinations and, thus, it needs to be
evaluated for each combination. It should be noted that
some seed function combinations will provide Vx very close
to Vc, whereas others will provide Vx far away from Vc.
The longest distance, as expected, will be provided by the
combination consisting of first-order seed functions only
(i.e. the Butterworth amplitude approximation). A function
ATF

min(V) can be defined as the minimum out-of-band
rejection for the CC filter, such that

ATF
min(V) = 10 log10 [1 + 1

2T 2
n (V)] (17)

where Tn(V) is the Chebyshev polynomial of the first kind.
The corresponding CF minimum out-of-band rejection is
calculated for every candidate function set Mi,j as

A
i, j
min(V) = 10 log10 [1 + 1

2G2
i, j(V)] (18)

where G2
i, j(V) can be formed as shown in [3]. Since different

seed function combinations will result in different Vx, a
numerical method can be applied to solve (17) and (18) for
V as

ATF
min(V) = A

i, j
min(V)

10 log10 [1 + 12T 2
n (V)] = 10 log10 [1 + 12G2

i, j(V)]

T 2
n (V) − G2

i, j(V) = 0

(19)

The Newton–Raphson iteration method seems to be ideal
for solving (19), to find V

i, j
x for each seed function

combination as

V
i, j
x,m+1 = Vi, j

x,m −
T 2

n (Vi, j
x,m) − G2

i, j(V
i, j
x,m)

∂{T 2
n (V) − G2

i, j(V)}

∂V

∣∣∣∣∣
V=V

i, j
x,m

(20)

where Vi, j
x,m is the initial guess value for Vi, j

x . Both functions,
Tn

2(V) and Gi,j
2 (V), are well-behaved polynomials and their

derivatives, required by the Newton–Raphson iteration
method, can be easily evaluated. Additional parameters can
also be used depending upon the application [4]. For
example, one may be interested in the maximum and
minimum even and odd-mode impedances for each seed
function combination. This is particularly useful when a
coplanar waveguide (CPW) implementation is required. It
is well known that CPW circuits have a limited impedance
range when compared with microstrip. Here, the CC filter
will require a specific range of even and odd-mode
impedances, whereas CF filters are able to provide a
different range of even and odd-mode impedances for
different seed function combinations. Even when the filter
implementation technique allows for an impedance scaling
factor, it is clear that the variety of different seed
803
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combinations resulting in different even and odd-mode
impedances is an extra advantage when compared to the
CC design. Moreover, resonator unloaded Q-factor, RL
zero-frequency distribution, group-delay restrictions, time-
domain restrictions (e.g. rise-time, ringing), and so on, may
also be inserted into the M i, j candidate function sets,
giving the final form, for example, as [6]

M i, j =
[

{ni, j
s1

, . . . , ni, j
si

}, {Qi, j}, {dv
i, j
min},

{Vi, j
x },

∑i, j

g

{ }
,

gi, j
max

g
i, j
min

{ }
, Ri, j

o

]
(21)

where ni, j
s1

, . . . , ni, j
si

are the corresponding constituent seed
function orders, Qi,j is the quality factor of the
corresponding pole closest to the imaginary axis, dv

i, j
min is

the corresponding minimum frequency separation of the
RL zeros, Si,j

g is the sum of the corresponding filter
elements, gi,j

max/g
i,j
min is the element maximum to minimum

value ratio and Ri,j
o is the filter termination ratio (i.e. Ri,j

out/

Ri,j
in).

5 Design restrictions
When all possible solution sets have been enumerated, the
design restrictions can be introduced. Here, a restriction
set, R, is created to contain the imposed design restrictions,
having the form [6]

R = {nr
min, . . . , nr

max, w1}, {Qr
max, w2}, {dvr

min, w3},

[
∑r

g
, w4

{ }
,

gr
max

gr
min

, w5

{ }
, {Rr

o, w6}

]
(22)

where nr
min and nr

max are the required minimum and
maximum seed function orders, respectively, Qr

max is the
required maximum CF Q, dvr

min is the required minimum
RL zero relative frequency separation, and so on. The
variables w1, w2, . . . are the corresponding restriction
weightings that can be used to emphasise the significance
of each parameter. These weightings are integer numbers,
such as 1 ≤ w1 ≤ w2 ≤ . . . ≤ wk. Here, wk is the most
critical parameter and w1 is the least critical parameter. The
value 0 can be reserved for use when one does not want to
restrict the specific parameter. Other definitions for the
weightings are also possible (e.g. in percentage terms, etc.)
depending upon the application.

This restriction set is then compared against all
possible Mi,j, by forming the difference set Di,j (i.e. Mi,j

without R), as

Di, j = M i, j\R or { 6|6 [ M i, j and 6 � R} (23)

where 6 is the element of each set forming the difference. If
4
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the resulting Di,j ¼ 0 (i.e. empty set) then the corresponding
Mi,j satisfies the restrictions. It should be noted that the
parameter Vi, j

x in the set Mi,j is not used during this stage,
as will be made clear in the next section. When all
restrictions have been identified from the possible solution
set, dR

nT
possible combinations will be left, where

dR
nT

, dnT
, for which the error function needs to be

formulated and finally compared in order to identify the
best combination.

6 Error function formulation
When all dR

nT
possible solutions have been collected, a

normalised (with respect to the frequency interval) error
function can be derived for every solution. For example,
with reference to (24) and with (17) and (18), the error to
be reduced is that between transfer function minimum out-
of-band rejection values, that is between the CC filter (as
one example for the reference) and the CF filter calculated
for every function set. Here, two sets can be defined,
Ai,j(V) and Bi,j(V), such that

Ai, j(V) 7! ATF
min(V) ∀V [ [1, V

i, j
x ]

Bi, j(V) 7! A
i, j
min(V) ∀V [ [1, Vi, j

x ]
(24)

and the corresponding error function term can be formulated
as

E2
i, j(V) = |Ai, j(V)|2 − |Bi, j(V)|2 (25)

The smallness of the error, Ei,j(V), can be defined by the
least-mean-square-error criterion. The Ei,j(V) function is
the best in the least-mean-square-error sense if the integral

∫Vi, j
x

1

E2
i, j(V) dV =

∫Vi, j
x

1

{|Ai, j(V)|2 − |Bi, j(V)|2}dV (26)

is minimal in the interval of interest. Thus, the objective of
the overall methodology presented in this paper is to
identify the index combination (i, j) for which the integral
square error is minimal. To solve (26), numerical
integration techniques can be applied. For example, by
dividing the integration interval into a number, u, of equal
width, du, segments as

du =
Vi, j

x

u
(27)

and by using the multiple application of Simpson’s 1/3 rule,
IET Microw. Antennas Propag., 2010, Vol. 4, Iss. 6, pp. 799–807
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one can finally obtain

∫Vi, j
x

1

E2
i, j(V) dV ≃ (Vi, j

x − 1)
1

3u
·
{

{|Ai, j(1)|2 − |Bi, j(1)|2}

+ 4
∑u−1

l=1,3,5,...

{|Ai, j(Vl)|2 − |Bi, j(Vl)|2}

+ 2
∑u−2

l=2,4,6,...

{|Ai, j(Vl)|2 − |Bi, j(Vl)|2}

+ {|Ai, j(V
i, j
x )|2 − |Bi, j(V

i, j
x )|2}

}
(28)

The index combination (i, j) that gives the minimum error is
the required optimum combination. It should be noted that if
the search algorithm returns only one seed function
combination then it is not necessary to perform the
integration.

7 Design example
A simple theoretical design example will now be given, using
the methodology outlined in this paper, to demonstrate the
optimal selection of a seed function combination in CF
filters. Consider a band-pass filter for autonomous cruise
control radar, having a centre frequency f0 ¼ 76.5 GHz,
ripple bandwidth BW ¼ 500 MHz, and worst-case pass-
band RL ¼ 225 dB. The CF total order is chosen to be
nT ¼ 7, the seed function minimum order should be
nr

min ¼ 1 and maximum order nr
max ¼ 5. The overall design

is required to have 20% reduction in the minimum
acceptable Q-factor than a conventional sixth-order
Chebyshev filter, as well as to be able to provide a larger
relative frequency separation of its RL zeros. The primary
goal is to satisfy the overall filter quality factor, then the
RL zero-frequency separations dvmin and, finally, the seed
function orders. A FORTRAN-77 program was written to
implement the optimal selection of seed function
combinations [6]. The output of this algorithm was verified
using MathematicaTM.

For this simple theoretical example, and from (4),
P (7) ¼ 15 and, thus, the number of possible seed function
combinations, d7, should be 13 (i.e. d7 ¼ P (7) 2 2).
Table 3 shows the calculated results for (4). These sets
need enumerating and sorting using the design restrictions.
The enumerated partitions, which can be calculated using
the algorithm of Section 3.1, are as follows: M2,2 ¼ {2, 5},
M2,3 ¼ {3, 4}, M3,1 ¼ {1, 1, 5}, M3,2 ¼ {1, 2, 4},
M3,3 ¼ {1, 3, 3}, M3,4 ¼ {2, 2, 3}, M4,1 ¼ {1, 1, 1, 4},
M4,2 ¼ {1, 1, 2, 3}, M4,3 ¼ {1, 2, 2, 2}, M5,1 ¼ {1, 1, 1, 1,
3}, M5,2 ¼ {1, 1, 1, 2, 2}, M6,1 ¼ {1, 1, 1, 1, 1, 2} and
M7,1 ¼ {1, 1, 1, 1, 1, 1, 1}. The CF parameters for every
Mi,j need to be evaluated and inserted in the corresponding
sets. The restriction set, for this example, would be
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 6, pp. 799–807
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completed as follows

R = [{1, 5, 1}, {6.1246, 3}, {0.2588, 2}] (29)

The search algorithm will return the solutions, M4,1, M4,3,
M5,1, M5,2, M6,1 and M7,1. All these seed function
combinations satisfy the given restrictions. The error
evaluation routine would need to be used to indicate the
optimal seed function combination for this example. As a
result, the optimum solution will be the set M4,1 (i.e. a
fourth-order seed function chained with a cubed first
order). Table 4 shows a comparison between sixth and
seventh-order CC filters with the resulting CF filter. This
seed function combination will provide an approximately
22% reduction in the minimum acceptable Q-factor Qmin,
as compared with the sixth-order CC, while it is almost
half that required for a seventh-order CC. As a result, a
much lower-Q fabrication process can be employed to
realise the filter. The resulting pass-band losses will now be
less for the CF filter, as compared with both CC filters [3].
The minimum frequency separation of the RL zeros dvmin

for this filter combination will be double, when compared
with the seventh-order CC, and almost 40% larger when
compared with the sixth-order CC.

The mathematical synthesis of a lossless coupled-line filter
[13] (which is considered to be one of the most susceptible to
manufacturing errors [14]) was performed. Assuming
random even and odd-mode impedance variations (to
represent poor etching tolerances) of +0.2% in all filter
sections, it can be shown that when Monte-Carlo analysis

Table 3 Calculated results for (4) (k ¼ 7)

m di M s1 (k 2 m) P (m)

0 {1, 7} 2 8 1

1 {1, 2, 3, 6} 4 12 1

2 {1, 5} 2 6 2

3 {1, 2, 4} 3 7 3

4 {1, 3} 2 4 5

5 {1, 2} 2 3 7

6 {1} 1 1 11

Table 4 Calculated results for (4) (k ¼ 7)

Function gmax
gmin

Sg Ro Qmin dvmin

sixth-order
CC

2.3576 7.7445 1.1192 6.1246 0.2588

seventh-
order CC

2.1349 9.6916 1 8.439 0.1931

M4,1 CF 3.429 7.6924 1 4.7826 0.3827
805
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is performed the worst-case pass-band RL responses for the
CC filter will depart from its designated value by
approximately 15 dB, while the deviation for the CF filter
is approximately 5 dB. This results in a 10 dB difference,
between the two filter responses, as can be seen in Fig. 2.
In addition, the CC function seems to have a higher
variation in the filter’s selectivity, as indicated in Fig. 2a,
while the CF filter proves to be more robust.

We have discovered a fundamental Monte-Carlo margin
that can be exploited. This represents an upper-bound on
the worst-case pass-band RL responses that cannot be
exceeded, no matter how many trials are performed in the
analysis. Therefore a Monte-Carlo RL margin is proposed
to compensate for the degradation in worst-case
performance. For this particular example, a margin of
5.5 dB was determined. As can be seen in Fig. 2b, such a
6
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margin is appropriate for the CF filter, but not for the CC
filters [4].

To demonstrate the reduced sensitivity to manufacturing
tolerances with the CF filter, a practical implementation
was previously reported in the open literature [4]. Here,
microstrip parallel-coupled line filters have a centre
frequency of 37 GHz and a ripple BW of 2 GHz. The
target minimum input/output RL was 213 dB, so a pre-
determined Monte-Carlo margin of 5 dB (this value was
obtained using the equations presented) was included to give
a design level of minimum input/output RL of 218 dB.
The Rogers RO4003 laminate was used, having a dielectric
constant of 3.38, substrate thickness of 200 mm and a
maximum dissipation factor of 0.035. The filters were
fabricated using a standard printed circuit board (PCB)
etching technique. The masks were printed onto a standard
Figure 2 Calculated frequency characteristics for the band-pass filters using Monte-Carlo analysis

a Conventional sixth-order Chebyshev
b M4,1 chained function
IET Microw. Antennas Propag., 2010, Vol. 4, Iss. 6, pp. 799–807
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overhead projector transparency, using a standard 600dpi laser
printer. This was then used in conjunction with standard PCB
photolithography and etching techniques [4].

8 Conclusions
An optimal CAD algorithm for implementing CF filters has
been introduced for the first time. The major feature of this
algorithm is the flexibility that it allows for the designer to
impose various restrictions on the selection of the candidate
seed function combinations, according to the design
requirements. CAD software for implementing CF filters
was developed for the European Space Research and
Technology Center (ESTEC), based on the methodology
described in this paper, and successfully used to
demonstrate the synthesis against measured performances
for a sixth-order filter at 37 GHz, manufactured under
extreme conditions [4].

Combinatorial analysis and, in particular, the partition
functions have been demonstrated for the first time for
filter optimisation routines. This algorithm may also have
many other CAD applications. For example, it could be
used in the design of microwave active filters, having
cascaded low-order sections. Here, parameters such as the
active device parasitics can restrict the candidature of seed
function selection. Since the complete formulation is
generated, one has to modify the algorithm structure
according to the design requirements. This can provide a
very useful tool for engineers involved in filter design, for
operation at any frequency and without any restrictions on
the implementation technology.

CF filters are the key to low-cost, high-quality, microwave
and millimetre-wave band-pass filters. The reduced
sensitivity to manufacturing tolerances and the ability to
generate different seed function combinations, for different
fabrication technologies, can be used to extend the state-
of-the-art in tuningless filter implementations towards
higher frequencies or smaller fractional BWs or, alternatively,
to lower the accuracy and manufacturing cost requirements
for a given set of filter specifications. Even though this paper
has formulated CC amplitude approximation polynomials,
the approach can be easily adapted to any non-Chebyshev
approximation.
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