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Abstract—This paper introduces a new concept in 3-D RF
microelectromechanical systems switches intended for power ap-
plications. The novel switch architecture employs electrothermal
hydraulic microactuators to provide mechanical actuation and 3-D
out-of-plane silicon cantilevers that have both spring action and
latching mechanisms. This facilitates an OFF-state gap separation
distance of 200 pzm between ohmic contacts, without the need for
any hold power. Having a simple assembly, many of the inherent
problems associated with the more traditional suspension-bridge
and cantilever-type-beam architectures can be overcome. A single-
pole single-throw switch has been investigated, and its measured
ON-state insertion and return losses are less than 0.3 dB up to
10 GHz and greater than 15 dB up to 12 GHz, respectively, while
the OFF-state isolation is better than 30 dB up to 12 GHz. The
switch works well in both hot- and cold-switching modes, with
4.6 W of RF power at 10 GHz and without any signs of degradation
to the ohmic contacts.

Index Terms—Electrothermal hydraulic microactuator, high

power, paraffin wax, RF microelectromechanical systems
(MEMS), silicon cantilever, switch.
I. INTRODUCTION
HE RF MICROELECTROMECHANICAL systems

(MEMS) switches offer many advantages over their
solid-state counterparts, in terms of low loss, high isolation,
low power consumption, and high linearity [1]. However, RF
MEMS switches have reliability issues that can be linked to
the RF power level. Generally, RF MEMS switches are based
on designs that employ electrostatic actuation, which have
various methods for realizing their electrodes. These switches
are classified as either capacitive-membrane or metal-to-metal
ohmic contact switches [2], [3]. The capacitive-membrane
switches have large contact areas, separated by a very thin
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TABLE 1
COMPARATIVE SUMMARY OF RF MEMS POWER SWITCH PERFORMANCE
Reference || RF Power | Frequency Switching
[#] (W) (GHz) mode
Peroulis 0.8 10 Hot & Cold
etal. [5]
Grenier 8 10 Cold
etal. [6]
McErlean 23 10 Cold
etal [9]
Palegol 1 10 Hot & Cold
etat. [12] 5 3 Hot & Cold
Kwon 14 2 Cold
etal. [16]
Our Work 4.6 10 Hot & Cold

dielectric layer. The metal-to-metal ohmic contact switches can
have relatively small contact areas. In terms of mechanical
structure, traditional RF MEMS switches can be divided into
those that have architectures based on either suspension bridge
or cantilever beams [2]. With the suspension-bridge structure,
there are two physical anchors at each end of a beam. In
contrast, the cantilever beam only has one anchor, and the other
end is free to move.

Traditional RF MEMS switches have inherent limitations
dictated by RF power handling (e.g., with a failure mechanism
due to self-actuation, stiction, electromigration, microscopic
bonding, etc.). These problems can be exacerbated by the
beam structure employed, which is usually very thin (typically
0.5-2 pm) and has very small gap separation distances between
the electrodes (typically 1-5 pm). Considering that the RF
power-handling capacity varies between architectural designs,
there have been a number of diverse approaches to improve
the RF power-handling capacity, for example, the addition of
an electrode to pull the beam upward [4]-[6] or to toggle the
cantilever beam downward [7]; an array of many switching
elements, in order to increase isolation and reduce current
density [8], [9]; an increase in the width and thickness of the
beam [8], [10]; an increase in the contact force [11]-[13]; and
the use of extraordinary contact materials, such as a diamond
film [14], [15], Pt, or Ir [16]. A comparative summary of RF
MEMS power switch performances is shown in Table 1.

Traditional in-plane beam architectures are not ideal for
RF MEMS power switch applications. As a result, nonbeam
architectures for high-power RF MEMS switches have been
investigated. Examples include a ridge waveguide that is inte-
grated with thermally plastic deformable actuators [17] and a
water-based absorptive switch [18].
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Fig. 1. Expansion characteristics of paraffin wax [19].

Using a previously established electrothermal hydraulic
microactuator technology [19]-[21], a very new concept in
RF MEMS switch development was briefly introduced [22].
Traditional designs rely on multiple layers of relatively thin
conducting, dielectric, and sacrificial materials that have to be
surface micromachined. This approach can be very problem-
atic, even for low-power applications, due to poor tolerances in
thickness and unwanted built-in stresses. This adds to the dif-
ficulty and complexity associated with fabrication processing.
By comparison, each part of our switch can be fabricated using
simple bulk micromachining and can be easily assembled by
gluing. Moreover, the whole fabrication time can be reduced if
each part is fabricated in parallel.

For the first time, this paper describes a fully working proto-
type switch, having totally different cantilever, ohmic contact,
and self-assembly designs, to give vastly superior measured
performances. Here, mechanical analysis, the introduction of
trench/tilted angle structures, and RF power measurement are
described. This new approach represents a paradigm shift in
the way RF MEMS switches can be implemented, with a
view of overcoming the RF power limitations associated with
traditional beam-based architectures that employ electrostatic
methods of actuation.

II. CONCEPT AND STRUCTURE
A. Characteristics of Paraffin Wax

Phase-change material (PCM) characteristics can be ex-
ploited to realize electrothermal hydraulic microactuators. As
a PCM, paraffin wax shows a volumetric expansion of ~15%
when it melts and shrinks back to the initial volume on cool-
ing, as shown in Fig. 1. This technology has previously been
investigated and employed within a number of non-RF MEMS
application demonstrators [19]-[21]. It can also be extended to
RF MEMS applications to replace the conventional electrostatic
actuation mechanism [22].

B. Switch Concept

The proposed single-pole single-throw switch consists of two
paraffin-wax microactuators and silicon cantilevers, as shown
in Fig. 2. Instead of simple beams, relatively thick silicon
cantilevers (having springs and latches) make an ohmic con-
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Fig. 2. Basic cross section and top views of the novel RF MEMS switch.
(a) OFF-state. (b) ON-state. (c) Top view (without cantilever-2).

tact with the coplanar waveguide (CPW) transmission line’s
signal track. Paraffin-wax microactuators control the silicon
cantilevers by means of a mechanical push-and-release mecha-
nism. This simple latching mechanism can maintain both OFF-
and ON-states, without continuous dc biasing of any of the
microactuators.

C. Microactuators

Within the RF MEMS switch, the associated microactuator
consists of paraffin-wax containers and thick silicon cantilevers.
With the former, the microactuator technology has already been
described in detail [19]-[21] for non-RF MEMS applications.
The structure of the container is shown in Fig. 3. Paraffin
wax fills the bulk-micromachined silicon containers, which
are sealed using an elastic diaphragm of polydimethylsiloxane
(PDMS). When the required dc bias voltage is applied to
the integrated microheater, the paraffin wax expands with the
associated increase in heat and is then deliberately shaped into
a hemisphere.

With the latter, silicon cantilevers are inspired from ele-
ments from a microgripper [20]. Two silicon cantilevers are
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Fig. 3. Electrothermal hydraulic microactuator. (a) Exploded view. (b) Cross-
sectional view.

Au deposited

Fig. 4. Designed silicon cantilever with springs and latches.

employed—one for the ohmic contacts and the other for the
latching mechanism. With the former, gold is selectively de-
posited onto the cantilever pins, in order to provide a metal-to-
metal ohmic contact with the CPW’s signal lines (S1 and S2
in Fig. 2). Fig. 4 shows the cantilever elements and latching
mechanisms integrated into one piece of silicon, to simplify
assembly. With the most common silicon wafer thickness of
~b525 pum, wide ohmic contacts can be created for RF power
applications when compared with conventional switches that
may have contact areas on the order of 10 x 10 zm?. Moreover,
these microactuators can introduce OFF-state gap separation
distances greater than 200 pm, in order to enhance the OFF-state
RF isolation characteristics.

D. Assembly and Ohmic Contacts

The paraffin-wax microactuators only offer an expansion
force that can lift up the cantilever beams. Therefore, it can
be difficult to achieve a constant ohmic contact pressure. As
a result, the beam was redesigned to have a tilted angle below
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Fig. 5. Beam structure having a tilted angle.
V4 =
1 S
2 3 4
Fig. 6. Illustration of the self-aligned trench structure showing each contact

pin having five ohmic contact surfaces.

the horizontal level, in order to provide a spring force between
the cantilever and the CPW lines after assembly, as shown
in Fig. 5.

In addition to the tilted beam, trenches in the bottom silicon
substrate were introduced for the first time, where the cantilever
pins make contact with the CPW’s signal lines. Each contact pin
has five contact surfaces, as shown in Fig. 6. The contact area
is 0.14 mm?, which represents an increase of 20% using this
trench structure, when compared when the first experimental
switch [22]. Considering the dependence of the contact resis-
tance on the size of the contact area, the mechanical force, and
the quality of the contact [1], [23], the trenches can reduce
the ohmic contact resistance by increasing the contact area
and, thus, minimize heat dissipated in the surrounding area.
Enhanced RF power handling can therefore be expected, which
lowers the temperature at the contact area [24]-[26] and reduces
the failure due to electromigration and microscopic bonding.
Moreover, the use of a trench effectively creates a self-aligned
structure.

III. SIMULATIONS

Extensive iterative optimizations between mechanical and
RF operations were carried out. A summary of each individual
procedure will be described in this section.

A. Mechanical Characteristics

The relatively complex mechanical mechanisms were in-
vestigated using commercial computer-aided design software.
Here, ANSYS (V9.0) was used for both the alignment of the
cantilever pins to the trenches and the latching mechanism.
Fig. 7 shows ANSYS simulation results.

Despite the effect of contact force on the contact resistance,
the contact force had to be limited so that the expansion of
paraffin wax pushing on the silicon cantilever can achieve the
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Fig. 7. Silicon cantilever design using ANSYS. (a) Simulations of align-
ment to the trenches. (b) Simulations of latching mechanism (unit of stress:
megapascals).

200-pm target separation distance. If the contact force is too
high (due to a large tilt angle, stiff cantilever, short beam length,
etc.), the silicon cantilever cannot be lifted as high as intended.
Based on previous research on pressure from the actuator [20],
the tilt angle was designed to be 0.6°, in order to provide ~5 mN
of contact force, which is 20 times greater than that of typical
conventional beam structures [1]. The yield stress also has to
be considered. The maximum stress on the silicon cantilever is
approximately 0.21 GPa, which is less than the yield stress of
silicon (7 GPa) [27].

B. RF Characteristics

The RF characteristics of the switch with CPW lines, includ-
ing trench features and the silicon cantilever designed using
ANSYS, need to be verified. If the mechanically optimized
cantilever structure does not give suitable RF performance, the
design has to be modified. Considering the size and location
of the paraffin-wax containers, trenches, and RF probes (for
measurements), CPW lines on the bottom substrate were de-

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 4, APRIL 2009

Fig. 8.

Top view illustrating the CPW lines on the bottom substrate.
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Fig. 9. Simulated RF performance using HFSSTM. (a) Three-dimensional
model. (b) Predicted insertion and return losses for ON-state and isolation for
OFF-state.

signed as shown in Fig. 8. The final simulation results up to Ku-
band from CPW lines and 3-D models, using a high-frequency
structural simulator (HFSS™!), are shown in Fig. 9.

It can be seen that the predicted worst case ON-state insertion
and return loss levels up to 14 GHz are 1 and 12 dB, respec-
tively, and the minimum OFF-state isolation is 33 dB. It should
be noted that the insertion loss values include the loss from
feed lines, considering that unlike the wave port configuration,
direct deembedding is not applicable with the lumped port
configuration used within these simulations.

The lever pins and a section of the associated silicon can-
tilever are coated with gold. This acts as an open-circuit
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Fig. 10. Fabrication process flow for the main substrate. (a) Mask for KOH
etching: thermal oxidation and sputtering of Cr. (b) KOH etching: photolitho-
graphy; Cr etching, SiO2 etching and Si etching (KOH etching). (c) SiO2
layer removal: Cr mask removal and SiOg removal (both sides). (d) Seed layer
deposition: sputtering of Cr/Au seed layer. (e) Au patterning: photolithography,
Au electroplating and seed layer etching. (f) Separation of each substrate:
photolithography and deep reactive-ion etching (DRIE).

resonant stub, with a predicted resonance at around 17 GHz
unless corrective action is taken to avoid in-band resonances.

IV. FABRICATION

The whole fabrication process consists of silicon bulk mi-
cromachining and assembly. Bulk micromachining is divided
into four kinds of processing for the different components (i.e.,
microheaters, paraffin-wax containers, silicon cantilevers, and
CPW lines). In addition to microfabrication processing used for
the first experimental switch design [22], a potassium hydroxide
(KOH) etching process was required to form trench structures
within the silicon substrate. Moreover, considering the current
density for RF power applications, relatively thick, at ~3 pm,
layers of gold were deposited to form the CPW lines and
ohmic contact pins. Four process flows (for the main substrates,
microheaters, paraffin-wax containers, and silicon cantilevers)
are shown in Figs. 10-13, respectively.

The paraffin-wax container is attached to the glass micro-
heater substrate using PDMS, and microactuators are them-
selves completed by covering the paraffin-wax container with
PDMS. The switch is assembled by inserting two microactu-
ators into the main silicon substrate and the cantilever sub-
strate into the predesignated slots within the main substrate,
as shown in Fig. 14. Compared with the first experimental
switch, where the microactuators were located on top of the
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Fig. 11. Fabrication process flow for the microheaters. (a) Metal layer depo-
sition: sputtering of Cr and Au layers. (b) Au patterning: photolithography and
Cr and Au etching. (¢) Dicing.
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Fig. 12. Fabrication process flow for the paraffin-wax containers. (a) Separa-
tion of container pieces: photolithography and DRIE. (b) Buildup of containers:
applying overglaze and baking at 550 °C.

main substrate [22], this solution not only exploits the benefits
of self-alignment but also reduces the height of the device.

V. MEASUREMENT RESULTS

The dc contact resistance was measured to be between 1.5
and 2 €. The actual contact area and force can vary with
the tolerance of fabrication and assembly. This relatively high
contact resistance is believed to result from the rough contact
surfaces, due to our thick in-house gold electroplating process.
RF measurements of the assembled switches were conducted up
to Ku-band. Fig. 15 shows a switch under test using a Cascade
Microtech probe station, with the silicon cantilever actuated
into the latched OFF-state and released ON-state.

A. RF Characteristics—Small-Signal Measurements

The equivalent circuit models for the switch are shown in
Fig. 16. In the ON-state, the series inductance L, represents the
gold-plated section of silicon between the cantilever pins, and
the shunt capacitance Cyj represents the capacitance between
the ground and the contact trench pad at the end of the CPW sig-
nal line. The contact resistance R, is placed between the contact
trench pad and the cantilever pin. Capacitive coupling between

Authorized licensed use limited to: Imperial College London. Downloaded on October 20, 2009 at 16:25 from IEEE Xplore. Restrictions apply.



1036

(@

(b)

(©)

=

(d
(@
Si Cr/Au Au PR
(Seed layer) (electroplated)

Fig. 13. Fabrication process flow for the silicon cantilevers. (a) Shaping
of silicon cantilever structure: photolithography and DRIE. (b) Seed layer
deposition: sputtering of Cr/Au seed layer. (c) Au electroplating. (d) Formation
of cantilever pins: masking cantilever pins with photoresist (PR) and etching
(Au — Cr). (e) PR removal.

Fig. 14. Assembled switch with main substrate dimensions of 15 x 7 mm?.

two contact trench pads is provided by C.. In addition, the shunt
resistance R, represents the silicon cantilever beam having a
high resistivity connected to the main substrate from the center
of the pins. In the OFF-state, the contact resistance is replaced
with the series capacitance C's., which represents the capaci-
tance between the cantilever pin and the contact trench pad.

Fig. 17 shows the measured ON-state frequency responses
of the switch in comparison with electromagnetic simulation
results from HFSS™ and equivalent circuit model simulation
results (with Ls. =0.33 nH, C.=0.01 pF, R.=2 Q,
Csp =0.22 pF, and Ry = 1.7 k). There is very good
agreement between the electromagnetic and the equivalent
circuit model simulation results, which also both follow the
measured frequency responses. It is worth mentioning that,
as a result of our findings from the previous HFSS™ simu-
lations, the length of the gold-coated section of the cantilever
was limited, thus greatly increasing the lowest resonant
frequency. This is why the unwanted resonance in not seen in
measurements below 18 GHz.
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(b)

Fig. 15. Switch testing. (a) On-wafer RF measurements. (b) DC actuation test.
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Fig. 16. Equivalent circuit model for the switch. (a) ON-state. (b) OFF-state.

It can be seen that the measured ON-state insertion loss
(I.L.) and return loss (R.L.) without deembedding of feed lines
are less than 1 dB and greater than 11 dB, respectively, up to
14 GHz. Taking into account the 0.26-dB feed lines’ losses at
10 GHz, as shown in Fig. 18, the insertion loss below 10 GHz
is less than 0.3 dB.
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Fig. 17. Measured ON-state frequency responses in comparison with
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Fig. 18. Measured switch feed line losses.
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Fig. 19. Measured OFF-state frequency responses in comparison with
HFSS™! and equivalent circuit model simulated results.

Fig. 19 shows the measured OFF-state frequency responses
of the switch in comparison with simulation results from
HFSS™ and equivalent circuit model simulation results (with
R, replaced by Cs. = 5 fF). The measured OFF-state isolation
is greater than 27 dB, up to 16 GHz. Once again, there is good
agreement between the measured and the modeled frequency
responses.

B. RF Characteristics—Power Measurements

To examine the high-RF power-handling capability of the
switch, power measurements at 10 GHz were carried out at the
Laboratoire d’ Architecture et d’Analyse des Systemes, Centre
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Fig. 20. Measurement setup for high-power testing at 10 GHz.
TABLE II
APPLIED BIAS
States Voltage (V) Current (mA)
Latching ON — OFF 11.5 46
Releasing OFF — ON 10.0 48
TABLE 1II
ACTUATION TIMES
Sample Latching ON — OFF Releasing OFF — ON
(seconds) (seconds)

1 13 5

2 12 5

3 12 6

4 12 6

National de la Recherche Scientifique (Toulouse, France). The
measurement setup is shown in Fig. 20. Although the gain of the
amplifier was 39 dB, the input RF power to the amplifier was
limited to 0 dBm, to avoid saturation. Considering losses from
cables and components, the maximum RF power that could
reach the device under test (DUT) was only 4.6 W.

The switch was tested in the hot-switching mode for
ten cycles, with varying times in the ON-state. Under such
conditions, it was found that the switch can operate with
4.6 W of RF power at 10 GHz, without any observable degra-
dation in performance. From Table I, it can be seen that our
switch has the highest combined operating frequency and RF
power level for both hot- and cold-switching modes. Moreover,
we are confident that this unique switch can operate at even
higher operating frequencies and RF power levels; however, the
facilities to prove this were not available to us at this time.

C. Mechanical Characteristics

The applied bias and actuation times are summarized in
Tables II and III, respectively. The microactuator itself can
change its phase within 2-3 s; however, it takes longer to reach
a power level sufficient to complete latching and subsequent
releasing of the beam.

The remainder of the actuation time, approximately 9-11 s,
is spent undertaking the actual latching. Assuming the elasticity
and deformation of the silicon beam are properly calculated
within ANSYS simulations, another important factor to be taken
into consideration is the friction of the bulk-micromachined
silicon surfaces. Considering that two latching parts slide, as
shown in Fig. 21, the loading force required from the microac-
tuators will be altered based on the amount of friction.
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Fig. 21. Loading force simulation results for the latching mechanism.

It can be seen that 500 mW of dc power is consumed by
the suboptimal microactuator design. This issue was briefly
discussed in [19], where only 300 mW of dc power was required
for a similar type of microactuator design. However, with our
switch implementation, the dc power is only consumed during
the actuation phase, since latching is employed to avoid the
need for any hold power in either the ON- or OFF-states. Having
said this, there are a number of ways to reduce the dc-power
consumption during the switching phase. For example, one
could use a paraffin wax that has a lower phase-transition tem-
perature. Moreover, the design of the microheater/wax interface
can be optimized. In addition, the latching mechanism can be
designed to cater for a reduced volume of paraffin wax.

VI. CONCLUSION

A novel RF MEMS switch, intended for RF power applica-
tions, has been developed. An iterative design process for the
switch has been established between ANSYS (for the mechan-
ical structural design) and HFSS™ (for the RF design). The
switch has a completely unique physical structure, when com-
pared with conventional RF MEMS switches. For example, this
3-D switch employs electrothermal hydraulic microactuators;
silicon cantilever mechanisms with spring action and latch-
ing mechanism; and bulk-micromachined trenches having five
ohmic contact points. When these features are combined into an
RF MEMS switch, not only does the switch have an excellent
RF performance under small-signal conditions but it is also
expected to have advantages with RF power handling beyond
4.6 W at 10 GHz. In addition, there are additional benefits, such
as self-alignment during assembly, modular structure, simple
dc biasing, and robust operation. However, its inherent large
size/mass, low actuation speed, and complex construction make
this switch only suitable for niche applications, where good
RF power handling is important (e.g., high-power amplifier
redundancy).

This design could potentially handle high power, provided
that the correct contact metal is used and a proper study is
performed to characterize the power handling. As with all new
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RF MEMS technologies, exhaustive reliability testing under
small-signal and high-power conditions is required; however,
this is beyond the scope of this paper.
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