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ABSTRACT High Q-factor open-box mode resonances have been found in the microwave measurements of
several 3-D printed dielectric-filled metal-pipe rectangular waveguides (MPRWGs). These parasitic Fabry-
Pérot eigenmodes are confined by the conductive walls in the transverse plane of the MPRWG and partially
confined by the air-dielectric and dielectric-air boundaries in the longitudinal direction. The excitation of
open-box modes was previously speculated to be due to the inhomogeneous and/or anisotropic nature of
the 3-D printed dielectric-fillers. This has now been confirmed, by representing the inhomogeneous and
anisotropic nature of the woodpile-like dielectric structure (physical realm), with an anisotropic dielectric
constant tensor (simulation realm). Analytical and numerical eigenmode solvers, previously used by the
authors with MPRWGs, are applied here to parallel-plate waveguides (PPWGs) and circular waveguides
(CWGs); identifying all the individual parasitic open-box modes. With the former, its TM11 mode exhibits
an ultra-high Q-factor of approximately 2,300 at X-band, which is considerably higher than those found with
other modes and in other waveguide structures. Finally, a numerical full-wave frequency-domain simulator
that employs the dielectric constant tensor is introduced in this paper. This newmodeling technique indepen-
dently confirms that open-box modes are excited in 3-D printed dielectric-filled MPRWG, PPWG and CWG
structures. This paper provides the foundations for accurately modeling parasitic resonances associated with
inhomogeneities and anisotropy in 3-D printed microwave components; not just the metal-walled waveguide
structures considered here, but the methodology could also be extended to generic 3-D printed dielectric
waveguides and substrate-based transmission lines.

INDEX TERMS Additive manufacturing, 3-D printing, microwave, dielectric, quality factor, waveguide,
resonance, Fabry-Pérot, eigenmode, open-box mode.

I. INTRODUCTION
Over the past decade, 3-D printing of microwave com-
ponents has gained increasing popularity, due to the
availability of affordable 3-D printers that provide a
cost-effective solution for prototyping microwave compo-
nents [1]. This paper will only focus on the X-band
(8 to 12 GHz) and Ku-band (12 to 18 GHz) parts of the
microwave spectrum. 3-D printed air-filled metal-pipe rect-
angular waveguides (MPRWGs) were first demonstrated by
D’Auria et al. in 2015 [2], operating at X-band and W-
band (75 to 110 GHz). The following year, a 3-D printed
mechanically-tunable X-band MPRWG phase shifter was
reported by Gillatt et al., employing a moveable dielectric
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insert [3]. In 2019, this 3-D printed MPRWG technology
was then used to realize a complete steerable Ku-band
phased-array antenna subsystem, employing four indepen-
dent dielectric insert phase shifters [4]. To support these
applications, spectroscopic techniques have been devel-
oped to accurately characterize the low-loss acrylonitrile
butadiene-styrene (ABS) dielectric used in both phase shifters
at X-band [5] and more recently at Ku-band [6].

In principle, resonant box modes can exist in any arbitrary
3-D structure that is surrounded by conductive walls. Com-
mon examples include rectangular, cylindrical and spheri-
cal resonators. Such structures can either be exploited (e.g.,
engineered to realize filters) or can produce unwanted par-
asitic effects (e.g., spurious closed-box modes in packag-
ing). In contrast, resonant ‘open-box’ modes can exist in
any arbitrary dielectric-filled 3-D structure that is partially
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surrounded by conductive walls. With a MPRWG, the open-
box modes are confined by the conductive walls in the trans-
verse plane and partially confined by the air-dielectric and
dielectric-air boundaries in the longitudinal direction.

When measuring a dielectric-filled MPRWG between a
pair of traditional air-filled MPRWGs, associated with the
vector network analyzer’s (VNA’s) test-set heads, the driven
Fabry-Pérot resonance will be excited. For the MPRWG,
the dominant transverse electric (TE) mode of propaga-
tion is the TE10 mode. In addition to the expected spec-
tral dips in |S11| and peaks in |S21|, associated with
the driven Fabry-Pérot resonance, the measured scattering
(S-)parameters show anomalous notches in |S11| and |S21| at
fixed frequencies. The authors previously referred to these
resonances as ‘open-box’ modes [5], [6]; they may also be
referred to as ‘parasitic Fabry-Pérot eigenmodes’. Excitation
of parasitic open-box modes in 3-D printed woodpile-like
cuboids were previously attributed to their inhomogeneous
and/or anisotropic nature [5], [6].

High Q-factor open-box mode resonances have been
found in microwave measurements of several 3-D printed
dielectric-filled MPRWGs [5]–[9]. With conventional a pri-
ori frequency-domain modeling, these parasitic Fabry-Pérot
eigenmodes cannot be predicted using analytical technique
and may be difficult to predict using ‘to-scale’ numerical
full-wave electromagnetic simulations; although an analyti-
cal or numerical eigenmode solver can be used.

In 2015, using an ultraviolet (UV)-cured ink-jet type
3-D printer, the U.S. Airforce Institute of Technology inves-
tigated both solid (homogenous) and periodic (inhomoge-
neous) polytetrafluoroethylene (PTFE) cuboids; the latter
introduces periodic airgaps (rectangular inclusions) to create
a biaxial anisotropic dielectric constant [7]. With this biaxial
anisotropic material, X-band measurements of a dielectric-
filled WR-90 MPRWG clearly show an open-box mode reso-
nance at 10.4 GHz (not mentioned in their report). With their
quoted value of effective dielectric constant of 2.1, using our
analytical eigenmode solver, we found this to be the TE201
open-box mode predicted at 10.45 GHz. Interestingly, using
rectangular-to-square waveguide transitions, cubic sample
measurements did not appear to show any open-box mode
resonances [7].

Isakov et al. [8] demonstrated 3-D printed metamaterials
by deliberately introducing inhomogeneity and anisotropy;
either ABS or polypropylene (PP) was used for the
low dielectric constant regions, while a mixed inorganic
ceramic powder (BaTiO3) and polymer (ABS) compos-
ite was used for high dielectric constant regions. Both
striped and checkered cuboids (2 mm thick samples) were
3-D printed and inserted into Ku-band MPRWGs. With
eight interleaving horizonal strips (having alternating dielec-
tric constant values of 2.6 and 7.0), using the COMSOL
Multiphysics R© frequency-domain simulator, resonances at
15.19 GHz and 19.54 GHz are observed. The Oxford group
attribute these resonances with the ‘‘first TE11 mode and sec-
ond TE12 mode of theMie-resonances (magnetic and electric,

respectively)’’. Ku-band measurements revealed a very weak
resonance at 12.7 GHz and a strong resonance at 15.9 GHz.
However, by observing their simulated field plots [8] and
using both our analytical and numerical eigenmode solvers,
we found that these resonances are actually TE111 and trans-
verse magnetic (TM) TM111 open-box modes. Moreover, the
weaker resonance at 12.7 GHz, only observed in measure-
ments, can be attributed to the TE201 open-box mode. The
subtle difference in mode interpretation is that Mie reso-
nances are associated with unbound objects, while open-box
modes are partially constrained by conducting sidewalls.

Yang et al. [9] reported the characterization of 3-D printed
polylactic acid (PLA) cuboid samples at X-band. Dielectric-
filledMPRWGmeasurements, having different filler lengths,
indicate the presence of parasitic open-box mode resonances
(not mentioned in their paper).

Parasitic Fabry-Pérot eigenmodes were previously identi-
fied and characterized in MPRWGs, having 3-D printed ABS
dielectric fillers; at X-band by Sun et al. [5] and Ku-band by
Márquez-Segura et al. [6]. In both cases, the ABS dielectric
fillers were 3-D printed using fused deposition modeling
(FDM). Interestingly, open-box modes were not found with
conductive PLA cuboids, as they are heavily damped by the
presence of carbon black powder [6].

These open-box modes were investigated using both ana-
lytical and numerical eigenmode solvers, but our previous
analyses were restricted to justMPRWGs.Moreover, we used
an irregular coarse tetrahedral meshing scheme within COM-
SOL Multiphysics R© frequency-domain simulator to excite
the open-box modes; representing an artificial form of inho-
mogeneity and/or anisotropy (to demonstrate proof of con-
cept). However, this coarse meshing scheme (simulation
realm) is not a reliable way of accurately modeling an actual
waveguide structure (physical realm).

In order to investigate the propagating and non-propagating
modes associated with transmission lines and guided-wave
structures, various analytical and numerical methods can
be used. With the former, the variational method is very
accurate above and below the cut-off frequency; while the
more simplified textbook power-loss approximations can also
be used for frequency-domain simulations above the cut-off
frequency to good effect [5]. Moreover, analytical equations
can be derived to give complex eigenfrequencies. With the
latter, finite-element methods can be employed with both
numerical full-wave frequency-domain simulators and eigen-
mode solvers. With numerical frequency-domain simulators,
non-propagating modes can only be inferred from its spectral
response; while eigenmode solvers give direct solutions as
complex eigenfrequencies, even if the dielectric is repre-
sented as being homogenous and isotropic [5]. TheCOMSOL
Multiphysics R© RF Module has both a finite-element based
numerical full-wave frequency-domain simulator and eigen-
mode solver [10]; the former provides a complex steady-state
response for each swept frequency point, while the latter gives
the complex eigenfrequencies associated with all possible
eigenmodes for the structure.
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In this paper, we introduce a reliable method for accu-
rately predicting the excitation of open-box modes in
MPRWGs by introducing controlled inhomogeneity and
anisotropy in the dielectric filler, using the COMSOL
Multiphysics R© frequency-domain simulator. In addition, the
excitation of open-box modes in dielectric-filled parallel-
plate waveguides (PPWGs) and circular waveguides (CWGs)
are investigated. Finally, we demonstrate the accuracy of our
predictions using both analytical and numerical eigenmode
solvers.

Our previously derived analytical expressions for
MPRWGs (Appendix B in [5]) have been adapted to also
include PPWGs and CWGs. These are then used to verify
the numerical results from COMSOL Multiphysics R©. The
generic analytical derivations, given in the Appendix, provide
continuity between the different waveguide structures and
completeness by including both TE and TM modes. More-
over, perfect electric conductor (PEC) walls are assumed
throughout, to eliminate uncertainty in the extracted mode
quality (Q-)factor, associated with the simulated bound-
ary conditions used to approximate real metal walls. Also,
throughout this paper, our analytical methods adopt the sim-
plified textbook power-loss approximations.

II. PROPAGATION CONSTANT IN GUIDED MEDIA
In any medium (unbound or guided), the generic complex
propagation constant is given by [5],

γ = α + jβ ≡ jk (1)

where, α is the attenuation constant, β is the phase constant
and k is the complex angular wavenumber.

With a waveguide, a cut-off propagation constant can be
defined as γc = jkc, where kc ≡ βc is the cut-off angular
wavenumber (real value); βc = ωc/vp is the phase con-
stant associated with angular cut-off frequency ωc = 2π fc
and phase velocity vp = c/Re{ñ} for a dielectric-filled
waveguide, fc = kcc/2πRe{ñ} is the cut-off frequency;
c = 1/

√
µ0ε0 is the speed of light in free space, where µ0

and ε0 are the permeability and permittivity of free space,
respectively; and ñ is the complex refractive index for an
unbounded dielectric medium.

For a waveguide having PEC walls, operating in the TEmn
or TMmn mode, with propagation along the longitudinal
z-direction, the general textbook expression for guided-wave
propagation constant γg is,

γ 2
g = γ

2
ud − γ

2
cmn ≡ γ

2
mn (2)

All variables have their usual meaning, where the sub-
scripts m and n are the mode indices denoting the number
of half-wavelength variations of the fields in the transverse
plane; γcmn is the cut-off propagation constant in the waveg-
uide; γud is the propagation constant in an unbound dielectric
medium with γud = jkud = jω

√
µ̃eff ε̃eff = ω

√
µ̃reff ε̃reff /c,

where ω = 2π f is the angular frequency, f is the frequency;
µ̃reff = µ

′
reff − jµ

′′
reff (the dielectric is assumed non-magnetic

FIGURE 1. Illustration of an ideal dielectric-filled metal-pipe rectangular
waveguide having internal dimensions a and b. The length of the
dielectric cuboid and air-filled sections are l and lair , respectively. In any
section, As and Bs are the incident and reflected waves, respectively. This
figure is redrawn from Sun et al. [5].

in this paper) and ε̃reff = ε′reff − jε′′reff are the effective
complex relative permeability and permittivity, respectively,
for the unbound dielectric; loss tangent is defined as tanδ =
Im
{
ñ2
}
/Re

{
ñ2
}
, where ñ =

√
µ̃reff ε̃reff ; ε′reff and tanδe =

ε′′reff /ε
′
reff

∣∣∣
µ′′reff=0

are the dielectric constant and loss tangent

of the unbound dielectric, respectively, since tanδ = tanδe
with µ′′reff = 0.

III. METAL-PIPE RECTANGULAR WAVEGUIDES
A. BACKGROUND
With both the TEmn and TMmn modes for a MPRWG,
the textbook cut-off propagation constant is,

γcmn = jkcmn = j

√(mπ
a

)2
+

(nπ
b

)2
(3)

and,

kcmn= βcmn = ωcmn/vp (4)

were, m and n correspond to the mode numbers in the hor-
izontal x- and vertical y-directions in the transverse plane,

respectively; kcmn =
√
(mπ/a)2 + (nπ/b)2 is the cut-off

angular wavenumber for either an air- or dielectric-filled
waveguide; ωcmn = 2π fcmn and fcmn = kcmnvp/2π are the
cut-off angular frequency and cut-off frequency, respectively.

Consider the MPRWG structure illustrated in Fig. 1,
where a TEmn or TMmn mode is incident on the dielectric-
filled section. For a WR-90/WR-62 waveguide operating at
X-/Ku-band, in the dominant TE10 mode, the ideal internal
cross-sectional dimensions are a = 22.860/15.799 mm and
b = 10.160/7.899 mm; while the length of the dielectric-
filled section is l = 9.626/6.676 mm [5]/[6].

An FDM 3-D printed sample is generally composed of
dielectric layers, deposited layer-by-layer; even with a 100%
infill printer setting, unintentional airgaps can effectively cre-
ate a woodpile structure [5], [6]. Figure 2 illustrates layer-by-
layer FDM 3-D printing of a dielectric cuboid, showing alter-
nate layers having a 90◦ angular offset in the printed strips and
adjacent air gaps. As a result, the FDM 3-D printed MPRWG
cuboid dielectric filler should be considered inhomogeneous
and anisotropic in nature.
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FIGURE 2. Layer-by-layer illustration of an FDM 3-D printed cuboid
showing alternating 90◦ offsets for the strips and air gaps (black lines in
the x-y plane of the build surface) creating a woodpile-like structure.

B. EXCITATION OF OPEN-BOX MODE RESONANCES WITH
FREQUENCY-DOMAIN SIMULATOR
We previously speculated (without demonstrable proof) that
the excitation of open-box modes is due to the inhomo-
geneous and/or anisotropic nature of our dielectric filler
within MPRWGs [5], [6]. To-scale numerical electromag-
netic modeling of our 3-D woodpile-like structure was not
possible, given the limited computational resources available,
as extremely fine meshing is required for the very small
spatial features [5]. Up-scaling the spatial features or intro-
ducing minor defects to the cuboid geometry could not excite
parasitic open-box modes associated with our woodpile-
like structure. However, we were able to observe open-box
mode resonances when an overly coarse meshing schemewas
appliedwith purely homogenous and isotropic dielectric sam-
ples; using the COMSOL Multiphysics R© frequency-domain
simulator. With a finer meshing scheme, the open-box modes
could not be observed.

A coarse meshing scheme can only give a qualitative
prediction for the spectral locations of open-box modes.
Moreover, this approach does not appear to work with other
types of waveguides (e.g., parallel-plate and circular). For
these reasons, an improved modeling scheme for predicting
the excitation of open-box modes in dielectric-filled waveg-
uides is needed.

The following method exploits the real part of the complex
effective relative permittivity (dielectric constant) tensor[
ε′reff

]
within the COMSOL Multiphysics R© frequency-

domain simulator. This tensor represents an anisotropy for
the dielectric-filler within any waveguide structure; allowing
accurate predictions to be made for the parasitic open-box
modes found with conventional microwave VNA measure-
ments.

The generalized dielectric constant tensor can be expressed
in (5), as shown at the bottom of the next page, where,
ε′reffx , ε

′
reffy, ε

′
reffz are bulk dielectric constant values in

the respective x, y, z directions, with ε′reffx , ε
′
reffy, ε

′
reffz =

ε′reff given an isotropic dielectric; cuv (u, v ∈ {x, y, z}) are
scalar coefficients that represent the level of coupling
between different field components due to anisotropy, with
cuv = 0 given an isotropic dielectric; and fuv (x, y, z) are
scalar functions that represent spatial inhomogeneity, with
fuv = 0 (or any constant value) given a homogenous
dielectric.

With FDM 3-D printed cuboids having a 100% infill
printer setting, we previously demonstrated anisotropy for
conducive PLA cuboids [6]. It was shown that the extracted
bulk dielectric properties are different when TE10 mode prop-
agation within the dielectric-filled MPRWG is along build
layers and against build layers [6]; for example, with the
latter, ε′reffx , ε

′
reffy 6= ε′reffz. However, for simplicity, when

comparing numerical simulations with analytical modeling,
ε′reffx , ε

′
reffy, ε

′
reffz = ε′reff . Moreover, since the dielectric-

filled waveguide is both passive and reciprocal, to preserve
its symmetrical S-parameter matrix, a symmetric dielectric
constant tensor must be employed (with uv = vu). Note
that a truly isotropic dielectric must satisfy all the following
conditions: (i) ε′reffx , ε

′
reffy, ε

′
reffz = ε

′
reff ; (ii) cuv = 0; and (iii)

fuv = 0 (or any constant value).
To ensure an effective bulk value for ε′reff , fuv should be

chosen to have a zero mean spatial value over the x, y, z
directions of the dielectric. For simplicity, fuv is chosen to
have the following linear spatial variation,

fuv=±1%
ε′reffx

(x − a/2)
a

±1%
ε′reffy

(y−b/2)
b

±1%
ε′reffz

(z− l/2)
l

(6)

where, 1%
ε′reffx

, 1%
ε′reffy

and 1%
ε′reffz

represent the maximum

normalized percentage variation in ε′reff along x, y and z
directions, respectively. For example, a 5% variation (corre-
sponding to a±2.5% change) in dielectric constant along the
x-direction has,

1%
ε′reffx
=

5
100
= 0.05 (7)

For simplicity, and throughout this paper, 1%
ε′reffx

=

1%
ε′reffy
= 1%

ε′reffz
= 1%

ε′reff
can be chosen as a single parameter

for the variation in ε′reff along all axial directions. Moreover,
with a symmetrical network, cuv = cvu and fuv = fvu.
Within COMSOL Multiphysics R©, using (5), the signs for

the terms in (6) are arbitrarily chosen for our simulated
MPRWG, as follows,

fxx = fxy= fyx=1%
ε′reff

(
−
(x−a/2)

a
+
(y−b/2)

b
+
(z−l/2)

l

)
(8)

fyy = fyz= fzy=1%
ε′reff

(
(x−a/2)

a
−
(y−b/2)

b
+
(z−l/2)

l

)
(9)

fzz = fzx= fxz=1%
ε′reff

(
(x−a/2)

a
+
(y−b/2)

b
−
(z−l/2)

l

)
(10)

with all the scalar coefficients cuv = 1 and a 2% variation of
the dielectric constant in all axial directions. The choice of
fuv assumes the origin (x, y, z = 0) is located at one of the
corners of the dielectric filler.
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C. SIMULATED SPECTRAL RESPONSES
Waveguides usually operate in a single mode. How-
ever, with mode conversion, normal ports in electro-
magnetic simulation software treat hybrid modes as sin-
gle modes. The driven excitation mode (TE10 in this
case) must be chosen at the input port within the
COMSOL Multiphysics R© frequency-domain simulator. The
S-parameters are calculated at each port from the driven exci-
tation mode and a specified mode (which may be different
to the driven mode, but not in this case); using their trans-
verse field profiles (parallel to the port surfaces). Therefore,
before simulations begin, the specified mode being analysed
must be defined at each port. By default, within COMSOL
Multiphysics R©, the simulation space is terminated by a port
boundary condition, which absorbs only the specified mode
at that port; reflecting all other modes.

Propagating (i.e., driven and spurious) and non-
propagating spurious (i.e., not driven or specified) modes
can be excited within a waveguide having an embed-
ded dielectric-filled section, due to inhomogeneity and/or
anisotropy; these unmatched modes will be reflected from
the ports – back into the simulation space. Indeed, using
our chosen dielectric constant tensor, with (8)-(10), it was
found that the ports reflected all non-TE10 modes. As a result,
the complete structure (which includes the two air-filled
waveguide sections) acts as a closed-box resonator containing
all spurious (including both closed- and open-box) modes.
The open-box modes are excited within the central dielectric-
filled waveguide section with decaying evanescent fields in
the air-filled sections.

For multimode conditions, COMSOL Multiphysics R© has
the option of defining theoretical ‘slit’ ports, which mathe-
matically allow all propagating modes to pass through with-
out reflections or absorption. Therefore, a perfectly matched
layer (PML) is also needed behind the slit port, to avoid any
subsequent reflections, as illustrated in Fig. 3. These slit ports
have no interaction with the waveguide fields, but can be used
to excite or record fields (e.g., to calculate S-parameters) like
normal ports.

All natural resonances are characterized by their complex
eigenfrequency [11],

f̃0 = f ′0 + jf
′′

0 (11)

where, f ′0 is the damped (undriven) resonance frequency
and 2π f ′′0 is the Napier frequency (or field (amplitude)
decay rate or loss rate). Conventional VNA measurements of
MPRWGs, having FDM 3-D printed dielectric filler cuboids,
can reveal unexpected spectral notches in the S-parameters.
With the VNA’s steady-state frequency-domain responses,

FIGURE 3. Illustration of the simulated metal-pipe rectangular waveguide
showing the dielectric-filled, air-filled and perfectly matched layer (PML)
sections. Two slit ports (shown as blue dashed lines) are defined at the
ends of the air-filled sections with excitation at Port 1.

spectral notches represent the undamped (driven) resonance
frequency f0 =

∣∣∣f̃0∣∣∣. For an ideal resonator without losses,

f ′′0 = 0 and f0 = f̃ 0 = f ′0 . Both the respective damped and
undamped unloaded Q-factors for a resonance can be given
as [11],

Qu(f ′0) =
f ′0
2f ′′0

(12)

and

Qu (f0) =
f0
2f ′′0
=

√
0.25+ Q2

u(f
′

0) (13)

With reference to Fig. 1, the dominant TE10 mode cali-
brated measurement reference planes are physically located
at the air-dielectric (z = 0) and dielectric-air (z = l) bound-
aries within the MPRWG. However, the simulation reference
planes are located at the slit ports. Therefore, the simulated S-
parameters for the TE10 modemust be de-embedded (shifting
the measurement reference planes to the dielectric filler),
to mathematically remove the air-filled sections. This can be
achieved by simply multiplying S11 and S21 with e+2γmnlair ;
the brass-walled air-filled waveguide sections can be treated
as lossless in practice. The lengths of the air-filled and PML
sections are lair = lPML = 2l = 19.252 mm, used
for the numerical frequency-domain simulations at X-band;
the dielectric filler has ε′reff 2© = 2.3284 and tanδe 2© =

19.1480 × 10−4, corresponding to X-band values for ABS
Sample #1 from Table 1 in [5].

Previously [5], the analytical S-parameter modeling and
all numerical simulations used brass conductors (to model
the physical realm), while PEC was used for the analyti-
cal eigenmode solver. Here, PEC is used in all simulations,

[
ε′reff

]
=

 ε′reffx (1+ fxx (x, y, z)) cxyfxy (x, y, z) cxzfxz (x, y, z)
cyx fyx (x, y, z) ε′reffy

(
1+ fyy (x, y, z)

)
cyzfyz (x, y, z)

czx fzx (x, y, z) czyfzy (x, y, z) ε′reffz (1+ fzz (x, y, z))

 (5)
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FIGURE 4. Simulated ABS-filled and PEC-walled X-band metal-pipe
rectangular waveguide spectral responses: (a)

∣∣S11
∣∣2 and

∣∣S21
∣∣2; and

(b) corresponding absorptance from numerical full-wave simulations.

to give a better Q-factor match between analytical and numer-
ical eigenmode solver results. Moreover, finer meshing is
introduced for the numerical frequency-domain simulator,
to further increase accuracy. Finally, we employ the dielectric
constant tensor and the use of slit ports with PML waveguide
sections.

For the X-band MPRWG operating in the dominant TE10
mode, the simulated |S11|2 and |S21|2 frequency responses are
given in Fig. 4(a). The solid lines in Fig. 4(a) correspond
to numerical frequency-domain simulations (using COM-
SOL Multiphysics R©), while dotted lines correspond to our
analytical textbook S-parameter modeling, using (A23) and
(A26)-(A30) in the Appendix; both clearly predicting the
driven Fabry-Pérot resonance at 11.14 GHz. Figure 4(b)
shows the absorptance A calculated using [5],

A = 1− |S11|2 − |S21|2 (14)

Note that (14) is only valid for passive, symmetrical and
reciprocal two-port networks. The absorptance spectrum,
given in Fig. 4(b), clearly shows parasitic TE201, TE011 and
TE111 open-box mode resonances at f TE201 = 10.07 GHz,
f TE011 = 11.14 GHz and f TE111 = 12.05 GHz, respectively.
The spectral location of these open-box modes can also be
determined from local minima (dips) in |S21|2; not clearly
seen in Fig. 4(a).

TABLE 1. Open-box mode resonance frequencies (and associated mode
Q-factors) spectroscopically measured (brass-walled) and predicted (PEC)
using analytical and numerical eigenmode solvers and numerical
frequency-domain simulator for X-band. Measured values are for Sample
#1 from Sun et al. [5].

Using our analytical eigenmode solver, (A35)-(A36) in
the Appendix, the dominant TE101 open-box mode (loosely
related to the driven Fabry-Pérot resonance, in terms of field
patterns) was predicted to exist at f TE101 = 5.6065 GHz and
5.6229GHz for Samples #1 and #2, respectively, in [5]. These
are below the f TE10c = 6.5571 GHz cut-off frequency for
an air-filled MPRWG and, therefore, outside the intended
frequency range of operation for the WR-90 waveguide [5].
The lowest-order TM mode, TM111, has an eigenfrequency
of f TM111 = 12.8765 GHz, which is just above our frequency
range of interest.

As seen in Table 1, unlike the previous numerical eigen-
mode solver Q-factor predictions [5], the new results from
our analytical (using (A35) and (A36) in the Appendix) and
numerical eigenmode solvers are almost identical. Moreover,
the X-band numerical full-wave frequency-domain predic-
tions for the undamped resonance frequencies are within
0.01 GHz of those from both the analytical and numerical
eigenmode solvers; and within 0.1 GHz when compared to
practical measurements (validating our simulations) [5].

Simulations were repeated for 3-D printed ABS at
Ku-band. Here, the lengths of the air-filled and PML sections
are lair = lPML = 2l = 13.352 mm, used for the numerical
frequency-domain simulations at Ku-band; the band-average
extracted values for dielectric constant and loss tangent are
ε′reff 2© = 2.3725 and tanδe 2© = 16× 10−4, respectively [6].
The S-parameters and absorptance spectra are given in Fig. 5,
showing the excitation of parasitic TE011-TE201(coupled),
TE111 and TM111 open-box modes.
The results are summarized in Table 2. Both eigenmode

solvers predict the TE101 open box-mode below the f TE10c =

9.4877 GHz cut-off frequency for an air-filled MPRWG and,
therefore, outside the intended frequency range of operation
for the WR-62 waveguide [6].
By coincidence, with both analytical and numerical eigen-

mode solvers, the TE011 and TE201 open-box modes have the
same eigenfrequency, with a predicted undamped resonance
frequency of f TE011 = f TE201 = 14.449 GHz. However, with the
numerical frequency-domain simulator, these modes appear
at both 14.44 and 14.46 GHz; band-splitting due to over-
coupling of the TE011 and TE201 modes can be inferred.
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FIGURE 5. Simulated ABS-filled and PEC-walled Ku-band metal-pipe
rectangular waveguide spectral responses: (a)

∣∣S11
∣∣2 and

∣∣S21
∣∣2; and

(b) corresponding absorptance from numerical full-wave simulations.

TABLE 2. Open-box mode resonance frequencies (and associated mode
Q-factors) spectroscopically measured (brass-walled) and predicted (PEC)
using analytical and numerical eigenmode solvers and numerical
frequency-domain simulator for Ku-band. Measured values are for the
sample from Márquez-Segura et al. [6].

The Ku-band numerical full-wave frequency-domain pre-
dictions for the undamped resonance frequencies are within
0.02 GHz of those from both the analytical and numerical
eigenmode solvers; and within approximately 0.2 GHz when
compared to practical measurements (once again validating
our simulations) [6].

D. IDENTIFYING OPEN-BOX MODE RESONANCES FROM
FIELD PLOTS
A numerical eigenmode solver with fine meshing can also be
used to create and study the 3-D field plots associated with

FIGURE 6. Numerically simulated Ex -field plot for the even TE101
open-box mode at f TE

101 = 5.6064 GHz for X-band.

FIGURE 7. Numerically simulated Ex -field plot for the even TE011
open-box mode at f TE

011 = 11.1428 GHz for X-band.

the parasitic open-box mode resonances. Here, the two air-
filled waveguide sections have been increased in length from
lair = 2l (used in the numerical frequency domain simulator)
to lair = 11.5l (used in the numerical eigenmode solver),
allowing the evanescent fields of the open-box modes below
cut-off to sufficiently decay outside the dielectric cuboid [5].
Also, the extreme ends of the air-filled sections are terminated
with absorbing ‘second-order scattering boundary’ surfaces,
since a PML boundary has a significant spatial volume that
has a large computational overhead [5], [10]. Figures 6 to 9
show E-field plots for the parasitic open-box TE mode reso-
nances at X-band [5] and Fig. 10 for the additional TM mode
at Ku-band. At X-band, Sun et al. [5] found that the parasitic
TE101, TE011, TE201, and TE111 open-box modes all have
even longitudinal symmetry about the center of the sample.
Similar field patterns will be found with the open-box modes
at Ku-band [6] with the addition of the TM111 mode, having
odd longitudinal symmetry.

IV. PARALLEL-PLATE WAVEGUIDES
A. BACKGROUND
Consider the vertical PEC-walled PPWG shown in Fig. 11,
where the structure is assumed to be infinite in the y-direction.
The length of the dielectric-filled section ( 2©) is l and the
air-filled sections ( 1© and 3©) have length lair . Following the
approach in Section IIIA, assume a TEm or TMm mode is
incident on the dielectric-filled section.
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FIGURE 8. Numerically simulated Ey -field plot for the even TE201
open-box mode at f TE

201 = 10.0729 GHz for X-band.

FIGURE 9. Numerically simulated field plots for the even TE111 open-box
mode at f TE

111= 12.0447 GHz: (a) Ex -field; and (b) Ey -field for X-band.

FIGURE 10. Numerically simulated Ey -field plot for the odd TM111
open-box mode at f TM

111= 17.0875 GHz for Ku-band.

With reference to the Appendix, the cut-off propagation
constant is now γcm = jkcm = jmπ/a for air-filled sections,
with a representing the internal wall separation distance.

FIGURE 11. Plan view illustration of a vertical PEC-walled dielectric-filled
2-D parallel-plate waveguide having internal wall separation a.

The characteristic matrix equation for TEm modes is effec-
tively the same as (A12) for TEmn modes with the MPRWG,
but without the mode index n in the amplitude coefficients
and propagation constant (i.e., Amn → Am, Bmn → Bm
and γmn → γm). Therefore, the amplitude coefficients cor-
respond to those in (A23)-(A26); the generalized coefficients
ζ and ς correspond to (A27) and (A28), respectively; and the
S-parameters S11 and S21 to (A29) and (A30), respectively.
In a similar way to that undertaken for theMPRWG, the asso-
ciated even and odd modes can be obtained by numerically
solving the analytical transcendental equations in (A35) and
(A36), respectively, for the complex eigenfrequencies.

B. EXCITATION OF OPEN-BOX MODE RESONANCES WITH
FREQUENCY-DOMAIN SIMULATOR
Following the approach outlined in Section IIIB, for the exci-
tation of open-box modes using an anisotropic dielectric con-
stant tensor, a 2-D PPWG was simulated using the COMSOL
Multiphysics R© frequency-domain simulator.

Within COMSOL Multiphysics R©, using (5), the signs for
the terms in (6) are arbitrarily chosen for our simulated
PPWG, as follows,

fxx = 1%
ε′reff

(
−
(x − a/2)

a
+
(z− l/2)

l

)
(15)

fyy = 1%
ε′reff

(
(x − a/2)

a
−
(z− l/2)

l

)
(16)

fzz = fxy = fyx = fxz = fzx = fyz = fzy

= 1%
ε′reff

(
(x − a/2)

a
+
(z− l/2)

l

)
(17)

with all the scalar coefficients cuv = 5 and a 2% varia-
tion of the dielectric constant in all axial directions, giving
1%
ε′reff
= 0.02. The choice of fuv in (15)-(17) assume the origin

(x, z = 0) is located at one of the corners of the dielectric
filler.

C. SIMULATED SPECTRAL RESPONSES
The S-parameters for the dielectric-filled PEC-walled
X-band PPWG are simulated, assuming waveguide operation
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FIGURE 12. Simulated ABS-filled and PEC-walled X-band parallel-plate
waveguide spectral responses: (a)

∣∣S11
∣∣2 and

∣∣S21
∣∣2; and (b)

corresponding absorptance from full-wave simulations.

in the dominant TE1 mode. The internal dimensions of the
PPWG having wall separation distance a = 22.860 mm and
dielectric-filled section length l = 9.626 mm; both corre-
sponding to the previous X-band MPRWG dimensions [5].
For the numerical eigenmode solver only, the length of air-
filled sections is now increased to lair = 17l (due to the
extended evanescent fields of the TM11 mode) and terminated
at both ends of the air-filled waveguide sections with ‘second-
order scattering boundary’ surfaces. Moreover, the same
X-band dielectric constant ε′reff 2© = 2.3284 and loss tangent

tanδe 2© = 19.148×10−4 values were used for ABS [5]. The
cut-off frequency for an air-filled section of this PPWG is
f TE1c = 6.5571 GHz (identical to that for the dominant TE10
mode with the X-band MPRWG).

For an X-band PPWG operating in the dominant TE1
mode, the simulated |S11|2 and |S21|2 frequency responses
are given in Fig. 12(a). The solid lines in Fig. 12(a) cor-
respond to numerical full-wave frequency-domain simula-
tions, while dotted lines correspond to our analytical textbook
S-parameter modeling (using modified versions of (A29) and
(A30) in the Appendix); both clearly predict the driven Fabry-
Pérot resonance at 11.07 GHz.

The mode indices m and p in f̃mp refer to the number
of half-wavelength variations along the x- and z-directions,
respectively, for either the E- or H-fields.

TABLE 3. Open-box mode resonance frequencies (and associated mode
Q-factors) calculated using analytical and numerical eigenmode solvers
and numerical frequency-domain simulator for the PEC-walled X-band
parallel-plate waveguide shown in Fig. 11.

FIGURE 13. Numerically simulated Ey -field plot for the even TE11
Fabry-Pérot eigenmode below cut-off at f TE

11 = 5.6064 GHz.

The absorptance spectrum in Fig. 12(b) clearly shows par-
asitic TE21 and TM21 open-box mode resonances at f TE21 =

10.07 and f TM21 = 10.89 GHz, respectively; not clearly seen
in Fig. 12(a).

The four lowest order parasitic Fabry-Pérot eigenmodes,
along with the associated unloaded Q-factors, are predicted
using our analytical and COMSOL Multiphysics R© eigen-
mode solvers; the results are summarized in Table 3. From
Table 3, it is clear that the first two parasitic Fabry-Pérot
eigenmodes, TE11 at f TE11 = 5.6065 GHz and TM11 at f TM11 =

6.1403 GHz, are well below the f TE1c = 6.5571 GHz cut-off
frequency for an air-filled PPWG. As shown in Table 3, these
numerical full-wave frequency-domain predictions are within
0.01 GHz of those from both the analytical and numerical
eigenmode solvers.

D. IDENTIFYING OPEN-BOX MODE RESONANCES FROM
FIELD PLOTS
E-field plots, from the numerical eigenmode solver, for the
X-band PPWG (with lair = 17l) are shown in Figs. 13 to 16.
It can be seen that for all the modes (TE11 and TM11 below
cut-off and TE21 and TM21 above cut-off) the E-fields extend
well outside the dielectric boundaries (represented by the two
vertical black lines).

V. CIRCULAR WAVEGUIDES
A. BACKGROUND
Consider the PEC-walled CWG shown in Fig. 17.
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FIGURE 14. Numerically simulated Ex -field plot for the odd TM11
Fabry-Pérot eigenmode below cut-off at f TM

11 = 6.1402 GHz.

FIGURE 15. Numerically simulated Ey -field plot for the even TE21
Fabry-Pérot eigenmode at f TE

21 = 10.0729 GHz.

FIGURE 16. Numerically simulated Ex -field plot for the odd TM21
Fabry-Pérot eigenmode at f TM

21 = 10.8924 GHz.

FIGURE 17. Illustration of an ideal dielectric-filled circular waveguide of
radius ra.

Subscripts m and n now refer to the number of half-
wavelength radial (r) and circumferential (φ) variations,
respectively, for either the E- or H-fields. The cut-off

TABLE 4. Values of p′mn and pmn for selected mn mode indices for the
respective TE and TM modes in a PEC-walled circular waveguide.
Table reproduced from Pozar [12].

propagation constant for a CWG is [12],

γcmn = jkcmn =


j
p′mn
ra

TEmn modes

j
pmn
ra

TMmn modes
(18)

Here, ra is the internal radial distance from the axis of the
circular waveguide to its PEC-walled boundary, pmn is the
mth root of Jn(x); such that Jn(pmn) = 0, where Jn(x) are
the Bessel functions of the first kind. Similarly, p′mn is the
mth root of J ′n(p

′
mn) = 0, where the operator J ′n(x) is the first

derivative of Jn(x). For both TEmn and TMmn propagating
modes, the cut-off angular wavenumbers are kcmn = p′mn/ra
and kcmn = pmn/ra, respectively. The cut-off frequencies
for the TEmn and TMmn propagating modes are then fcmn =
kc/2π

√
µ̃ε̃ = p′mn/2πra

√
µ̃ε̃ and fcmn = kc/2π

√
µ̃ε̃ =

pmn/2πra
√
µ̃ε̃, respectively. Selected values of p′mn and pmn

are given in Table 4 (rounded to three decimal places).
The characteristic matrix equations for the TEmn and

TMmn modes are exactly the same as (A12) and (A22).
Moreover, the amplitude coefficients correspond to those in
(A23)-(A26); the generalized coefficients ζ and ς correspond
to (A27) and (A28), respectively; and the S-parameters S11
and S21 to (A29) and (A30), respectively. In a similar way to
that undertaken for the MPRWG and PPWG, the associated
even and odd modes can be obtained by numerically solving
the analytical transcendental equations in (A35) and (A36)
for the complex eigenfrequencies.

B. EXCITATION OF OPEN-BOX MODE RESONANCES WITH
FREQUENCY-DOMAIN SIMULATOR
Following the approach outlined in Sections IIIB and IVB,
for the excitation of open-box modes using an anisotropic
dielectric constant tensor, a 3-D CWG was simulated using
the COMSOL Multiphysics R© full-wave frequency domain
simulator.

Within COMSOL Multiphysics R©, using (5), the signs for
the terms in (6) are arbitrarily chosen for our simulated CWG,
as follows,

fxx = fxy = fyx = fxz = fzx = fyz = fzy

= 1%
ε′reff

(
−
x
ra
−

y
ra
−
(z− l/2)

l

)
(19)

fyy = 1%
ε′reff

(
−
x
ra
+

y
ra
+
(z− l/2)

l

)
(20)

fzz = 1%
ε′reff

(
x
ra
+

y
ra
−
(z− l/2)

l

)
(21)
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FIGURE 18. Simulated ABS-filled and PEC-walled X-band circular
waveguide spectral responses: (a)

∣∣S11
∣∣2 and

∣∣S21
∣∣2; and (b)

corresponding absorptance from full-wave simulations.

where all the scalars coefficients cuv = 5 and a 2% varia-
tion of the dielectric constant in all axial directions, giving
1%
ε′reff
= 0.02. The choice of fuv in (19)-(21) assumes that the

z-axis lies in the middle of the circular waveguide with the
origin (x, y, z = 0) located at the center of the waveguide at
one of the air-dielectric boundaries.

C. SIMULATED SPECTRAL RESPONSES
For our example, the circular waveguide is based on Elec-
tronic Industries Alliance (EIA) WC-94 standards, having an
internal diameter of 2ra = 23.825 mm [13]; the dominant
TE11 mode for an air-filled waveguide has a recommended
frequency range of operation between 8.5 and 11.6 GHz
within X-band. With an air-filled PEC circular waveguide,
the lower-order cut-off frequencies fc for the TE and TM
modes are: f TE11c = 1.84118fco = 7.375 GHz (dominant
mode); f TM01

c = 2.40483fco = 9.632 GHz; f TE21c =

3.05424fco = 12.186 GHz; and f TE01,TM11
c = 3.83171fco =

15.347 GHz, where fco = c/2πra = 4.005326 GHz and ra =
11.9125 mm is the internal radius for the WC-94 circular
waveguide.

The S-parameters for the dielectric-filled PEC-walled X-
band CWG are simulated, assuming waveguide operation

FIGURE 19. Numerically simulated field plots for the even TE111
Fabry-Pérot eigenmode below cut-off at f TE

111= 6.1921 GHz: (a) Er -field;
(b) Eφ -field.

in the dominant TE11 mode. The internal dielectric-filled
section length l = 9.626 mm corresponds to that used pre-
viously for the X-band MPRWG [5] and PPWG. Moreover,
the same X-band dielectric constant ε′reff 2© = 2.3284 and

loss tangent tanδe 2© = 19.148 × 10−4 values are used for
ABS [5].

For anX-bandCWGoperating in the dominant TE11mode,
the simulated |S11|2 and |S21|2 frequency responses are given
in Fig. 18(a).

The solid lines in Fig. 18(a) correspond to numerical
full-wave frequency-domain simulations, while dotted lines
correspond to our analytical textbook S-parameter modeling
(using (A29) and (A30) in the Appendix); both clearly predict
the driven Fabry-Pérot resonance at 11.29 GHz.

The mode index p in f̃mnp refers to the number of
half-wavelength variations along the z-direction, for either the
E- or H-fields. The absorptance spectrum in Fig. 18(b) clearly
shows parasitic TM101, TE121, TE101 and TM111 open-box
mode resonances at f TM101 = 8.51 GHz, f TE121 = 9.50 GHz,
f TE101 = 11.52 GHz and f TM111 = 12.30 GHz, respectively.
The open-box modes for the dielectric-filled CWG are

simulated using analytical and numerical eigenmode solvers.
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TABLE 5. Open-box mode resonance frequencies (and associated mode
Q-factors) calculated using analytical and numerical eigenmode solvers
for the PEC-walled X-band circular waveguide shown in Fig. 17.

FIGURE 20. Numerically simulated Er -field plot for the odd TM101
Fabry-Pérot eigenmode at f TM

101= 8.5101 GHz.

FIGURE 21. Numerically simulated Eφ -field plot for the even TE121
Fabry-Pérot eigenmode at f TE

121= 9.4936 GHz.

The resulting eigenfrequencies are given in Table 5. Here, the
TE111 open-box mode at f TE111 = 6.1917 GHz is below the
f TE11c = 7.375 GHz cut-off frequency and not seen in the
spectral responses. As shown in Table 5, these numerical full-
wave frequency-domain predictions are within 0.03 GHz of
those from our analytical and numerical eigenmode methods.

D. IDENTIFYING OPEN-BOX MODE RESONANCES FROM
FIELD PLOTS
E-field plots, from the numerical eigenmode solver, for the
X-band CWG are shown in Figs. 19 to 23. Here, isometric
views are needed with cut-planes in order to uniquely identify
themodes. For example, the TE111mode in Fig. 19(b) appears
identical to the TM111 mode in Fig. 23; the two different

FIGURE 22. Numerically simulated Eφ -field plot for the even TE101
Fabry-Pérot eigenmode at f TE

101= 11.5285 GHz.

FIGURE 23. Numerically simulated Eφ -field plot for the odd TM111
Fabry-Pérot eigenmode at f TM

111= 12.3299 GHz.

modes can be differentiated by knowing the longitudinal
position of their cuts (located at center and with quarter-
wavelength offset, respectively).

VI. DISCUSSION AND CONCLUSION
Open-box mode resonances have been found in a survey
of microwave measurements of 3-D printed cuboid samples
within MPRWGs. These parasitic Fabry-Pérot eigenmodes
were either ignored or not rigorously investigated. These
parasitic resonances can exhibit very high Q-factors (shown
here to exceed 2,300 with a PEC-walled X-band PPWG),
which may offer the potential for future exploitation.

The authors of this paper previously studied open-box
mode resonances within dielectric-filled MPRWGs, using
both analytical and numerical eigenmode solvers. This pre-
liminary work has now been extended in this paper, to cover
three conventional types of dielectric-filledmetal waveguides
(MPRWGs, PPWGs and CWGs).

While previously speculating that open-box mode res-
onances can be excited within inhomogeneous and/or
anisotropic media (3-D printed cuboids in this case), we have
now proven that parasitic Fabry-Pérot eigenmodes exist with
inhomogeneous and anisotropic dielectrics.
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Complex eigenfrequencies for dielectric-filled waveg-
uide structures were obtained by numerically solving
analytical transcendental equations for the lowest-order
even and odd eigenmodes. These results were com-
pared against those obtained from the numerical COMSOL
Multiphysics R© eigenmode solver, showing excellent agree-
ment. Moreover, from either the E- or H-field patterns,
we have accurately identified the type of open-box modes,
below and above the lowest cut-off frequencies associated
with the corresponding air-filled waveguides.

Furthermore, we have demonstrated a new technique for
studying open-box mode resonances that employs numerical
full-wave frequency-domain simulations. Here, the inhomo-
geneous and anisotropic nature of the woodpile-like dielectric
structure (physical realm) is represented by an anisotropic
dielectric constant tensor (simulation realm).

The common scalar coefficient representing the level
of coupling between different field components due to
anisotropy was chosen to be cuv = 1 for the MPRWG
and 5 for both PPWG and CWG. With the variation of the
dielectric constant in all axial directions, a fixed value of
1%
ε′reff
= 0.02 was adopted for all the waveguide structures.

Both control parameters are perturbed just enough (with their
lowest values) to reveal the presence of the parasitic open-box
modes in the S-parameters, while being validated by practical
measurements (in the case of the MPRWG).

The COMSOL Multiphysics R© frequency-domain simu-
lations accurately predicted the spectral location of the
undamped resonance frequencies for all in-band parasitic
open-box modes; to within 0.03 GHz of those obtained
from the analytical and numerical eigenmode solvers for all
waveguide structures (and within approximately 0.1 GHz
and 0.2 GHz when compared to measurements at X- and
Ku-bands, respectively, for themetal-pipe rectangular waveg-
uide). Note that, additional simulations of a PPWG having a
dielectric-filler that is inhomogeneous and isotropic does not
excite all the open-box modes.

This paper provides the foundation for accurately model-
ing the parasitic resonances associated with inhomogeneity
and anisotropy in 3-D printed microwave components; not
just the metal-walled waveguide structures considered here,
but the methodology could also be extended to generic 3-D
printed dielectric waveguides and substrate-based transmis-
sion lines (e.g., printed microstrip, stripline and suspended
microstrip [14]). In addition, our work can be applied to
engineered metamaterials within waveguides and transmis-
sion lines. For example, periodically-loaded dielectric slabs
could be inserted within a metal-pipe waveguide, such that
the lowest order open-box mode below the air-filled cut-
off frequency can result in wave propagation via evanescent
mode coupling between slabs.

APPENDIX
With reference to Figs. 1, 11 and 17, under steady-state
sinusoidal excitation, there will be forward and backward

travelling waves, with As representing complex amplitude
coefficients for the forward travelling waves and Bs repre-
senting the backward travelling waves. There are no reflected
waves within Section 3© of the waveguide structure. It is
assumed that Sections 1© and 3© have the same material
parameters.

With the MPRWG, for the TEmn mode the electric
(E-)field and magnetic (H-)field components within the three
waveguide sections are [5],

Ey 1© =
ωµ̃ 1©γcm0

γ 2
cmn

(
Amn 1©e

−γmn 1©z
+ Bmn 1©e

γmn 1©z
)

× sin(kcm0x) cos(kc0ny) (A1)

Hx 1© = −j
γmn 1©γcm0

γ 2
cmn

(
Amn 1©e

−γmn 1©z
− Bmn 1©e

γmn 1©z
)

× sin(kcm0x) cos(kc0ny) (A2)

Hz 1© =
(
Amn 1©e

−γmn 1©z
− Bmn 1©e

γmn 1©z
)

× cos(kcm0x) cos(kc0ny) (A3)

Ey 2© =
ωµ̃ 2©γcm0

γ 2
cmn

(
Amn 2©e

−γmn 2©z
+ Bmn 2©e

γmn 2©z
)

× sin(kcm0x) cos(kc0ny) (A4)

Hx 2© = −j
γmn 2©γcm0

γ 2
cmn

(
Amn 2©e

−γmn 2©z
− Bmn 2©e

γmn 2©z
)

× sin(kcm0x) cos(kc0ny) (A5)

Hz 2© =
(
Amn 2©e

−γmn 2©z
− Bmn 2©e

γmn 2©z
)

× cos(kcm0x) cos(kc0ny) (A6)

Ey 3© =
ωµ̃ 1©γcm0

γ 2
cmn

Amn 3©e
−γmn 1©(z−l)

× sin(kcm0x) cos(kc0ny) (A7)

Hx 3© = −j
γmn 1©γcm0

γ 2
cmn

Amn 3©e
−γmn 1©(z−l)

× sin(kcm0x) cos(kc0ny) (A8)

Hz 3© = Amn 3©e
−γmn 1©(z−l)

cos(kcm0x) cos(kc0ny) (A9)

where the textbook cut-off propagation constant is,

γcmn = jkcmn = j

√(mπ
a

)2
+

(nπ
b

)2
(A10)

and,

kcm0 =
mπ
a

and kc0n =
nπ
b

(A11)

Here, m and n correspond to the mode numbers in the
horizontal x- and vertical y-directions in the transverse plane,
respectively; γmn 1© and γmn 2© are the generalized propaga-
tion constants for the TEmn mode within Sections 1©, 3©, and
Section 2©, respectively. With respect to Fig. 1, γmn 1© →

γ air10 and γmn 2© → γ10 are the propagation constants for
the TE10 mode within the air-filled (Sections 1©, 3©) and
dielectric-filled (Section 2©) waveguide sections, respec-
tively. All calculations assume a waveguide with PEC walls.
The reference plane for fields with coefficient Amn 3© is z = l,

as indicated by the z− l shift in the term Amn 3©e
−γmn 1©(z−l)

.
The reference plane for all other coefficients is z = 0.
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By applying TE mode continuity boundary conditions for
the MPRWG (and PPWG): Ey 1©(z = 0) = Ey 2©(z = 0),
Ey 2©(z = l) = Ey 3©(z = l), Hx 1©(z = 0) = Hx 2©(z =
0), Hx 2©(z = l) = Hx 3©(z = l), and after some algebraic
manipulations, the following characteristic matrix equation
is obtained for TEmn modes,
µ̃ 1© µ̃ 1© −µ̃ 2© −µ̃ 2© 0

γmn 1© −γmn 1© −γmn 2© γmn 2© 0

0 0 µ̃ 2©e
−γmn 2©l

µ̃ 2©e
γmn 2©l

−µ̃ 1©

0 0 γmn 2©e
−γmn 2©l

−γmn 2©e
γmn 2©l

−γmn 1©



×



Amn 1©

Bmn 1©

Amn 2©

Bmn 2©

Amn 3©


=


0
0
0
0

 (A12)

For the TMmn mode, the E-field and H-field components
within the three waveguide sections are [5],

Ex 1© = −j
γmn 1©γcm0

γ 2
cmn

(
Amn 1©e

−γmn 1©z
+ Bmn 1©e

γmn 1©z
)

× cos(kcm0x) sin(kc0ny) (A13)

Hy 1© =
ωε̃ 1©γcm0

γ 2
cmn

(
Amn 1©e

−γmn 1©z
− Bmn 1©e

γmn 1©z
)

× cos(kcm0x) sin(kc0ny) (A14)

Ez 1© =
(
Amn 1©e

−γmn 1©z
+ Bmn 1©e

γmn 1©z
)

× sin(kcm0x) sin(kc0ny) (A15)

Ex 2© = −j
γmn 2©γcm0

γ 2
cmn

(
Amn 2©e

−γmn 2©z
+ Bmn 2©e

γmn 1©z
)

× cos(kcm0x) sin(kc0ny) (A16)

Hy 2© =
ωε̃ 2©γcm0

γ 2
cmn

(
Amn 2©e

−γmn 1©z
− Bmn 2©e

γmn 1©z
)

× cos(kcm0x) sin(kc0ny) (A17)

Ez 2© =
(
Amn 2©e

−γmn 2©z
+ Bmn 2©e

γmn 1©z
)

× sin(kcm0x) sin(kc0ny) (A18)

Ex 3© = −j
γmn 3©γcm0

γ 2
cmn

Amn 3©e
−γmn 1©(z−l)

× cos(kcm0x) sin(kc0ny) (A19)

Hy 3© =
ωε̃ 3©γcm0

γ 2
cmn

Amn 3©e
−γmn 1©(z−l)

× cos(kcm0x) sin(kc0ny) (A20)

Ez 3© = Amn 3©e
−γmn 1©(z−l)

sin(kcm0x) sin(kc0ny) (A21)

By applying TM mode continuity boundary conditions for
the MPRWG (and PPWG): Ex 1©(z = 0) = Ex 2©(z = 0),
Ex 2©(z = l) = Ex 3©(z = l), Hy 1©(z = 0) = Hy 2©(z =
0), Hy 2©(z = l) = Hy 3©(z = l), and after some algebraic

manipulations, the following characteristic matrix equation
is obtained for TMmn modes,
γmn 1© γmn 1© −γmn 2© −γmn 2© 0

ε̃ 1© −ε̃ 1© −ε̃ 2© ε̃ 2© 0

0 0 γmn 2©e
−γmn 2©l

γmn 2©e
γmn 2©l

−γmn 1©

0 0 ε̃ 2©e
−γmn 2©l

−ε̃ 2©e
γmn 2©l

−ε̃ 1©



×



Amn 1©

Bmn 1©

Amn 2©

Bmn 2©

Bmn 3©


=


0
0
0
0

 (A22)

While the MPRWG has been used to derive (A12) and
(A22) for the TE and TM modes, respectively, they are
generic and can also be used for the PPWG and CWG by the
appropriate substitution of the cut-off propagation constant
in (2).

For convenience, the waveguides in Figs. 1, 11 and 17
are excited by setting Amn 1© to unity and the rest
of the amplitude coefficients can then be obtained
from (A12) or (A22),

Bmn 1© =

(
1− e

−2γmn 2©l
)
(1− ζ ) (1+ ζ )

(1+ ζ )2 − e
−2γmn 2©l

(1− ζ )2
(A23)

Amn 2© =
−2ς (1+ ζ )

(1+ ζ )2 − e
−2γmn 2©l

(1− ζ )2
(A24)

Bmn 2© =
−2ςe

−2γmn 2©l
(1− ζ )

(1+ ζ )2 − e
−2γmn 2©l

(1− ζ )2
(A25)

Amn 3© =
4ζe
−γmn 2©l

(1+ ζ )2 − e
−2γmn 2©l

(1− ζ )2
(A26)

with generalized coefficients,

ζ =


γmn 2©µ̃ 1©

γmn 1©µ̃ 2©
TEmn modes

γmn 1©ε̃ 2©

γmn 2©ε̃ 1©
TMmn modes

(A27)

and,

ς =


µ̃ 1©

µ̃ 2©
TEmn modes

γmn 1©

γmn 2©
TMmn modes

(A28)

S-parameters can now be defined as,

S11≡
Bmn 1©

Amn 1©

∣∣∣∣∣
Bmn 3©=0

→ Bmn 1© with Amn 1© = 1 (A29)
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and,

S21≡
Amn 3©

Amn 1©

∣∣∣∣∣
Bmn 3©=0

→ Amn 3© with Amn 1© = 1 (A30)

Setting Amn 1© = 1 corresponds to a driven excitation,
while Amn 1© = 0 indicates undriven excitation. With the
former, with no waveguide wall or dielectric losses, at the
Fabry-Pérot resonance frequency, there is a return loss zero
with Bmn 1© = 0 and Amn 3© = 1. With the latter, the complex
eigenfrequency response can be obtained (and as long as
Bmn 1© 6= 0) by setting the denominator of Bmn 1© to zero
in (A23).

With a PEC-walled waveguide, the propagation constant
for an unbound dielectric in (2) is given as [5],

γ 2
ud = γ

2
mn + γ

2
cmn= −ω

2µ̃ε̃ (A31)

With the scenario depicted in Fig. 1, µ̃ 1©, 3©= µ0µ̃r 1©, 3©
→ µ0, µ̃ 2© = µ0µ̃r 2© → µ0µ

′
r , ε̃ 1©, 3© = ε0ε̃reff 1©, 3© →

ε0 and ε̃ 2© = ε0ε̃reff 2© → ε0ε̃reff . Therefore, the respective
guided-wave propagation constants for Sections 1©, 3© and
Section 2© are [5],

γmn 1©, 3© =
√
k2cmn−ω2µ̃ 1©, 3©ε̃ 1©, 3©→

√
k2cmn−ω2µ0ε0

(A32)

γmn 2© =
√
k2cmn−ω2µ̃ 2©ε̃ 2©→

√
k2cmn−ω2µ0µ′rε0ε̃reff

(A33)

As mentioned earlier, the associated complex eigenfre-
quencies are defined by the poles of Bmn 1©, in (A23), by set-
ting its denominator to zero (i.e., to extract its undriven
natural modes without any external steady-state sinusoidal
excitation, so that Amn 1© = 0) [5],

(1+ ζ )2 − e
−2γmn 2©l

(1− ζ )2 = 0 (A34)

An infinite number of solutions emerge from (A34), which
are either designated as even or odd modes – depending
on the corresponding longitudinal symmetry of the electric
field. These even and odd modes can be obtained by solving
the following transcendental equations for complex eigenfre-
quencies [5],

(1+ ζ )+ e
−γmn 2©l

(1− ζ ) = 0 Even modes (A35)

(1+ ζ )− e
−γmn 2©l

(1− ζ ) = 0 Odd modes (A36)

The roots of (A35) and (A36) can be numerically solved to
obtain the complex angular eigenfrequencies ω̃mnp = ω′mnp+

jω
′′

mnp for the even and odd open-box modes, respectively;
the undamped (or driven) resonance frequencies, normally
associated with frequency-domain simulations, is fmnp =∣∣ω̃mnp∣∣ /2π . The mode indices m, n and p in f̃mnp refer
to the number of half-wavelength variations in the trans-
verse plane and longitudinal direction, respectively, for

either the E- or H-fields. Here, the multiple solutions
from (A35) and (A36) correspond to different mode index
values of p.
Equations (35) for even modes and (36) for odd modes can

be decomposed to give TE and TM solutions. For example,
the following transcendental equations are obtained for the
TEmn modes,

µ̃ 1©γmn 2© − µ̃ 2©γmn 1© coth
(
γmn 2©l

2

)
= 0 Even modes

(A37)

µ̃ 1©γmn 2© − µ̃ 2©γmn 1© tanh
(
γmn 2©l

2

)
= 0 Odd modes

(A38)

These expressions can be further simplified by setting
µ̃ 1© = µ̃ 2©/µ

′
r = µ0 to obtain,

µ′rγmn 1©−γmn 2© tanh
(
γmn 2©l

2

)
= 0 Even modes (A39)

γmn 2©−µ
′
rγmn 1© tanh

(
γmn 2©l

2

)
= 0 Odd modes (A40)

A similar approach can be used to derive the following
simplified equations for the TMmnp open-box modes, with
ε̃ 1© = ε̃ 2©/ε̃reff = ε0 [5],

γmn 2©−ε̃reff γmn 1© tanh
(
γmn 2©l

2

)
= 0 Even modes (A41)

ε̃reff γmn 1©−γmn 2© tanh
(
γmn 2©l

2

)
= 0 Odd modes (A42)
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