Thermodynamics-based Cognitive Demodulation for 'THz Torch' Wireless Communications Links

Hang Ren¹ and Stepan Lucyszyn^{1,*}

¹Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, UK *s.lucyszyn@imperial.ac.uk

Supplementary Table

	50% cut-off, λ_1 to λ_2 , bandwidth	Aperture size	Aperture blockage*
	μ m (THz)	mm ²	%
ch#1	4.48 - 4.54 (65.95 - 66.88)	4.6 imes 4.6	67
ch#2	4.74 - 4.79 (62.57 - 63.25)	4.9 imes 4.9	63
ch#3	5.09 - 5.31 (56.44 - 58.83)	3.8 imes 3.8	78
ch#4	7.01 - 7.11 (42.19 - 42.79)	5.6×5.6	51
ch#5	7.37 - 7.48 (40.08 - 40.67)	5.6 imes 5.6	51
ch#6	8.22 - 8.62 (34.81 - 36.45)	3.8 imes 3.8	78
ch#7	9.61 - 10.03 (29.92 - 31.23)	3.7×3.7	69
ch#8	10.09 - 10.54 (28.46 - 29.74)	4.7×4.7	65
Single	8.03 - 13.74 (21.83 - 37.33)	4.6 imes 4.6	67
ch#7 ch#8 Single	9.61 - 10.03 (29.92 - 31.23) 10.09 - 10.54 (28.46 - 29.74) 8.03 - 13.74 (21.83 - 37.33)	$ \begin{array}{r} 3.7 \times 3.7 \\ 4.7 \times 4.7 \\ 4.6 \times 4.6 \end{array} $	69 65 67

Supplementary Table S1. Band-pass filter specifications

* With reference to an unblocked circular filter having diameter $\emptyset = 9 \text{ mm}$

	Sep. 2011 ¹	Dec. 2011 ²	Apr. 2013 ³	Jun. 2014 ⁴	May 2016 ⁵	This Work
Source Type	$5 \times \text{Eiko-8666}$ $4.7 \times 3.7 mm^2$	$5 \times \text{Eiko-8666}$ $4.7 \times 3.7 \ mm^2$	$5 \times \text{Eiko-8666}$ $4.7 \times 3.7 \ mm^2$	$5 \times \text{Eiko-8666}$ $4.7 \times 3.7 mm^2$	$5 \times \text{Eiko-8666}$ $4.7 \times 3.7 \ mm^2$	INTX 17-0900 $1.7 imes 1.7 \ mm^2$
Emitter DC Power (mW)	146	$4 \times 146 = 584$	146	$4 \times 994 = 3,976$	994	$898 \text{ and} 8 \times 898 = 7,184$
Number of Channels	-	4	-	4	1	1 and 8
3 dB Bandwidth (THz)	25	$\sim 4 \times 15 = 60$	25	$\sim 4 \times 15 = 60$	25	$16 \text{ and} \sim 8 \times 2.5$
Modulation Mechanism	Electronic	Chopper	Chopper	Chopper	Chopper	Electronic
Transmitted Data	Clock	Clock	Clock	Arbitrary	Clock	Arbitrary
Operation	Record and post-process	Record and post-process	Record and post-process	Record and post-process	Record and post-process	Fully asynchronous
Tx-Rx Lens Pair	None	None	None	None	KBr Ø1.5 cm	ZnSe Ø2.5 cm
$\min \Rightarrow \max \text{ Range (cm)}$	$0.5 \Rightarrow 2.5$	1.0	1.0	$3 \Rightarrow 4$	$12 \Rightarrow 15$	$100 \Rightarrow 200$ and 50
PIR Sensor	Voltage mode IRA-E710ST1	Voltage mode IRA-E710ST1	Current mode LME-553	Current mode LME-553	Current mode LME-553	Current mode LME-335
Total NRZ Bit Rate (bps)	$10.2 \Rightarrow 1$	$4 \times 20.6 = 82$	760	$4 \times 640 = 2,560$	2,000	$125 \text{ and} 8 \times 125 = 1,000$
Figure of Merit $(\text{cm} \times \text{bps})$	5.1	82	760	10,240	30,000	25,000 and 50,000
Rit Error Rate (%)	0	0	0	$0.11 \Rightarrow 15$	$0.0018 \Rightarrow 18$	see Figure
	qualitative	qualitative	qualitative	quantitative	quantitative	quantitative

Supplementary Table S2. Implementation and performance summary comparisons of reported 'THz Torch' wireless links

References

- 1. Lucyszyn, S., Lu, H. & Hu, F. Ultra-low cost thz short-range wireless link. In *IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Integration Technologies*, 49–52 (IEEE, 2011).
- 2. Hu, F. & Lucyszyn, S. Ultra-low cost ubiquitous thz security systems. In *Asia-Pacific Microwave Conference 2011*, 60–62 (IEEE, 2011).
- 3. Hu, F. & Lucyszyn, S. Improved 'thz torch' technology for short-range wireless data transfer. In 2013 IEEE International Wireless Symposium, 1–4 (IEEE, 2013).
- 4. Liang, X., Hu, F., Yan, Y. & Lucyszyn, S. Secure thermal infrared communications using engineered blackbody radiation. *Sci. Reports* 4, 5245 (2014).
- 5. Hu, F. & Lucyszyn, S. Advances in front-end enabling technologies for thermal infrared 'thz torch' wireless communications. *J. Infrared, Millimeter, Terahertz Waves* 37, 881–893 (2016).