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Vector spaces

e A field is a set of objects, called scalars, for which addition,
subtraction, multiplication, and division, are defined and the
usual axioms of arithmetic hold.

e The sets of real numbers R and complex numbers C are fields.
The set of integers is not a field: why?

e A vector space V over a field F is a set V of ob jects, called
vectors, for which two operations, vector addition (+)
and scalar multiplication (-) are defined such that for all
%,y,z € Vandalla, B € F the following axioms are satisfied:

L.z+y€eV (closure w.rt. +)
2. a-z €V (closure writ. -)
3. z+y=y+z (+ commutative)

(#+y)+z=z+(y+2z) (-+ associative)

30 €V suchthat z+0==z (zero vector)

JZ€Vst.z+Z=0 (negatives)

a-(z+y)=a-z+a-y (- distributive w.r.t. +)

a-(f-z)=(af)-z (- associative)

(@+p) z=a-z+0 z

10 1-z==x

L ® N oo

® A vector space (or linear space) V over the field F will be
denoted by V/(F).

e A real vector space is a vector space over R and a com-
plex vector space is a vector space over C.

o The following are examples of vector spaces:
1. The sets of ordered n-tuples of real and complex numbers:

RYR) = {lz1,...,z,)" : 2, € R,V i}
CC) = {lz1,...,za)T iz €C,V i}

2. The set P", of polynomial functions of degree n.

3. The set C[0, 2], of continuous functions over the interval
[0, 27].

4. The set C[—o0, o0].

e The following are not vector spaces:

1. The set of ordered n-tuples of negative numbers.
2. The set R*(C).

e Let 7 be a field. Then F*(F) is always a vector space and is
denoted by F". In this notation, C*(C) = C" and R*(R) =
R™. '



Subspaces

e A subset S of V(F) is called a subspace if S is itself a vector
space over JF. '

e A nonempty subset S of V(F) is a subspace of V(F) if it
satisfies the closure axioms:

l. z3,ye€S = z+y€Ss.
2. z€S5, aeF = ares.

o Every vector space V() has two special subspaces:

1. The zero subspace ® = {0}.
2. The vector space V(F) itself.

e Any other subspace of V/(F) is called a proper subspace.

e The set of vectors of the form (z;,0) where z; € R is a proper
subspace of R2.

e The set of all vectors in the first quadrant is not a subspace of
R2.

Linear independence and span

e A set of vectors {z1,...,z,} C V(F) is called linearly de-
pendent if there exist oy, . . .,a, € F, not all zero, such that:
a1ty + -+ oz, = 0.

e A set of vectors {z1,...,z,} C V(F) is called linearly in-
dependent if:

a1$1+"'+an$n:0 & a; =0, V.

o Let S={z1,...,z,} CV(F). The expression,
fnj Qi
i=1

where ay,...,a, € F, is called a linear combination of
the vectors in S.

e The span of S = {z1,...,z,} C V(F) is the set of all linear
combinations of the vectors in S:

span (S) = {z = i o4y i F T
i=1

and is always a subspace of V(F).



Bases and dimension

e A basis for V(F) is a set of linearly independent vectors S =
{Z1,...,7,} C V(F) that spans V(F).

e Eivery vector space has a basis.

e Let F be a field. The set S = {ey,..., e}, where,

er = [1,0,0,...,0,07
[0,1,0,...,0,0]"

€2

en = [0,0,0,...,0,1]%,

is a basis for ", called the natural basis.

e The choice of basis is not unique. However, all bases for V(F)
have the same number of vectors called the dimension of

V(F), written dim V' (F).

e Examples:

1. F" has basis {e1, ..., e,} and dimension n,
2. P! has basis {1,¢,...,t""'} and dimension n,
3. C|0, 2] has basis {exp(jkt):k=...,—1,0,1,...} and an

infinite (but countable) dimension,

4. C[—00, 0o] has an uncountable dimension.

Isomorphism and coordinate representation

e Let U and V be vector spaces over the same field F. A func-
tion,

f: U=V,
is called an isomorphism if,

1. f is invertible (one-to-one and onto),

2. flaz+By) = af(z) +Bf(y), for allz,y € U, and for all
o, € F (linear).

e Two vector spaces U and V over the same field F are called
isomorphic if there exists an isomorphism f : U — V.

e Any two isomorphic vector spaces have the same ‘structure’
since,

— every vector in one is represented by a unique vector in the
other (1),

— every linear relation in one is represented by a correspond-
ing linear relation in the other (2).

e Two finite dimensional vector spaces U(F) and V(F) are iso-
morphic if and only if dim U(F) = dim V(F).



e If S = {zy,...,z,} is a basis for V(F), then every vector z
in V(F) can be expressed as,

for some unique vector,

g=1|:1|€F

Qp

called the coordinate representation of x (with respect
to the basis .5).

e Let V(F) be an n-dimensional vector space. The coordinate

representation with respect to any basis defines an isomor-
phism from V' (F) to F™.

o Let © = [, ...,a,)" where each o; belongs to the field F.
We can consider z as either:

1. an element of the vector space F", or,

2. as the coordinate representation of an element in some
vector space V/(F) (w.r.t. some basis).

e It follows that we can confine our attention to coordinate vector
spaces such as C" (for complex vector spaces) and R" (for real
vector spaces).

Inner product and norm

e An inner product on a complex vector space V' is any func-
tion from V x V to C which satisfies:

1. Zz,9> =<y, x>
2. <az + Py, 2> = a<z,z> +p<y,z>,Va,Bel
3. <z,z> >0, Vz #0

e An inner product on a complex vector space is:
— Hermitian (1),

— linear in the 1st argument (2), and conjugate linear in
the 2nd argument (1,2):

<z,ay+pPz> =a<z,y>+P<z,z>,Va,BeC
— positive definite (3).
e The standard inner product on C" is given by <z,y>=
y'z where ¥’ =[f1, - - -, Tn)-

e A vector space on which an inner product is defined is called
an inner-product space.

e C[0, 27] is an inner product space with,

27

<frg>= o [ 3 flo)it

2 /0



e A norm on a complex vector space V is a function from V to
R which satisfies:

Ljz|| >0, Vz#£0
2. |laz|| = |af ||z||, Ya € Cor R
3 Nlz +yll < flll + Iyl

e A morm on a complex vector space:
— is positive definite (1),
— is homogeneous (2),

— satisfies the triangle inequality (3).

e A vector space on which a norm is defined is called a normed
space.

e The standard norm on C" is ||z|| = v/z'z, and the standard
norm on C[0, 27] s,

190 =V<EF> = = 7O

e We can define a norm on a finite-dimensional inner-product
space V, called the Euclidean norm, by, ||z|| = /<z, z>.
Such a vector space is called a Euclidean space.
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Angles and orthogonality

e Let ¢,y € C*. Then,

l'y| < |l=||lly]l (Schwarz inequality)

e The angle between nonzgero z,y € C" is defined as,

b (23
! (]l

z and y are said to be orthogonal if z'y = 0.

o Aset S = {z),...,zn} C C"is called orthogonal if ziz; =
0, Vi#j. It is called orthonormal if, in addition, ||z;|| =
1, Vi.

[

e Every orthogonal set in C" is linearly independent.

e T'wo subspaces U, V' in C" are said to be orthogonal if, u'v =
0, VueU VveV.

e Let U be a subspace of C". The subspace,
Ut={z€C":z'u=0,YueU}

is called the orthogonal complement of U (in C").

11



Gram-Schmidt orthogonalisation process

e Let S = {z1,...,T,} C C" be a given linearly independent
set. The following procedure produces an orthogonal set T' =
{y1,-.-,Ym} C C" such that span(S) = span(T):

h =
. Y1 Ty
Yo = To——F—U1
Ny
yiwg yéws
Y = T3 ——F—U — Y2
N Y2y
Y\ Tm Yo 1T
Ym = Tm — /Y1 — = = Ym-1
Y191 Ym—1Ym—1

e To obtain an orthonormal T, simply divide each y; by its norm.
Alternatively, use the following modified procedure:

Nh==o, == yl/”@h”
Yo =Ty — (yil'z)yl, Yz = 92/||yz||
Ys = T3 — (yi$3)y1 T, (y§$3)y2, Y3 ‘= .y3/||y3]|

Ym = T — (ygmm)yl - (y:n_lmm)ym—la
Ym = ym/”ym”

12

e Every Euclidean space has an orthoriormal basis.

e The standard bases in C* and R" are orthonormal (w.r.t. stan-
dard norm and inner product).

e The basis {exp(jkt) : k = ...,—1,0,1,...} for the space

C[0, 2] is orthonormal (w.r.t. standard inner product and
norm).

e Thebasis {z1,. .., z, }={1,...,t" !} for the space P"~{—1, 1]
is not orthogonal w.r.t. inner product:

<f,g>= [ a(t)f()dt.

To obtain an orthogonal basis, apply the Gram-Schmidt or-
thogonalisation procedure:

=1
<t, 1>
— t— ! ].:t
& <1, 1>
e <> <>,
= 2= Tt " 8

The polynomials {yj,. . ., Y } constructed in this way are called
the Legendre polynomials.

13



e Proposition. Let E(C) be an n-dimensional Euclidean space
and let S = {uy,...,u,} be an orthonormal basis for E(C).
Let z,y € E(C) have a coordinate vectors £ and § respectively.
Then, ’

<z, u;>
5= <$,.uZ> c cn.
<, Up>
Furthermore,
<z,y>=17'%.

In particular,

<z,z>=1i'¢  (Parseval's Theorem)

e Proof. Let z = ayuy + -+ - + o4u; + - - - + a,u,. Then,

<z, u;> = <Q1Uy + -+ QUi A Quly, U

= ;.

This proves the first result. The second result (and hence
Parseval’s Theorem) is proved by expanding <z, y> and using
the fact that S is orthonormal.

e The result continues to hold for more general inner-product
spaces.

14

Orthogonal projection and best approximation

e Let U be a subspace of C* and let {ui,...,u,} be an or-
thonormal basis for U.

e Let Ut denote the orthogonal complement of U in C™.
e Then, every vector y in C" can be written uniquely as,
y=1+z,
where,

'g =<y,ur>u; +---+ <Y, Um> U,

isin U and z is in U+,
e Furthermore, Pythagoras’ Theorem implies that,

<y,y> = <§,9>+ <z,z>.

e These results admit straightforward generalisations to more
general inner-product spaces, and can be proved along the
same lines as the previous proposition.

15



e 7 is called the orthogonal projection of y onto the sub-
space U.

e It is the (unique) closest point in U to y (or the best ap-
proximation of y in U), in the sense that,

ly =l < lly =l

for all w in U distinct from 7.

e Consider the problem of approximating y =t by a degree one
polynomial over the interval [—1, 1]:

— An orthonormal basis for P![—1, 1] consists of the first two
normalised Legendre polynomials,

\F \F
-, ¢,
2 2

— Hence, the best degree one approximation of ° in [—1, 1]

is given by,
"—<t5i>i+<t5\Ft>Ft
vESRmT R 22
3
= —t.
7

16

Linear transformations

e Let U & V be vector spaces over the field F, andlet £: U — V
be a transformation from U to V.

e L is called a linear transformation if
L(az+Py)=al(z)+LL(y),
for all z and y in U and all @ and 8 in F.

e Notation:

— U is called the domain of £ and V is called the target
of L.
—Ifwisin U, then £(u) is called the image of u under L.

—If S ={u,...,u,} is a subset of V, then the set £(S) =
{L(w),...,L(u,)} CV is called the image of S under L.

e The following are linear transformations:

1. Let £y : R? — R? denote anticlockwise rotation by an
angle 6 € [0, ).

2. Let £ : R* — R? denote reflection about the z-axis.

3. Let Cp's P o—pprcl denote differentiation.

17



o The reingé of £ is defined by,
R(L) ={L(z): z €U} = L(V),
and is always a subspace of V.
e The kernel (or nullspace) of £ is defined by,
N(L)y={zeU: L(z)=0}.
and is always a subspace of U.

® The rank of £ is the dimension of the range of L, p(L) =
dim{R(L)}.

o The nullity of £, denoted by v(L), is the dimension of the
nullspace of £, v(£) = dim{N(L)}.

o Let £:U — V be a given linear transformation and let y € V
be given. The equation £(z) = y has,
— no solutions if y ¢ R(L),
— exactly 1 solution if y € R(L) and N(£)={0},
— infinite solutions if y € R(L) and dim{N(£)} > 0. For if
L(z) =y, then

L(z +z) = L(z) + L(2) = y, Vz € N(L).

18

Matrix representation of linear transformations

e Proposition. Let U(F) and V(F) be n- and m- dimensional
Buclidean spaces, respectively. Any linear transformation £ :
U(F) — V(F) may be represented by a matrix via choosing
bases as follows:

— Let By = {uy,...,u,} be a basis for U(F).
— Let B, = {vy,...,un} be a basis for V(F).

— Define the matrix L € F™*™ as follows: the ith column of
L is the coordinate vector of L(u;).

Let z € U(F) have a coordinate vector #. Then,

y=L(z),

has the coordinate vector,

§ = L3.

19



e Proof. Let, e Let Ly denote anticlockwise rotation by an angle § of vectors

o2,
It I m R2:
_ B xXn .
L= € Fm, Ly(e1) = ey cosf+ey sin @ = coordinate: [C?SG }
lml lmn Slllg
and, Ly(e2) = —ey sin §+e5 cos = coordinate: —sing
R . 1 cos @
T 3
=11 |eF = C?Sa -—51116}
9 sinf cosf
. ,
T, e Let £ denote reflection about the z-axis in R?:
y = L(z) 1 0
E(el):el, E(ez)‘—“—-ez, = LZ[O _1}.
= E(Z :f;iu,-)
= Y #L(w) o Let Lp : P* — P3 denote differentiation:
: | | 0 1
= Y #(X ) Lp(1)=0=>coord. | 0 |, Lp(t)=1=-coord. | 0 |,
g Y 0 0
- 0 0
= 22 liZi)v;.
j ( P Jvi Lp(t*)=2t=coord. | 2 |, Lp(t*)=3t*=coord. | 0 |,
0 3
0100
So the jth coordinate of £(z) is X;1 ;iZ;, and the result follows. =7=l0020
0003

20 21



e Conversely, any m X n matrix defines a linear transformation
(via choosing bases) between n and m-dimensional Euclidean
spaces U(F) and V(F).

e A matrix representation of a linear transformation is not uni-
que (since bases are non-unique).

o Let U(F) and V(F) be, respectively, n- and m-dimensional
Euclidean spaces with given bases. Since:

1. The coordinate representation sets up isomorphisms be-
tween U(F) and F™ and between V(F) and F™,
. 2. Any linear transformation £ : U(F) — V() has a matrix
representation L € F™*",

Then, we can confine our attention to spaces such as F* and
F™ and matrices such as I € Fm™*",

o Let L € F™*". We can consider L as either,

1. a linear transformation from F" to F™, or,

2. the matrix representation of a linear transformation be-
tween n and m-dimensional Euclidean spaces U(F) and
V(F), respectively (with respect to some bases for U(F)
and V(F) ).

22

Change of basis and similarity

e Suppose that the linear transformation £ : V — V has a
matrix representation L; € C™*"™ w.r.t. a basis B; and let
z € V have a coordinate vector £; w.r.t. B;. Then y = L(z)
has a coordinate vector,

o= L12;.

e Let By be another basis. Then the coordinate vectors of z and
y w.I.t. By are given by,

B9 =T, o = T'1,

respectively, for some nonsingular 7' € C**" (in fact, the ith
column of T" is the coordinate vector of the 7th basis vector in
B; wrt. By). Hence,

U = T =TLii
= TL,T'%,,

and so the matrix representation of £ w.r.t. By is,

Ly =TL T,

e If T' € C™*" is nonsingular, then L and T LT are said to be
similar. Similar matrices represent the same linear transfor-
mation (w.r.t. different bases).

23



Matrices as linear transformations e The range of a matrix L € C™*" is defined by,

o Let L € C™". If [;; is the (¢, )th entry of L, we write R(L)={Lz: z €C"},
L=t and is always a subspace of C™.
* The transpose of L = [L;j] € C™*, denoted by L7, is that e The rank of a matrix L € C™*", denoted by p(L), is the
matrix in C**™ whose entries are [;;. That is, LT = [I;;] € : di o of th ‘7
. imension of the range of L.

... .. ) e Let L =|c; ... c,] € C™*" where ¢; € C™ is the ith column
e The Hermitian adjoint (sometimes called the conjugate Lex ) '

f L. Th
transpose) of L = [l;;] € C™*", denoted by L', is defined as © -
LI = [l_]z] & cnxm, R(L) = {L(E T E Cn}
: x
e The transpose, the Hermitian adjoint and the inverse all obey T 5 ] E1 i o
the reverse order law: i o
(AB)T = BTATv = {i CiT; 1 T; € C}
(AB) = B'A, = SI;;] {c Cn}
(AB)™' = B71A™! bt

Hence, the rank of L is the number of linearly independent

" (whenever the respective inverses exist). el iR

e Any vector z € C" can be regarded as a matrix z € C**1. A

] e The row rank of L € C™*™ is the number of linearly inde-
scalar o €C can be regarded as a matrix o € C'*1.

pendent rows of L. However, row rank = column rank, or,

p(L) = p(L").
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e The kernel (or nullspace) of L € C™*" is defined by,
N(L)={z €C": Lz =0}
and is always a subspace of C".

e The nullity of L, denoted by v(L), is the dimension of the
kernel of L.

e Since V(L) consists of all those vectors which are orthogonal
to the rows of L (or to the columns of LT), we have,

N(L) = [R(LI)*
It follows that p(LT) + v(L) = n, and so,
p(L) +v(L) =n.

e Let T" € C"*" be nonsingular. Then L € C"*" and T- LT
are similar, and so represent the same linear transformation.
Hence,

p(L) = p(T1LT),
v(L) = v(T7ILT).

26

o Let L € C™*" and y € C™ be given. The equation,
y = Lz,
has,
— no solutions if y ¢ R(L),
— exactly 1 solution if y € R(L) and N (L)=0,

— infinite solutions if y € R(L) and dim {NV(L)} > 0. (For
if Lt =y, then L(z +2) =Lz + Lz=y, Vz € N(L) ).

e Liquivalently, the equation has,

— no solutions if p(L) < p([L y]),

— exactly 1 solution if p(L) = p([L y]) and the only solution
toLz =0isz =0,

— an infinite number of solutions if p(L) = p([L y]) and
there exists a nonzero solution to Lz = 0.

e Notice that these are the only possibilities, e.g., the equation
y = Lz cannot have only two solutions.

e Let L € C™ " be given. The equation, y = Lz, has a solution
for every y if and only if R(L) = C™, or equivalently, if and
only if p(L) = m.

27



o L € C"*" is called nonsingular if p(L) = n. It follows that
Lz = y has a unique solution z = L™y for every y.

e Let L € C**". The following are equivalent.

1. Lz = y has a unique solution for every .
2. Lz =0if and only if z = 0.

3. p(L) =mn.

4. L is nonsingular.

5. det (L) #0.

e Let A, B € C"™*", Then,

1. In general,
det (A + B) # det (A) + det (B).

2. det (AB) = det (A)det (B),
3. det (I + AB) = det (I + BA),
4. det (A) = (det (A)), '

5. det (kA) = k™ det (A),

6. If A is nonsingular,

1

det (A7) = det (A)

28

Eigenvalues and eigenvectors

e A scalar A € C is called an eigenvalue of A € C"*" if there
exists a vector z € C" such that,

Ag = Az, z # 0.
z is called an eigenvector of A associated with \.

e Remarks:

1. Eigenvalues are only defined for square matrices.
2. An eigenvector cannot be the zero vector.

3. If z is an eigenvector associated with ), then so is az for
any nonzero scalar a.

4. When dealing with eigenvalues, we have to work with com-
plex vector spaces since the eigenvalues of a real matrix
may be complex.

e ‘The set of all eigenvalues of A € C"*™ is called the spectrum
of A and is denoted by o(A).

e Properties:

— A € (™" is singular if and only if 0 € o(A).
—If A € 0(A), then A\F € g(A*), for any k > 1.
— If T €C™™ is nonsingular, 0(A)=0(T1AT).

29



The characteristic polynomial

e We can write the eigenvalue-eigenvector equation as,
(Al — A)z =0, z 5 0
Thus, A € g(A) if and only if \J — A is singular, that is,
det (A — A) = 0.

e The polynomial p(s) = det(s/ — A) is called the character-
istic polynomial of A. The leading coefficient of p(s) is +1
and so p(s) has degree n.

o The eigenvalues of A are precisely the zeros of the character-
istic polynomial p(s).

e The (algebraic) multiplicity of an eigenvalue ) is the multi- .

plicity of A as a zero of p(s). An eigenvalue ) is called simple
if the multiplicity of X is one.

o Any matrix A € C"*" has n eigenvalues (counting multiplici-
ties). In fact, if 0(A) = {A,..., \,}, where we repeat eigen-
values according to multiplicity, then,

p(s) =(s— A1) (s —An).

30

Matrix diagonalisation

e Let A€C™*" have eigenvalues Ay, ...,\, and let £, ... ¢, be
the corresponding eigenvectors. Define,

M O - 0
T=[t 6], a=|] 20
0 0 --- ),

Then, AT = T'A. Furthermore, if ¢, . ..,t, are linearly inde-
pendent, then,

T7IAT = A,
and A is said to be diagonalisable.

e A € C™" is diagonalisable if and only if it has 7 linearly
independent eigenvectors.

e Eigenvectors associated with distinct eigenvalues are linearly
independent.

e Suppose that A € C"*" has n distinct eigenvalues. Then the
corresponding 7 eigenvectors are linearly independent, and A
is diagonalisable.

o The case of repeated eigenvalues is more difficult, and is ex-
plained in more detail in introductory textbooks on linear al-
gebra.
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e A € C™*" is called a normal matrix if,

AA = A A

e Normal matrices include the following special cases:

1. Diagonal matrices.

2. Hermitian matrices: A= A’. When A is real, this becomes
A=AT and A is called symmetric.

3. Skew Hermitian matrices: A=—A’. When A is real, this
becomes A=—AT and A is called skew symmetric.

4. Unitary matrices: non-singular matrices such that A=! =
A’. When A is real, this becomes A== AT and A is said
to be orthogonal. ‘

e Properties of normal matrices:

1. Any normal matrix A can be diagonalised by a unitary
matrix T: A =T'AT.

2. The eigenvalues of a Hermitian matrix are all real.

3. The eigenvalues of a skew Hermitian matrix are all imagi-
nary.

4. The eigenvalues of a unitary matrix all lie on the unit circle
in C.

32

Matrix exponential function

° CayleyQHamilton Theorem.
Let A € C™™ and let p(s) = det(s] — A) be the characteristic
polynomial. Then,

p(A) =0.

e One consequence is that
A" = Prol + PogA+ -+ Pas1pA™,
AT = B+ fa1 A+ e+ P11 AT

A = BT+ B At Buir AT,

for some scalars f; ;.

e For any A € C™*", the series,
Ai
ﬁv

8

1=0

Il

converges and the limit is defined as the matrix exponen-
tial:
2 A3

A
exp(A)=I+A—I——2|—+§+--- .
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e Suppose that A € C"*" and let T' € C"*" be any nonsingular
matrix. Then,

(TT'AT) =T7*A'T,  i=0,1,....

e Suppose that A € C"*" is diagonalisable so that,
A=TAT,
for nonsingular 7' € C**" and diagonal A € C**™. Then

TAZT1
T

bl

exp(A) = [ +TAT! +
= Texp(A)T.

e Some useful facts about the matrix exponential:
1. exp(A) exp(B)#exp(A+B) (unless AB=BA).
2. exp(—A) = [exp(A)] 7,
3. Aexp(A) = exp(A)A.
4. % exp(At) = Aexp(At) = exp(At)A.
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9.

Linear Optimal Control - Tutorial 1

Linear algebra

Compute the Legendre polynomials of order 0,1, 2,3, 4 and 5 in the in-
terval [~1,1]. Compute their norm and modify the polynomial to obtain an
orthonormal set of polynomials.

Let £ be a linear transformation. Show, using the very definition of subspace,

that R(L) and A/(£) are indeed subspaces.

Let £p® : P5[-1,1] — P?[—1,1] be the second order derivative operator.
Compute the matrix representation I, of this operator with respect to the basis
composed of the Legendre polynomials of order 0, 1, 2, 3, 4 and 5. Compute
range and kernel of this operator.

Repeat Exercise 3 using as a new basis the set of polynomials 1, ¢, ¢2, ¢3, ¢4
and #°. Let [ be the matrix representation of the operator £p?: P5[—1, 1] —
P?[~1,1] with respect to the new basis. Show that L (in Exercise 3) and [
are similar matrices.

Let L € IR™™. Prove that eigenvectors of L corresponding to distinct eigen-
values are linearly independent.

The claim: two matrices L € R™" and [ € R™" are similar if and only if
they have the same spectrum, is true or false? Motivate your answer.

Let A € R**". Using Cayley-Hamilton Theorem write A~1 as a function of
A=, A, ..., A1,

Let A € R™™ and p(s) = det(sl — A) ="+ a,s" 14+, + ais + ag.
Show that |a,_;| = trace(A) and lao| = det(A). The trace(A) is the sum of
all diagonal elements of the matrix A.

Compute the exponential of the following matrices

0 —-w - -1 0 -1 1
w 0] 0 -1/’ 0 -1 |-





