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Objectives of the project

* Fundamentals of dynamic hysteresis in multiphase flow

* A better characterization of multiphase flow properties, looking at both the effects of
saturation path and flow rate.

* Potentially applicable to other situations including CO, and H, storage.

* Investigating hydrogen storage and use in different rock geometries.
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Background

Saturation, Interfacial area, Mean curvature and Gaussian

) o B D Stepl —
curvature give a full characterisation of geometry. Step2 — ~ -~
. . w ! Step3
° = D
Capillary pressure depends on both the saturation and > + aing . Hysteresis Loop
saturation history. = '
2| X
* X-ray imaging techniques enable us to use this theory by = /’77\
Q. : ~
: : 8 b/b/},-
measuring these four functions. op
* UHS can be considered as a long-term energy storage

solution (inject into the surface reservoir and withdrawn).
C A Green

E
Water Saturation Hydrogen

* Porous formations are good places for GT storage and use. _ _
Figure 1: Two-phase flow hysteresis of the gas-water

system during drainage and imbibition steps.
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Two-phase hydrogen experiment

* Investigate the hysteresis of a two-phase hydrogen-

brine system at unsteady-state conditions. ‘
Y Y v g -
* Meso-scale, 12 mm diameter core and repeated H,
- —
- -
and brine injection. ~| !
) ) ) Bentheimer
* Lab-based micro-CT, using a Zeiss Versa XRM-500 X-ray sandstone
microscope. l '
Table 1: Capillary number for unsteady state H2-Brine experiment, Ca::j = ﬂ - T 2 0 ‘.'
Ojj e e ’E
Flooding Step Ca,, Cag, Flowrate{ml/min) —
Water 5.8E-09 - 0.06 4
Gas - 1.3E-07 2,00
Gas - 3.9E-08 0.40
Gas B 7.7E-03 0.08 Figuré 2: Schematic diagram for the fwo—phase gas-water experiment.
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Dry, normalised and segmented images

Table 2: Procedure of the sample scanning.

e Using Non-Local Means filter with Watershed

Scan Steps Section

segmentation technique.
1st Dry scan 1-6
2nd Fully saturated 1-6
* Image resolution is 5.86 pm. 3 T Drainage 6
4th afterl6hrs 2,5
th t thiti _
Mineral Rock 5 15t Imbibition 1-6
Rock 6th afterl6hrs 2,5
. Brine 774 2" Drainage 1-6
gth after16hrs 2,5
gth 2"d Imbibition 1-6
10th after16hrs 2,5
11th 3'd Drainage 1-6
. . ) . ) ) . ) 12th after16hrs 2,5
Figure 3: Dry(1), normalised(2) and segmented(3) two-dimensional slices of three-dimensional images of the
. . h d ey .
Hydrogen-brine experiment. 13¢ 3" Imbibition 1-6
14th after16hrs 2,5
15th after 1day 1-6
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Imaging of gas saturation for all cycles
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Figure 4: Fluid saturation profiles of gas during 3 cycles
during imbibition and drainage.

* Hydrogen is dissolved near the inlet when brine is injected.
e @Gas saturation can increase after 16 hrs in the volume studied:

gas may rise upwards from lower in the sample.

* Drainage (gas injection) leads to an increase in gas saturation.
* Not much change after water flooding.

Gas Saturation (Sw)

04

>
~ 15! Drainage-initial 15! Drainage-16 hrs storage
18! Imbibition-initial ~ 18! Imbibition-16 hrs storage
= 2" Drainage-initial —— 2" Drainage-16 hrs storage
2" |mbibition-initial 2" |mbibition-16 hrs storage
= 3rd Drainage-initial - ~— 3rd Drainage-16 hrs storage

Distance from inlet of the 5th section (x/L)

Figure 5: Saturation profiles of water during 3 cycles for a
sub volume.
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* Rearrangement and tendency for some of the smaller tDrainage A e
. 0.20
bubbles to disappear and add to the larger bubbles but not
. . 0.16
necessary completely in a connected ganglion <
. ey . . . . . . T 012
* After imbibition one big ganglia begins to dominate the Ostwald Ripening ke
. . 0.08
volume, which makes the withdrawal of hydrogen through a
connected pathway possible. |
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Figure 6: Ganglia size distribution of hydrogen-brine during first cycle for a sub volume. Volume (um?)
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Analysis of discrete ganglia S
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Figure 7: Ganglia size distribution of hydrogen-brine during second and third cycles for a sub volume.
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Pore occupancy maps
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As expected, gas (shown in green) tends to reside in the larger pores. Both the actual distribution
and occupied fractions are shown.
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Figure 8: Histogram of the distribution of gas-filled pore elements at different stages of gas injection and the throat occupancy of the volume fraction at different radii.
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Measurement of interfacial area &
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Figure 10: Interfacial area measurements of each two
phases for initial and after 16hrs for 3 cycles
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Improvement of the experiment protocol
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*¢ Porous plate to allow a higher initial ‘ , E 3 -

hydrogen saturation. l. iz:m} > !

s Using imposed pressures to determine ‘—_v "-v
capillary pressure in drainage. ‘ "‘E ! -
% Pre-equilibrated brine to reduce the ‘ -
effect of dissolution. -
¢ Higher pressure, 10 MPa, to better - "+ :;.’ A u B
represent reservoir conditions. -
- - - v RO—

- v re et - sew w

Figure 11: Schematic diagram for the two-phase gas-water experiment.
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Did the experiment work?
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High Initial gas saturation after hydrogen injection

Uniform gas saturation after injection and withdrawal

Brine

Rock

Drainage Drainage Imbibition
Initial 16 hrs storage Initial

Figure 12: Dry two-dimensional slices of three-dimensional images of the Hydrogen-brine experiment.
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Conclusions

* Studying hysteresis during hydrogen injection is the main purpose of my work.

 The relationship between saturation, area, curvature and Gaussian curvature will be
measured.

* Drainage and imbibition processes in 3 cycles for a hydrogen-brine system at the unsteady
state condition have been investigated.

* The gas saturation was between 30% and 40% after each gas injection near the top of the
sample

* Dissolving gas in brine changes the gas saturation along the sample.

* We saw the effect of Ostwald ripening: some of the smaller bubbles disappear and are
rearranged to the larger bubbles but are not necessary in a connected ganglion.
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Future work

* | have looked at the carbonate sample for which | have performed a similar suite of experiments,
and | am still analysing the results.

* Finishing the result analysis of Hydrogen-Brine experiment (porous plate).

* Preparing the procedure for a new set of experiment, different types of rock.

« How can we extend the experimental protocol to measure capillary pressure and relative

permeability for a range of saturations, after allowing pore-scale equilibrium (Ostwald ripening)?
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Thank you
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