Imperial College London

Primary Drainage and Waterflood Capillary Pressures and Fluid Displacement in a Microporous Reservoir Carbonate

Guanglei Zhang, Martin Blunt and Branko Bijeljic

Imperial College London

Objectives

The objective of this experiment is to use a Differential Imaging Porous Plate (DIPP) method to:

- a) characterize primary drainage and waterflood capillary pressures and fluid displacement in a microporous reservoir carbonate, and
- b) provide measurements for validation and calibration of our generalized network model (GNM)

Sample and experimental protocol for primary drainage, imbibition and waterflooding experiments

- He Porosity: 0.190 ± 0.003
- Measured permeability: 88 ± 2 mD

- 1) Confining pressure: 1500 kPa; Back pressure: 500 kPa
- 2) Dry scan and 30%KI brine scan
- 3) **Primary drainage**: Inject decane at 8 capillary pressures from ~10 to ~1000 kPa with a water-wet porous plate
- 4) Dynamic ageing with crude oil for 3 weeks
- Metal end piece 5) **Imbibition**: put the bottom end into 30%KI brine for one week
 - 6) **Waterflooding**: Inject 30%KI brine at 8 capillary pressures from \sim -25 to \sim -1000 kPa with an oil-wet porous plate

CT imaging

Three high resolution scans (3.58 µm) for top 14.2 mm of the sample

Greyscale-based differential imaging to compute porosity

 $\textbf{Differential imaging} \rightarrow \textbf{fewer parameters} \rightarrow \textbf{lower uncertainty}$

Greyscale-based differential imaging to compute saturation

Differential imaging \rightarrow fewer parameters \rightarrow lower uncertainty

Watershed segmentation for grain, macropore and sub-resolution pores

Length (mm)

Greyscale images for primary drainage experiments

Total brine saturation during primary drainage

Brine saturation in microporosity during primary drainage

Brine saturation in macropores during primary drainage

Capillary pressures vs S_w during primary drainage

Greyscale images for waterflooding experiments

Total brine saturation during waterflooding

Brine saturation in sub-resolution pores during waterflooding

Brine saturation in macropores during waterflooding

Capillary pressures vs S_w for waterflooding

Capillary pressures vs S_w for drainage and waterflooding

Capillary pressures vs S_w in sub-resolution pores for drainage and waterflooding

Capillary pressures vs S_w in macropores for drainage and waterflooding

Imperial College London

Conclusions

- Developed an experimental methodology to measure capillary pressure during primary drainage and subsequent waterflooding using a porousplate technique.
- Can accurately impose capillary pressure and a homogeneous equilibrium saturation distribution.
- Applied the method to a micro-porous carbonate.
- Can distinguish capillary pressure in resolvable macropores and microporosity.
- Benchmark experiments for multiscale pore-scale modelling.

Imperial College London

Any questions?

We gratefully acknowledge funding from TotalEnergies.