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Darcy’s Law

▪ Fluid flow through porous media is modelled using the two-

phase extension of the Darcy’s law.

▪ There is a linear relationship between pressure gradient and 

flow velocity.

▪ Interface between fluid phases at a fixed saturation is 

invariant.

▪ The flow of a phase through the porous media occurs only 

through an established flow pathway.

Multiphase Darcy’s law:



Recent Findings

However, recent experimental studies 

in relation to nonlinear intermittent flow 

behaviours during multiphase fluid flow 

in porous media established the 

following:

▪ At fixed average fluid saturations, 

the arrangement of fluid phases is 

dynamic (Tallakstad et al., 2009a & 

2009b).

▪ There is a transition from a linear flow regime to a nonlinear flow regime as 

flow rate increases (Spurin et al., 2019; Gao et al., 2020).

▪ Relationship between capillary number and pressure gradient at certain range 

of flow rates becomes nonlinear (Zhang et al., 2021).

Zhang et. al., 2021



Fluid Intermittency

▪ Non-linear relationship between pressure gradient and 

capillary number is attributed to fluid intermittency.

▪ This is the periodic disconnecting and reconnecting of the non-

wetting phase along flow pathways.

▪ Disconnection of the non-wetting phase occurs after a series 

of snap-off events along the flow pathways.

▪ Fluid intermittency is caused by the nonwetting phase 

periodically finding more conductive pathways through the 

pore space.

▪ The interplay of viscous and capillary forces largely 

determines the occurrence of intermittent flow.

▪ Intermittent pathway flow is controlled by:

- Capillary number - Viscosity ratio

- Pore geometry - Wettability



Thermodynamically-based 

Network Model

▪ An analogy between thermodynamics and immiscible 

fluid flow in porous media could be used to study 

nonlinear flow behaviours (Hansen et al., 2022).

▪ Insights will be taken from the thermodynamic 

formulation of multiphase flow proposed by Hansen 

and colleagues.

▪ A new traditional quasi-static pore-scale network 

model will be first developed.

▪ Modification to a probabilistic dynamic pore-scale 

network model will then be done.



Capillary-dominated displacement 
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Thermodynamically-based 

Network Model

In traditional pore-scale 

network model, all elements 

either have a probability of 

0 (not filled) or 1 (filled).

In this proposed model, 

area occupied by each 

phase and the conductance 

of each phase in each 

element will depend on the 

probability of filling.

In this proposed model, the 

probability is [0, 1]. The 

model should agree with 

the traditional model where 

there is no intermittency.



Quasi-static Network Model
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Primary drainage results

Simulation results

quasi-static network model

Secondary imbibition results



Simulation results

Probability filling when c = 250 Pa

Plots of Pc, kr and fw against Sw Probability distribution for filling at the different values of Pc*



Simulation results

Probability filling when c = 500 Pa

Probability distribution for filling at the different values of Pc*

Pc* = 31810 Pa Pc* = 13743 Pa Pc* = 9746 Pa

Pc* = 8184 Pa

Plots of Pc, kr and fw against Sw



Probability distribution for filling at the different values of Pc*Plots of Pc, kr and fw against Sw

Simulation results

Probability filling when c = 1000 Pa



Probability distribution for filling at the different values of Pc*Plots of Pc, kr and fw against Sw

Simulation results

Probability filling when c = 2000 Pa



Probability distribution for filling at the different values of Pc*Plots of Pc, kr and fw against Sw

Simulation results

Probability filling when c = 3000 Pa



Probability distribution for filling at the different values of Pc*Plots of Pc, kr and fw against Sw

Simulation results

Probability filling when c = 5000 Pa



Probability distribution for filling at the different values of Pc*Plots of Pc, kr and fw against Sw

Simulation results

Probability filling when c = 7500 Pa



Probability distribution for filling at the different values of Pc*Plots of Pc, kr and fw against Sw

Simulation results

Probability filling when c = 10000 Pa



Probability distribution for filling at the different values of Pc*Plots of Pc, kr and fw against Sw

Simulation results

Probability filling when c = 15000 Pa



Probability distribution for filling at the different values of Pc*Plots of Pc, kr and fw against Sw

Simulation results

Probability filling when c = 20000 Pa
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