
Bird Sound Classification
Individual Project

AUTHOR: SUPERVISORS:
SINDURAN SIVARAJAN BJÖRN SCHULLER

EDUARDO COUTINHO

Department of Computing
IMPERIAL COLLEGE LONDON

Submitted in part fulfilment of the requirements for the
degree of BACHELOR OF ENGINEERING in Computing

JUNE 2016

ABSTRACT

The analysis of birds present in an area is of great importance to the study of ecology and can
provide crucial information relating to the environmental changes. Current methods primarily
requires an Ornithologist to perform manual classification, either directly or indirectly using
collected visual and audio data. Recent advancements in Machine Learning techniques has
attracted a wide variety of uses including using audio data for classification. The aim of this
research is to apply state-of-the-art Machine Learning techniques suited to classification to
classify birds into its corresponding species, family and order with the use of various input
features that have proven to be successful in similar tasks in the past. The dataset used is the
RefSys Dataset obtained from Animal Sound Archive consisting of 6476 audio recordings in total.
Having processed the database the final database consisted 36 species/15 family/8 order. The
models that were tested ranged from simple popular models such as Support Vector Machines
to complex deep neural networks. The best models tested here achieve an Unweighted Average
Recall of 90.7%, 88.2% and 79.6% for species, family and order respectively using Artificial
Neural Network. The results obtained in this project has shown a significant improvement over
state-of-the-art approaches on the same dataset.

i

DEDICATION AND ACKNOWLEDGEMENTS

I would like to thank Björn Schuller for suggesting this project. I would also like express my
appreciation of Eduardo Coutinho for his whole hearted cooperation and constant encouragement
throughout the project.

iii

TABLE OF CONTENTS

Page

1 Introduction 1

2 Background 3
2.1 Previous Works . 4

2.2 Machine Learning Models . 4

2.2.1 Support Vector Machines . 5

2.2.2 Linear Discriminant Analysis . 7

2.2.3 K Nearest Neighbour . 8

2.2.4 Artificial Neural Network . 9

2.2.5 Convolutional Neural Network . 11

3 Dataset 13

4 Features 17
4.1 Engineered Features . 17

4.2 Automatic Feature Extraction . 18

4.2.1 Raw Audio Data . 18

4.2.2 Spectrogram . 18

4.2.3 Discrete Wavelet Transform . 19

5 Implementation 21
5.1 Overfitting . 21

5.2 Parameter Optimisation . 21

5.3 Pre-processing . 23

5.4 Method . 24

6 Results 27
6.1 Support Vector Classification . 29

6.2 NuSVC . 30

6.3 Linear Discriminant Analysis . 32

6.4 K Nearest Neighbour . 34

v

TABLE OF CONTENTS

6.5 Artifical Neural Network . 36

6.6 Convolutional Neural Networks . 38

6.6.1 Raw Audio . 38

6.6.2 Spectrogram . 39

6.6.3 Wavelets . 45

6.7 Summary of Results . 46

7 Conclusions and Outlook 49

8 Appendix 53

Bibliography 59

vi

C
H

A
P

T
E

R

1
INTRODUCTION

Birds are found everywhere, and the species present in a specific area can give more information

on the biodiversity [10] and of the species richness and endemism [18] of wildlife in that particular

area. In addition the difference in distributions of the different species of birds in a particular

geographical area over a period of time, can also suggest changes in climate [6] and predation.

Animals in the wild are primarily classified using visual and/or acoustical data. Current

methods of classification of birds include visual analysis using photography and/or telescope due

to their optical advances allowing little loss in quality. At present it requires human intervention,

in particular that of an ornithologist to identify any species that exist in the biodiversity for a

highly accurate classification or in few cases machine learning algorithms are used to automate

the process but suffers from low classification rate or noise in images such as bad weather. Birds

sound is another aspect that is commonly used in the classification of birds, but again requires

human intervention. Animal classification with sound has proved to be effective in the past [4]

many new species have been discovered by differences in calls of the birds rather than visual

difference since the birds have little morphological differences [42].

Machine Learning has had recent advancements and has also proved to be highly useful in

the automated classification and analysis of sounds. However the application of bird classification

from sounds using machine learning techniques has only been analysed with a few number of

species or manually processed/noise free audio samples and is thus unpractical for application in

the real world for ecologists [41], though some useful specific analysis for large scale application

exist [32]. While the classification rate analysis for a small number of species may look promising

when extending it to the large number of species that are actually present the results may not

be as satisfactory due to small differences in variances of species. Current machine learning

1

CHAPTER 1. INTRODUCTION

algorithms that have proved to be successful in classification are Artificial Neural Networks

and Convolutional Neural Networks which have not been explored as much in the area of bird

classification as Support Vector Machine has [23].

The aim of this project is to investigate multiple machine learning models in the classification

of birds. Initially engineered feature sets will be analysed with models that are suited to work

with a relatively small input size. The models include Support Vector Classification (SVC), K-

Nearest Neighbour (KNN), Linear Discriminant Analysis (LDA) and Artificial Neural Network

(ANN). Subsequent to this automatic feature extraction will be investigated with inputs such

as Spectrogram, Wavelets and raw audio data using Convolutional Neural Network (CNN) to

extract key features. The advantage of using engineered features is that spectral features have

been specifically analysed and extracted therefore the machine learning algorithm only has to

classify the given input. However with automatic feature extraction no prior knowledge has to

be known as the Machine Learning model will extract key features. The performance of all the

models are given in Results (Chapter 6). ANN has led to the best performance on the Test set,

giving an accuracy of 91.2% and an Unweighted Average Recall of 90.7% in classifying 36 species

of birds. The findings show that there is a potential of Machine Learning in the classification of

birds if further research is done. Some further works are discussed in Conclusions and Outlook

(Chapter 7).

2

C
H

A
P

T
E

R

2
BACKGROUND

Living organisms are classified in many ways, with the most general being the kingdom whereby

organisms are classified as being one of Animals, Plants, Fungi, Bacteria or Protists. Animal

Kingdom is then divided further into smaller groups known as Division (Phylum) and then

Subdivision (Subphylum) [39] and whereby major classes include invertebrates and vertebrates.

Order is a taxonomic rank in which organisms are further split into organisms with differences,

for example humans are Mammals and order of humans is Primates. Order is then further

classified using family, in which organisms with similar features are gathered together.

All breeds of dogs for example belong to Canidae family, whereas humans belong to the

Hominidae family along with Chimpanzees, Gorilla and Orangutan [14]. Following Family is

the Genus which is then followed by the most specific classification of species and is named

using the Binomial (two name) system, where the first indicates the genus and the second the

species. Modern Humans are Homo sapiens, whereas other organisms in the Genus Homo have

all become extinct including Homo Neanderthalensis commonly known as Neanderthals. Modern

taxonomy and the hierarchical classification is cemented with the work by Carolus Linnaeus and

Charles Darwin [12].

Different animals produce sounds in different ways. The speech process that most humans

take for granted is also produced in a complex way. Humans as they breathe air out of their lungs,

passes the larynx [24], which causes the air to vibrate, this is then finely tuned to produce the

required phrase, by shaping the throat, tongue and mouth in a specific combination. Birds on the

other hand use their syrinx to make noises, the figure below (Figure 2.1) shows the position of

the syrinx. Different species of birds have different number of syringeal muscles [11], and hence

their range of calls vary allowing them to be differentiated.

Recent developments in Computational Paralinguistic has allowed computers to extract

engineered features for use in classification [43] from not the context of speech but rather the

3

CHAPTER 2. BACKGROUND

FIGURE 2.1. The location of the Syrinx can be seen clearly[11]

vocal features. This principle can also be observed in different species of animals, particularly

birds. Different species have different calls, and can be differentiated if the right features are

extracted and analysed.

2.1 Previous Works

A considerable amount of research exists in the area of bird classification. “Wavelets in recognition

of bird sounds” [44] for instance used wavelets to classify 8 species, and attained an accuracy of

96%. However they cannot all be used as comparison to this project, as different databases were

used and would not give rise to a fair comparison. Related work that has been done using the

same database includes Extreme Machine Learning applied to Bird Sound Classification [41].

Different number of species were tested ranging from 10 to 54 and the features used include

engineered features which will be one of the feature set investigated in this project. A mean

Unweighted Average Recall (UAR) of 89.56% and 85.30% was obtained for 30 and 40 species

respectively. These UAR will be used as a comparison to the results obtained in this project.

Another research that used the same database is large-scale identification of birds in audio

recordings, however the number of species investigated is very large [33].

2.2 Machine Learning Models

Machine Learning is defined by Tom Mitchell in his book [37] as “A computer program is said to

learn from experience E with respect to some class of tasks T and performance measure P, if its

4

2.2. MACHINE LEARNING MODELS

performance at tasks in T, as measured by P, improves with experience E”. Supervised learning

is when the output is known for the corresponding inputs, and is also provided for the machine to

learn.

Animal Classification will be a supervised learning task, since the dataset consists of audio

samples (input) and the corresponding animal class (output). Machine Learning has been applied

quite frequently in the classification of animals, and it mainly involves images of animals and

occasionally sound in particular Spectrograms as input. With images and spectrograms each

pixel can be analysed for patterns, with sound however relevant features will have to be extracted

if they are to be fed directly as input. The choice of input features will play a significant role in

the classification rate and the confusion between classes.

Classifying animals from their acoustical properties is a multiclass classification problem,

in which there are multiple output classes the input can be classed as, and it is the machine

learning algorithms or rather our responsibility to ensure that as many samples are classified

correctly.

Below are the most popular machine learning models that are commonly used for supervised

classification in machine learning, due to their ability to learn complex patterns rather quickly or

to a high accuracy.

2.2.1 Support Vector Machines

Support Vector Machine (SVM) is a machine learning model, that takes a multidimensional

vector and the class they belong, and creates a boundary between the different classes and their

input, so that future data can be easily classified by inspecting the boundary in which it falls

in [47]. It is important for the dimension of the input to be much smaller than the number of

samples to avoid poor performance. Thus it is only suitable for smaller engineered feature sets.

In mathematical terms, one or more hyper-planes are constructed, which acts as a boundary

allowing classification to be performed. The confusion between classes can be reduced by ensur-

ing the distance between points on sides of the hyper-plane have a large enough margin, thus

ensuring that generalization error is reduced by classifying unseen data correctly. The figure

below (Figure 2.2) shows how a large margin ensures that there is great separation and thus

less confusion. Unlike other classifiers which consider all the data points, SVM only considers

points that are close to the decision boundary. However depending on the other parameters, a

large margin may not always lead to the optimal hyper-plane as if there are errors in dataset,

and a particular data point lies very close to data points of other classes.

5

CHAPTER 2. BACKGROUND

FIGURE 2.2. An optimal hyper-plane separating data points with maximum margin [2]

Different kernel function exists which ultimately determine the shape of the hyperplane. The

most common kernels used are linear kernel and radial basis function (see Figure 2.3). Linear

kernel split the plane using linear combinations, whereas radial basis function (RBF) also known

as Gaussian kernels are commonly used to approximate functions and are functions that are

based on the absolute distance from the ’centre’ point (r = ||x− xi||) [38]. The RBF kernel between

two data points, x and x′ is defined by:

K(x, x′)= e−γ||x− x′||2

where ||x− x′||2 is the Euclidean distance, γ is a parameter specified and K(x, x′) is given as a

feature vector.

FIGURE 2.3. The shape of decision boundary is determined by the kernel function [16]

6

2.2. MACHINE LEARNING MODELS

2.2.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a statistical technique that is commonly used in classifica-

tion tasks. In its simplest form, it identifies the key features that best determine the class and

then uses predetermined rule from the training phase to classify the newly encountered instance.

The class is considered to be the dependent variable and the features that give rise to the discrim-

ination between the classes are considered to be the independent variable. Thus the dimension of

the separator that separates the classes is dependent on the number of independent variables.

Figure 2.4 shows how LDA separates the classes for two attributes.

FIGURE 2.4. The points are classified into groups and then linearly separated [50]

The general idea for classification is to classify the instance into the class with the highest

conditional probability. The challenge however lies with computing the metrics needed to compute

the conditional probability. Bayes theorem states that:

P(C = c|X = x)= P(C = c)∗ P(X = x|C = c)
P(X = x)

,

where C is the class and X is the instance

Since the current observed instance is the only instance considered P(X=x) = 1, and thus can

be removed. Assuming the classes all are equally probable P(C=c) (the prior probability) can be

written as:

P(C = c)= 1
number O f Classes

P(X = x|C = c) is the probability density function (pdf) which gives the probability of instance

occurring, given that only class c is considered and it is modelled by the multivariate normal

distribution:

7

CHAPTER 2. BACKGROUND

P(X = x|C = c)= e−
1
2 (x−µk)T∗Σ−1∗(x−µk)√

2πk ∗|Σk|
Where µk is the mean if class k and Σk is the covariance matrix of class k which are both

derived from the training examples. However since the P(C = c|X = x) is not normalized, it

is normalized by dividing the obtained conditional probability, by the sum of the conditional

probabilities for all classes.[34]

2.2.3 K Nearest Neighbour

K Nearest Neighbour (KNN) is an instance based learning algorithm which instead of generalising

the training data and extract common patterns between like classes, it uses a memory based

approach in which new instances are compared with the training examples that have been

provided [40]. KNN works on the principle of majority voting [40], the key parameters of KNN

are the number of nearest neighbours considered (K), the algorithm used for computing the

nearest neighbours and how different nearest neighbours affect the output.

The training instances are simply stored upon training, though in most cases it is stored in

an ordered manner, so that upon retrieval, the nearest neighbours can easily be computed thus

reducing classification time.

Upon classification the K neighbours are retrieved and they are weighted depending on the

weighting algorithm used, and the class of the new instance is calculated by the formula below.

v(xd)← Ci ↔ (∀ j 6= i)
∑
r

wr ·E(Ci,V (xr))>∑
r

wr ·E(C j,V (xr))

where E(C,V) gives 1 if and only if C and V are equal else 0.

The formula simply states that the class of instance i will be Ci if and only if the number of

neighbours that are of class Ci is strictly greater than the number of neighbours for all other

class C j, with respects to some weight function w. The common weight function is the inverse

distance which takes the reciprocal of the Euclidean distance of the instance in question and the

current training instance being considered [40]. If however the feature of an instance is discrete,

Euclidean distance would not work, and therefore other distance metrics are used e.g. Hamming

Distance [29].

Figure 2.5 below coherently explains K Nearest Neighbour, if we consider all the points within

the large dotted red circle as our nearest Neighbours, and X in the centre as our new data point,

then if we use KNN without any weight then X would be classified as - since the number of - is

much greater than +. However if an inverse distance weight is used, then it is possible for X to be

classified as +, since they are much closer than the - which are further away.

Being a lazy learning method it has the clear advantage that training time is really short,

since it primarily involves storing the training instances. As a result of this, no processing is done

8

2.2. MACHINE LEARNING MODELS

FIGURE 2.5. An illustration of a typical KNN classification [8]

on the training instances, to learn any characteristics. Weighted KNN is also robust to noisy

training data, since the number of neighbours that are affected by noise is likely to be small and

when using a weighted classification then the noisy data will be effectively omitted. However no

concept is learned and thus a hypothesis cannot be interpreted, since it does not explicitly learn

a generalised hypothesis. The classification time will be quite large, since almost all the work

required is done at this stage. There is also the major problem of the curse of dimensionality [25],

in which large number of features can cause difficulties in classification. In distance-weighted

KNN for example, there may be attributes that remain constant or have little changes but do not

affect the class, whereas there may be other attributes that may change quite drastically, but can

play a significant role in the classification. This can be avoided by some form of feature reduction

prior to training and classification.

2.2.4 Artificial Neural Network

Based on the biological neural network, Artificial Neural Network (ANN) is commonly applied

to learn complex functions that are unknown using training data. Unlike some of the previous

models in which a function is approximated using the input and the corresponding output, with

ANN the model familiarises the patterns in the input and the output, much like the human brain.

There are three types of layers in a neural network, in particular the input layer, which has a

9

CHAPTER 2. BACKGROUND

node for every input value, hidden layers which are fully connected to the previous layer and the

output layer that is also fully connected and that corresponds to the output. Each layer in the

ANN consists of one or more neuron which corresponds to the perikaryon in the biological neural

network [28]. The net input for node j in the current layer sums linear combination of the output

from the N nodes of previous layer,

node j net input=
N∑

i=1
xiwi j +w0

where w0 is known as the bias and is used to specify the threshold after which the neuron will be

activated [49]. The neuron then applies an activation function to the net input. The activation

function transforms the otherwise linear input to a nonlinear output which models more common

real world problems. Sigmoid function is a common activation function that squashes the input

to fall between 0 and 1

f (x)= 1
1+ e−x

Another activation function that has proved to be more common and effective is the ReLu

(rectified linear unit); f (x)= max(0, x), computationally can be calculated very quickly.

Figure 2.6: Figure on the left shows the sigmoid function while right shows ReLu [5]

The weights of each link between neurons of two adjacent layer is learned by backpropagation

from the training data. Backpropagation at a high level works by feeding the training data

through the network and inspecting the output, the weights of the network are then adjusted

to reduce the error between the expected output and the actual output using gradient descent.

The weights are updated by 4wi j =−η δE
δwi j

, where i and j refer to the nodes that the weighted

connection exists between, η is the learning rate and affects how quickly the network learns

(discussed in more detail in Parameter Optimisation, Section 5.2). The reason for the negative

sign is due to the gradient descent, so that δE
δwi j

is minimised. This is known as backpropagation,

since the errors are calculated backwards, starting from the output layer. The parameters that are

chosen and optimised by the user are known as hyperparameters and this includes the activation

10

2.2. MACHINE LEARNING MODELS

functions, learning rate and most importantly the network architecture, this includes the number

of layers and the number of nodes/neurons in the layers. Momentum is also a hyperparameter

and ensures that the network does not converge to a local optima. Momentum adapts the learning

rate by altering the learning rate in the direction that minimises error. Momentum takes a value

in the range [0,1] and at the end of each iteration a fraction of the previous learning rate is

added. A high momentum ensures that the network converges quickly to the global minima,

however if the momentum is too high then the network will become unstable. A large number of

libraries exist, that provide implementation to ANN. The library that will be used in this project

is PyBrain 1, it has a simple to use API and a verbose documentation allowing even a novice user

to implement their own ANN relatively quickly.

2.2.5 Convolutional Neural Network

Convolutional Neural Network (CNN) is an example of deep network. Deep networks unlike

ANN have many hidden layers, and as a result different training algorithms are used to ensure

that the weights do not drift to zero. Convolutional Neural Network have proved to be effective

in Computer Vision and its presence has also recently gained popularity in natural language

processing and audio processing [17].

FIGURE 2.7. The figure depicts a typical CNN, the layers are discussed in more detail
below [48]

Convolutional Layer applies different filters (kernel function) at every offset of the previous

layer matrix, and stores the result, the subsampling layer then downsamples the large matrices

obtained from convolutional layer. Subsampling layer reduces the matrix by taking the average

(average pooling) or max (max pooling) of non-overlapping sub regions in the matrix. This process

of convolving then downsampling is repeated until key features are extracted, and is then fed

through multiple dense (fully connected) layers.

A key useful property of CNN is that the key features of the input does not have to be specified

but will be extracted by the CNN itself. Thus not much pre-processing has to be done to the input

and is the ideal model for automatic feature extraction.

1http://www.pybrain.org/

11

http://www.pybrain.org/

C
H

A
P

T
E

R

3
DATASET

Many online resources exist with access to animal noise dataset. Xeno-canto 1 for example, gives

access to a plethora of free user collected bird noises along with the species and some metadata

about the geographical location. At present it consists of 290,754 recordings of 9,498 species from

2,748 users. Macaulay library 2 is a potential paid resource; claiming to be the largest archive

of animal sounds consists of “175,000 audio recordings covering 75 percent of the world’s bird

species”. Animal Sound Archive 3 will be the dataset used throughout this project. It consists

of 6,476 recordings of 272 Species/ 64 Families/ 23 Orders summing up to 279 minutes. Of the

6,476 sound files 3,684 consist of bird songs, 2,475 consist of bird calls, 237 are of juveniles and

the remaining audio files were undefined. However classes with too few instances (<50) were

removed to prevent overfitting, since the number of instances present was very low relative to

other classes. The specific classes considered are shown below.

The data recorded for each audio sample are listed in the appendix. Some further data are

included but are not directly relevant such as date created. The quality indicates how much noise

is present in the data and is element of {a,b,c,u}, where a is the highest quality and the dataset

primarily consists of data of quality b. This project will focus on the audio sample only instead of

the metadata, since this information may not always be available.

1http://www.xeno-canto.org/
2http://macaulaylibrary.org
3http://www.animalsoundarchive.org/RefSys/Statistics.php

13

http://www.xeno-canto.org/
http://macaulaylibrary.org
http://www.animalsoundarchive.org/RefSys/Statistics.php

Order Test Set 1 Test Set 2 Test Set 3
Accipitriformes, class 1 20 23 15

Podicipediformes, class 2 35 33 30
Anseriformes, class 3 55 58 54
Strigiformes, class 4 73 88 87

Charadriiformes, class 5 86 88 84
Piciformes, class 6 100 98 100
Gruiformes, class 7 154 148 159

Passeriformes, class 8 162 149 155

Figure 3.1: Test Sets for Order

Family Test Set 1 Test Set 2 Test Set 3
Laridae, class 1 24 24 23
Corvidae, class 2 31 25 36

Motacillidae, class 3 49 43 37
Anatidae, class 4 46 33 38

Acrocephalidae, class 5 127 140 113
Strigidae, class 6 60 54 59
Picidae, class 7 78 93 77
Rallidae, class 8 142 126 130
Sylviidae, class 9 157 144 136
Turdidae, class 10 124 124 143
Paridae, class 11 138 131 149

Fringillidae, class 12 148 141 142
Phylloscopidae, class 13 175 182 179
Emberizidae, class 14 195 191 189
Muscicapidae, class 15 220 255 247

Figure 3.2: Test Sets for Family

Species Test Set 1 Test Set 2 Test 3
Aegolius funereus, class 1 18 16 16

Dendrocopos medius, class 2 18 17 22
Sylvia melanocephala, class 3 13 20 21

Dendrocopos major, class 4 20 20 13
Dryocopus martius, class 5 17 17 23

Picus canus, class 6 19 18 18
Sylvia borin, class 7 31 20 28

Turdus pilaris, class 8 20 18 16
Troglodytes troglodytes, class 9 21 27 24

Acrocephalus arundinaceus, class 10 38 24 23
Acrocephalus scirpaceus, class 11 56 55 62

Fulica atra, class 12 20 16 26
Turdus viscivorus, class 13 19 16 26

Lophophanes cristatus, class 14 25 17 22
Phylloscopus bonelli, class 15 26 20 18

Porzana porzana, class 16 41 39 31
Emberiza calandra, class 17 24 22 22

Asio otus, class 18 23 29 18
Sylvia communis, class 19 19 30 28
Saxicola rubetra, class 20 30 26 23

Emberiza citrinella, class 21 23 32 31
Sylvia atricapilla, class 22 55 58 42
Rallus aquaticus, class 23 68 53 65

Emberiza schoeniclus, class 24 42 34 43
Turdus philomelos, class 25 47 57 49

Phylloscopus ibericus, class 26 31 50 52
Phylloscopus collybita, class 27 57 59 49

Luscinia luscinia, class 28 69 63 76
Phylloscopus trochilus, class 29 50 55 32

Parus major, class 30 47 45 52
Phoenicurus phoenicurus, class 31 56 50 49

Turdus merula, class 32 49 50 60
Luscinia megarhynchos, class 33 67 72 70

Periparus ater, class 34 61 63 65
Fringilla coelebs, class 35 84 89 88

Emberiza hortulana, class 36 91 97 91

Figure 3.3: Test Sets for Species

15

C
H

A
P

T
E

R

4
FEATURES

4.1 Engineered Features

The engineered feature set consists of 384 features. The 384 features comprises of 16 LLD and 16

corresponding delta regression coefficients to which 12 functionals are applied yielding the 384

features. The LLD consists of MFCC 1-12, RMS energy, probability of voicing and fundamental

frequency via autocorrelation function (ACF). The 12 functionals are arithmentic mean, standard

deviation, skewness, kurtosis, maximum and minimum value, range, relative position of max and

min value, linear regression slope, offset and quadratic error [20], this is summarised in Table

4.1.

Low Level Descriptors Functionals
ZCR mean
RMS Energy standard deviation
F0 kurtosis,skewness
HNR extremes: value, relative position, range
MFCC 1-12 linear regression: offset, slope, MSE

Table 4.1: Summary of engineered features investigated [20]

openSMILE [1] will be the toolkit that will be used to extract the engineered features from

audio files [22]. It is an open source toolkit with a simple command line interface and is very

simple to use and can be automated. Some configuration files are provided that extract different

low level descriptors. The configuration file to be used is IS09_emotion.conf (Interspeech

2009) [21]. Although the configuration file has been designed for emotion recognition it has been

used with successful results in animal classification in the past [41].

17

CHAPTER 4. FEATURES

4.2 Automatic Feature Extraction

4.2.1 Raw Audio Data

Time series is the raw audio data. It simply is an array of amplitude values for each sample of

the audio file.

FIGURE 4.1. Amplitude of audio over the series of samples [46]

Time series measures relevant data at regular interval, and in audio the interval is the

samples and the relevant data is the amplitude. The image above shows how the data is sampled

at regular intervals. The number of features extracted is thus dependent on the length of the

audio file and also the sample rate. Having analysed the number of features it seems that it is too

large for some machine learning techniques and therefore will only be tested with Convolutional

Neural Networks to extract features that seem to be useful in classifying the species.

4.2.2 Spectrogram

Spectrogram has been commonly applied in sound classifications particularly of animals [33]. The

spectrogram is generated by using the Fast Fourier Transform algorithm (FFT). The timeseries

data is divided into overlapping segments and then FFT algorithm is applied to obtain the

magnitude, which is then plotted on the y axis with time on the x axis. However the spectro-

gram will also include background noise and this can greatly affect classification. To deal with

this, background noise will be removed through a series of morphological image manipulation

techniques that have been applied to a similar context [33]. In particular median clipping which

calculates the median of every row and column and if the pixel value in a particular row and

column is more than the respective medians by a factor of 1
8 then it is set to 255 (white), dilation

filter which expands regions through the use structuring element and closing filters which will

18

4.2. AUTOMATIC FEATURE EXTRACTION

remove small background holes that are not relevant [33]. Figure 4.2 below shows a spectrogram

before and after the noise removal is applied and the difference is quite explicit. The axis have

been removed from the image as it is not relevant in the classification since the scale is kept

constant.

FIGURE 4.2. Left shows spectrogram obtained directly from sound file, right shows
after morphological processing

4.2.3 Discrete Wavelet Transform

Wavelets is commonly used in signal processing, the key concept is to analyse the different

frequencies in the audio file. Unlike Fourier Transform which provides a global approximation,

Wavelets provide local approximations. A moving window is used which creates spectrum in that

window, this window is then shifted along and the size of the window is varied.

Daubechies Wavelets are orthogonal wavelets that use vanishing moments to represent a

signal. P vanishing moments, allows any polynomial signal up to order P −1 to be represented

completely. A higher vanishing moment, can represent more complex signals accurately. A dbV

Daubechies wavelets, has V vanishing moments and therefore it is important to choose the

appropriate number of vanishing moments so that the number of features is not too large yet the

signal is completely represented. Daubechies wavelets have been used for bird sound classification

in particular db10 with satisfactory results [44]. The image below shows the different Daubechies

Wavelet functions.

19

CHAPTER 4. FEATURES

FIGURE 4.3. The different Daubechies Wavelets [36]

20

C
H

A
P

T
E

R

5
IMPLEMENTATION

5.1 Overfitting

A model m overfits the training data, if there is another model m’, where m performs better on the

training set than m’ but m’ has a better performance on the testing set [37], this is illustrated in

Figure 5.1. The model will learn the noisy data too, and will incorrectly classify future instances.

Underfitting on the other hand occurs when the model performs poorly on both the training set

and the testing set. This is primarily caused by lack of variance or too much noise in the dataset

and most importantly incorrect model parameters. Neural Network (NN) are also easily likely

to overfit if the number of hidden nodes or layers are too large, leading to the network learning

the training set perfectly. Overfitting is commonly avoided by using three disjoint sets. The first

set is used to train the network (training set), the second set is used to optimise the parameters

(validation set) and the final set is used to test the model. It is important that the instances in

the test set do not occur in the training or validation set to ensure that the final performance is

not biased. Another common measure is to reduce the dimension of the input, by feature selection

algorithms which reduce the size of the input vector to only the features that affect the output.

Also background noise from spectrogram representation of the sound files can be removed by

applying Median Clipping, Dilation followed by Closing Filters [33]. Alternatively generic noise

can be removed from the audio files by pre-processing the audio files using sound processing tool

such as SoX [7].

5.2 Parameter Optimisation

Choosing the parameters plays an important role in the accuracy but also plays an important

role on overfitting/underfitting. In Neural Network for example large number of layers lead to

21

CHAPTER 5. IMPLEMENTATION

FIGURE 5.1. The blue line shows the learned function and the orange boxes show the
points that were considered [26]

overfitting. Another important key parameter in Neural Networks is the learning rate, having a

learning rate that is too high causes the adjustments of weight to be large and hence the network

does not converge to optimality, whereas a low learning rate will cause the NN to converge slowly

and can converge to a local optima as depicted in Figure 5.2.

FIGURE 5.2. The loss should converge to 0 at an increasing rate over the epochs with a
good learning rate [5]

22

5.3. PRE-PROCESSING

Support Vector machines also has a lot of parameters that have to be optimised, the key

parameters here are Cost and Gamma. The cost determines the error margin between data points

and the hyperplanes, choosing a cost function that is too high can cause the model to overfit [3].

Gamma on the other hand is useful for non-linear classification, it determines the shape of the

hyperplane.

5.3 Pre-processing

The dataset that will be used to train the model has some challenges. In particular it has been

subjected to the imbalanced dataset problem, whereby not all classes have similar number of

instances [15]. After removing classes with too few instance, to handle the remaining classes

there were a few possible solutions and these are discussed in more detail below.

One way to deal with imbalanced dataset is by downsampling which involves reducing the

number of instances by tossing away some instances of classes with high number of instances to

match the classes with lower number of instances [27]. This has the advantage that it is simple

to implement and has proven to be more effective than upsampling [19]. However this method

has the major disadvantage that useful and valuable instances are thrown away upon training.

Another common solution to deal with imbalanced dataset is by upsampling which involves

generating synthetic data or making multiple copies of the instances for classes with low number

of instances (minority class) to match the majority class [27]. This has the advantage that it does

not throw away useful instances. However this method has proved in the past to cause overfitting

and can be computationally intensive if the number of instances and classes are very large [31].

A common solution that changes how the model learns instead of the dataset itself is known

as Cost Sensitive Learning [31]. It works by changing the loss/error function to give a different

error value to False Positive and False Negatives depending on which is more significant, and

hence model will avoid the error with a higher error value. The advantage of this is that it

changes the model instead of the data. However it can be ineffective on severely imbalanced

datasets and does not guarantee convergence to optimal model [45].

Boosting like Cost Sensitive Learning is another technique that changes the model instead

of the data. It trains multiple classifiers that improve on the errors of the previous classifiers.

Again this technique has the advantage that it does not change the dataset itself. However it is

prone to overfit the dataset [30].

Having considered each of the possible solution, a final decision was reached to not consider

23

CHAPTER 5. IMPLEMENTATION

classes that have too few instances for the machine learning algorithm to learn anything useful.

Upsampling the train set was decided as the solution to be applied on the remaining classes, this

was chosen so that valuable data are not made redundant by downsampling. The dataset now

consisted of only 36 species/15 families/8 orders.

5.4 Method

Besides ensuring that the same performance measures are used to evaluate a model, it is key to

ensure that the same data is not used for training, validation and testing, since an instance in the

test set may affect the result differently if it was in the training set and vice versa. To deal with

this the dataset was shuffled and then split into three sets, which were then saved, so that upon

evaluation of each classifier it was sufficient to read these data as training, validation and test

set. Tables 3.2, 3.1 and 3.3 in chapter 3 show how many instances of a specific class were in each

test set. Also to prevent overfitting, the model is optimised on the validation set and once the

optimal performance has been obtained on the validation set, the performance on the test set is

reported. This ensures that the model has not been trained to overfit the validation set and gives

an approximate measure of how the model will perform to unseen real input. The performance

recorded takes the sum of the three folds and then computes the performance measures instead

of taking the average of all folds.

Python1, Theano2, Lasagne3 and nolearn4 were the libraries used for Convolutional Neural

Network (CNN). The input used were Spectrograms, Time Series and Wavelets of the audio files

as our input, this had the benefit that we didn’t have to extract features ourselves, but CNN

would identify and extract the most relevant features itself from the provided input. This however

took very long to train, running one simple model on a high-end CPU took approximately 60

minutes for the dataset for one epoch, (each epoch can be considered to be a smaller subset of

the input data) and training the network for a good accuracy requires large number of epochs

(average 102), and will hence take four days and four hours. The model required to be improved

iteratively by optimising the parameters.

One common method that is used to accelerate the training of CNNs is by using GPU since it has

been designed effectively to process matrices very efficiently. We used CUDA enabled graphics

machine for this and with this optimisation one epoch took only a few minutes which is faster by

a magnitude of just under 60, and thus will only take less than one day to train one model. This

along with early stopping meant that we didn’t always have to run as much epochs as required

and can hence train it quicker than by purely using the CPU for training it.

1https://www.python.org/
2http://www.deeplearning.net/software/theano/
3http://lasagne.readthedocs.io/en/latest/
4https://pythonhosted.org/nolearn/

24

https://www.python.org/
http://www.deeplearning.net/software/theano/
http://lasagne.readthedocs.io/en/latest/
https://pythonhosted.org/nolearn/

5.4. METHOD

Analysing different parameters of a model are independent of each other and can thus be paral-

lelised by keeping one parameter as a variable and the other parameters constant. HTCondor5

allows just that. It takes an executable file and the different parameters then when submitted to

the queue, the different parameters are passed on to the executable and are executed on different

machines when they are idle. With this optimisation, it was possible to search thousand different

model parameters in the time it takes to evaluate just one model parameter.

5https://research.cs.wisc.edu/htcondor/

25

https://research.cs.wisc.edu/htcondor/

C
H

A
P

T
E

R

6
RESULTS

The success of this project will be determined by how well the model is able to successfully classify

previously unseen instances provided that the classes have been previously encountered in the

training data. Despite having a large dataset as mentioned before it was subjected to the data

imbalance problem and as a result some classes were not considered due to insufficient instances

being available. As a result, the data available had now decreased and although the data available

was still quite large (>3000), it was concluded that the dataset would be split into 3 sets and each

of these set would be used as a training set, validation set and test set in a round robin order.

This is so that the model is does not overfit the validation set. Cross-validation ensures that every

instance is used for testing, validation and also for training respectively in each fold, in addition

the performance is measured on the final confusion matrix thus if a particular fold has a higher

accuracy this will not affect the final accuracy if the other folds have a lower accuracy [9].

There is an issue that with some classes they may be confused a lot with other classes and this

can be observed with a confusion matrix, which has the actual class as the rows and predicted

class as the columns. Therefore the diagonal entries shows the number of times the classes were

correctly identified, known as the True Positives (TP) and True Negatives (TN) [35]. For each

class the False Positive (FP) occurs when the other classes are falsely identified as being the

positive (current) class. False Negative (FN) on the other hand occurs when the current class is

falsely identified as being one of the other class. Using these metrics some further useful metrics

can be calculated, in particular the precision, recall and Fα.

(6.1) Accuracy= TP +TN
TP +TN +FP +FN

(6.2) Precision = TP
TP +FP

27

CHAPTER 6. RESULTS

(6.3) Recall = TP
TP +FN

(6.4) Fα = (1+α)2 ∗Precision∗Recall
α2 ∗Precision+Recall

Recall is the fraction of instances that are relevant and correctly identified. Precision on the

other hand, gives the fraction of instances that are correctly predicted as being the right class [13]

Combining these two values gives the Fα value, which allows us to compare the two values as

one. In a multiclass problem, a common way approach is to take the unweighted average recall

(UAR) which simply takes the average of the recall calculated for each class and this helps in

identifying any classification errors, particularly in an imbalanced dataset.

Predicted
1 2

A
ct

ua
l 1 TP FP

2 FN TN
Table 6.1: A confusion matrix for a binary classification with class 1 as the current class

28

6.1. SUPPORT VECTOR CLASSIFICATION

6.1 Support Vector Classification

The key parameters for SVC were the kernel, gamma and C. The kernel determines the function

that will be used to predict the output using the given input e.g. Radial Basis Function will have

a more curved function than a linear kernel. Gamma gives a measure of how much a single

example influences the radius; a high gamma means that the radius should be close. C decides

the error margin, a high C will lead to a smaller margin hyperplane, whereas a low C will choose

a hyperplane with large margins between examples at the cost of misclassifying some examples.

All the ranks (i.e. Species, Family and Order) followed the same pattern for the key parameters

mentioned above. Radial Basis function appeared to be the best kernel and 0.1 was the best

gamma, C seemed to make not much of an impact on the UAR.

Order Family Species
Kernel RBF RBF RBF
Gamma 0.1 0.1 0.1
C 30 90 50

Accuracy 75.7 82.3 84.1
UAR 69.9 80.5 82.8
UAP 68.3 78.7 82.7
Unweighted Average F1 Value 69.1 79.6 82.8

Table 6.2: Optimal Parameters and results on Test set for SVC, where chance levels are 12.5%,
6.67% and 2.78% for Order, Family and Species respectively. The optimal kernel for all the ranks
was the Radial Basis Function (RBF).

The Confusion Matrix below shows how much confusion there was for the classification of

order for the test set and it can be seen that class 1 was quite frequently confused with classes 5

and 6, this may be due to the fact that despite upsampling the training set, there may not have

been much variance in the training data of class 1. The other classes although there is some

confusion it is quite small relative to the number of times it was correctly classified.

29

CHAPTER 6. RESULTS

Predicted Class
1 2 3 4 5 6 7 8

A
ct

ua
lC

la
ss

1 32.76% 6.90% 5.17% 6.90% 20.69% 18.97% 5.17% 3.45%
2 6.12% 57.14% 9.18% 0.00% 6.12% 8.16% 6.12% 7.14%
3 0.60% 1.20% 81.44% 1.80% 9.58% 3.59% 1.20% 0.60%
4 3.23% 1.21% 6.05% 79.84% 3.23% 2.02% 2.82% 1.61%
5 2.71% 2.71% 11.24% 1.55% 74.03% 3.88% 0.78% 3.10%
6 2.01% 2.01% 4.36% 3.02% 5.03% 77.85% 3.36% 2.35%
7 1.30% 1.74% 7.38% 3.04% 4.56% 4.34% 75.70% 1.95%
8 0.86% 2.58% 1.07% 2.15% 2.15% 6.01% 5.15% 80.04%

Table 6.3: Confusion Matrix obtained with Support Vector Classification for Order on Test Set

6.2 NuSVC

This is very closely related to SVC but the C parameter here is replaced with a nu parameter. Nu

takes a value that is strictly greater than zero and less than or equal to one, it provides a relative

upper bound on the training errors and a relative lower bound on the support vectors. RBF kernel

again seemed to be the best kernel to use, and gamma again followed the same pattern as above,

but nu unlike C affected the UAR and optimal UAR was reached at different values depending

on the categories and the nu values are mentioned in Table 6.4. Figure 6.1 below shows how the

UAR changes for different values of Nu for Order.

Order Family Species
Kernel RBF RBF RBF
Gamma 0.1 0.1 0.1
Nu 0.201 0.001 0.001

Accuracy 78.4 84.9 86.9
UAR 70.4 81.8 84.9
UAP 70.8 82.8 85.8
Unweighted Average F1 Value 70.6 82.3 85.3

Table 6.4: Optimal Parameters and results on Test set for NuSVC, where chance levels are 12.5%,
6.67% and 2.78% for Order, Family and Species respectively. The optimal kernel for all the ranks
was the Radial Basis Function (RBF).

The confusion matrix for order below again shows the same confusion patterns as before.

Classes with fewer instances are recognised slightly less accurately than before however classes

4,5,6,7 and 8 are recognised with a better accuracy than before.

30

6.2. NUSVC

Predicted Class
1 2 3 4 5 6 7 8

A
ct

ua
lC

la
ss

1 29.31% 6.90% 5.17% 8.62% 22.41% 18.97% 5.17% 3.45%
2 6.12% 51.02% 7.14% 0.00% 7.14% 9.18% 9.18% 10.20%
3 0.60% 1.80% 75.45% 1.80% 11.98% 3.59% 4.19% 0.60%
4 2.42% 0.40% 3.63% 85.48% 2.42% 2.02% 1.61% 2.02%
5 2.71% 1.94% 7.75% 1.16% 76.74% 3.88% 1.55% 4.26%
6 1.34% 1.68% 3.69% 3.02% 4.03% 78.86% 4.36% 3.02%
7 0.87% 0.65% 3.47% 3.04% 2.60% 3.47% 84.16% 1.74%
8 0.86% 1.72% 0.86% 1.93% 2.15% 5.58% 4.51% 82.40%

Table 6.5: Confusion Matrix obtained with NuSVC for Order on Test Set

Figure 6.1: Graph showing how UAR changes with different Nu values for Order

31

CHAPTER 6. RESULTS

6.3 Linear Discriminant Analysis

The significant parameters here are the solver used and the shrinkage value. The different solvers

were Singular Value Decomposition (SVD), Least Squares (LSQR) and Eigenvalue decomposition

(Eigen) and they are used to perform dimensionality reduction. The shrinkage value only works

on LSQR and Eigenvalue and it is used to improve the estimation of the covariance matrices, it

can take a value between zero and one or could be ’auto’ or ’none’, zero denotes that no shrinkage

happens and so the empirical covariance matrix is used. Different ranks had different optimal

solver and the UAR for the different solver for species is shown below.

Order Family Species
Solver Eigen LSQR LSQR
shrinkage 0.201 0.401 0.001
n_components 30 140 105

Accuracy 67.0 67.5 81.0
UAR 64.1 68.3 80.0
UAP 60.7 64.1 79.2
Unweighted Average F1 Value 62.4 66.1 79.5

Table 6.6: Optimal Parameters and results on Test set for LDA, where chance levels are 12.5%,
6.67% and 2.78% for Order, Family and Species respectively, where Eigenvalue decomposition
(Eigen) and Least Square solution (LSQR) proved to be the optimal solvers.

32

6.3. LINEAR DISCRIMINANT ANALYSIS

Unlike with SVC, class 1 is confused less often here, but classes with more instances are

confused more, this may be due to the fact that the large number of instances may have caused

misclassification since the variances between all the instances of the same class could have been

quite large.

Predicted Class
1 2 3 4 5 6 7 8

A
ct

ua
lC

la
ss

1 50.00% 3.45% 5.17% 10.34% 10.34% 10.34% 6.90% 3.45%
2 6.12% 47.96% 13.27% 0.00% 6.12% 11.22% 8.16% 7.14%
3 2.40% 4.19% 79.04% 1.20% 8.98% 3.59% 0.60% 0.00%
4 8.87% 1.21% 6.05% 67.74% 4.84% 8.47% 2.02% 0.81%
5 7.36% 1.94% 12.40% 3.49% 63.57% 6.59% 3.10% 1.55%
6 9.40% 4.70% 5.37% 3.36% 6.04% 66.78% 1.68% 2.68%
7 3.69% 5.86% 8.46% 3.90% 3.69% 8.68% 64.43% 1.30%
8 3.43% 5.36% 1.50% 3.00% 3.86% 7.51% 2.36% 72.96%

Table 6.7: Confusion Matrix obtained with Linear Discriminant Analysis for Order on Test Set

33

CHAPTER 6. RESULTS

6.4 K Nearest Neighbour

Since it is a Lazy learning method, the training time was really short as upon training the

data is just stored. The important parameters here are the number of neighbours, weights and

algorithm. The number of neighbour specifies the number of neighbours that should be considered

for each instance for classification. The weights on the other hand determines the function used

to calculate the weight of the neighbours, this includes ’distance’ which uses the inverse of the

distance between the points, ’uni f orm’ which weighs all neighbours equally. Algorithm is used

to find the nearest neighbours; ’brute’ for instance will search for the nearest neighbour using a

brute force approach and as expected will be slow, whereas ’kd_tree’ stores the data in an ordered

manner so that retrieval will be quicker, however suffers from the curse of dimensionality as the

number of dimension increases. The number of neighbours was dependent on the category since

the different ranks had different optimal number of neighbours. The graph below shows how the

UAR varies for family with the number of neighbours.

The confusion matrix for order shown below shows that class 1 is confused quite frequently

with class 6, this may be due to the fact that the features extracted for class 1 and class 6 may

have high similarities, and could be along the same region, thus even with 1 neighbour it is

confused with class 5.

34

6.4. K NEAREST NEIGHBOUR

Order Family Species
Neighbours 1 5 1
Weights distance distance uniform
Algorithm kd_tree kd_tree kd_tree
LeafSize 25 20 35

Accuracy 75.9 75.6 78.0
UAR 68.9 74.3 77.2
UAP 68.4 71.9 76.8
Unweighted Average F1 Value 68.6 73.1 77.0

Table 6.8: Optimal Parameters and results on Test set for KNN, where chance levels are 12.5%,
6.67% and 2.78% for Order, Family and Species respectively, where distance assigns the inverse of
the distance as the weight to each neighbour and uniform assigns a uniform value to the weight
of each neighbour. K-Dimensional Tree (kd_tree) structure was used as the algorithm for quick
retrieval

Predicted Class
1 2 3 4 5 6 7 8

A
ct

ua
lC

la
ss

1 34.48% 6.90% 8.62% 0.00% 15.52% 24.14% 6.90% 3.45%
2 3.06% 53.06% 9.18% 2.04% 5.10% 12.24% 8.16% 7.14%
3 1.20% 2.99% 67.66% 3.59% 10.78% 5.39% 7.19% 1.20%
4 1.21% 0.81% 2.42% 89.52% 4.44% 0.00% 1.21% 0.40%
5 6.20% 1.16% 6.59% 2.33% 70.93% 6.98% 2.71% 3.10%
6 1.68% 2.35% 4.36% 3.69% 4.36% 73.49% 5.37% 4.70%
7 1.08% 2.17% 2.82% 2.17% 3.04% 5.42% 78.74% 4.56%
8 1.50% 0.86% 2.36% 1.50% 2.36% 5.36% 3.00% 83.05%

Table 6.9: Confusion Matrix obtained with K-Nearest Neighbour for Order on Test Set

35

CHAPTER 6. RESULTS

6.5 Artifical Neural Network

Various network topology were investigated here. Up to two hidden layers were used, this is to

ensure that the network is able to learn any complex functions while ensuring that it doesn’t

overfit. The learning rate was kept small so that the network converges, and it was reduced

exponentially to find the optimum at a quicker rate, since the training time is much longer than

the previous methods discussed here. The number of neurons in the hidden layers was also a

hyperparameter that had to be optimised explicitly, it was ensured that the number of neurons at

each layer was strictly less than the number of neurons in the previous layers and greater than

the number of neurons in the succeeding layer. This was so that at each succeeding layer the

number of features is reduced until at the output layer it is reduced to only one node per class.

The graph below shows how the UAR changes for different values of learning rate for Family, it

can be clearly seen that as the learning rate increases, the UAR also increases and after 0.03

starts to decline at a slower rate although not shown as part of the figure.

The confusion matrix for order shown below shows that there is much less confusion in all

classes. Class 1 is recognised almost twice as accurately than in the previous methods, and all

the other classes are recognised more accurately and this is reflected in the UAR, since it is the

highest UAR obtained so far.

36

6.5. ARTIFICAL NEURAL NETWORK

Order Family Species
Layers [384,192,80,8] [384,192,15] [384,192,36]
Learning Rate 0.01 0.03 0.02
Momentum 0 0 0

Accuracy 83.7 88.9 91.2
UAR 79.6 88.2 90.7
UAP 80.2 87.6 90.3
Unweighted Average F1 Value 79.9 87.9 90.5

Table 6.10: Optimal Parameters and results on Test set for ANN, where chance levels are 12.5%,
6.67% and 2.78% for Order, Family and Species respectively. The layers show the shape of the
network where the first entry shows the size of the input layer and the last element shows the
size of the output layer, and the remaining elements show the size of the hidden layer(s).

Predicted Class
1 2 3 4 5 6 7 8

A
ct

ua
lC

la
ss

1 58.62% 3.45% 0.00% 6.90% 6.90% 13.79% 5.17% 5.17%
2 5.10% 65.31% 4.08% 1.02% 5.10% 8.16% 8.16% 3.06%
3 0.60% 0.60% 88.02% 1.80% 5.39% 1.20% 1.20% 1.20%
4 0.00% 0.00% 1.61% 90.32% 2.82% 1.61% 2.82% 0.81%
5 1.16% 1.55% 5.81% 2.33% 78.68% 3.49% 2.71% 4.26%
6 1.34% 1.68% 1.68% 3.02% 2.68% 82.89% 4.70% 2.01%
7 0.65% 1.52% 1.74% 2.39% 2.60% 1.95% 85.25% 3.90%
8 0.21% 0.86% 0.21% 3.22% 1.50% 2.79% 3.65% 87.55%

Table 6.11: Confusion Matrix obtained with Artificial Neural Network for Order on Test Set

37

CHAPTER 6. RESULTS

6.6 Convolutional Neural Networks

The key parameters in convolutional neural networks were the architecture and the learning

rate. Unlike with ANN the architecture plays a bigger role since different type of layers are

available here, and fine tuning the network is a time consuming process particularly with the

long training time. The layers that were used include Convolutional Layers, Max Pooling Layers,

Dropout Layers and Dense Layers. Dropout layer allows the network to combine several different

architectures by “dropping” neurons in a layer with a probability p. The learning rate also plays

a key role in the network converging to the global optima. Momentum and Adaptive Learning

Rate were used to avoid the network converging to a local optima, this is done by adapting the

learning rate depending on the error observed.

6.6.1 Raw Audio

Order Family Species

Network
Architecture

input size 1x40000,
conv1 filters 30 size 5,
pool1_pool_size=(10),
conv2 filters 20 size 10,
pool2_pool_size=(10),
hidden4_num_units=2000,
hidden5_num_units=1000,
output_num_units=8

input size 1x40000,
conv1 filters 10 size 5,
pool1_pool_size=(10),
conv2 filters 10 size 20,
pool2_pool_size=(10),
hidden4_num_units=2000,
hidden5_num_units=1000,
output_num_units=15

input size 1x40000,
conv1 filters 10 size 5,
pool1_pool_size=(10),
conv2 filters 10 size 20,
pool2_pool_size=(10),
hidden4_num_units=2500,
hidden5_num_units=1000,
output_num_units=36

Learning
Rate

0.04 0.04 0.04

Accuracy 44.2 39.1 37.6
UAR 40.0 38.4 36.9
UAP 40.0 36.8 36.8
Unweighted
Average
F1 Value

40.0 37.6 36.8

Table 6.12: Optimal parameters and performance on Test set for CNNs with raw audio, where
chance levels are 12.5%, 6.67% and 2.78% for Order, Family and Species respectively

It seems that although the network has learned some characteristics since the performance

measure is much higher than the chance levels, it is quite low relative to previous models. In

addition previously the performance increased from order to species, since the taxonomic rank

was becoming more specific, here however the opposite is observed. There is a lot of confusion

with class 1, 2 and 5. Class 5 is predicted as class 3, more often than it is predicted correctly.

38

6.6. CONVOLUTIONAL NEURAL NETWORKS

Predicted Class
1 2 3 4 5 6 7 8

A
ct

ua
lC

la
ss

1 18.97% 12.07% 18.97% 10.34% 12.07% 10.34% 5.17% 12.07%
2 5.10% 21.43% 9.18% 11.22% 5.10% 16.33% 11.22% 20.41%
3 2.99% 7.78% 58.08% 10.78% 10.18% 4.79% 3.59% 1.80%
4 4.44% 4.84% 11.69% 52.42% 1.61% 6.45% 2.42% 16.13%
5 8.91% 7.36% 36.43% 5.43% 29.46% 5.43% 2.33% 4.65%
6 4.03% 11.41% 7.72% 7.38% 2.35% 44.63% 10.40% 12.08%
7 3.69% 8.24% 11.28% 7.59% 2.82% 10.41% 37.53% 18.44%
8 1.29% 7.94% 3.43% 8.80% 1.72% 6.87% 12.66% 57.30%

Table 6.13: Confusion Matrix obtained with Convolution Neural Network and raw audio for Order
on Test Set

6.6.2 Spectrogram

Order Family Species

Network
Architecture

input size 1x125x125,
conv1 filters 64 size 2x2,
pool1_pool_size=(2,2),
conv2 filters 64 size 1x1,
pool2_pool_size=(2,2),
conv3 filters 64 size 2x2,
pool3_pool_size=(2,2),
hidden4_num_units=3000,
hidden5_num_units=1500,
output_num_units=8

input size 1x125x125,
conv1 filters 64 size 2x2,
pool1_pool_size=(2,2),
conv2 filters 64 size 1x1,
pool2_pool_size=(2,2),
conv3 filters 64 size 2x2,
pool3_pool_size=(2,2),
hidden4_num_units=3000,
hidden5_num_units=1500,
output_num_units=15

input size 1x125x125,
conv1 filters 32 size 20x20,
pool1_pool_size=(2,2),
conv2 filters 32 size 10x10,
pool2_pool_size=(2,2),
hidden4_num_units=3000,
hidden5_num_units=1500,
output_num_units=36

Learning
Rate

0.045
initially 0.0001 with adam
(adaptive learning rate)

0.02

Accuracy 57.0 60.9 65.5
UAR 51.0 55.6 61.7
UAP 49.5 56.1 61.0
Unweighted
Average
F1 Value

50.2 55.8 61.4

Table 6.14: Optimal parameters and performance on Test set for CNNs with spectrogramson
CNNs with where chance levels are 12.5%, 6.67% and 2.78% for Order, Family and Species
respectively

Spectrograms performed the best with CNNs, this may be since spectrograms are 2 dimen-

sional image data while the others were 1 dimensional, and CNN were designed for feature

extraction from images. However the performance is still much lower than those obtained using

ANN and openSMILE extracted features as input. The confusion matrix shows that only class 1

39

CHAPTER 6. RESULTS

and 2 are confused quite frequently and the others are predicted with a relatively low confusion.

The figures below shows the convolutional layers learned by the network for species, in the first

convolutional layer. Figure 6.3 shows the convolutional layer applied to an input appears, a few

of the layers in the figure appear black due to the layers not training on the input and due to

the random weight initialisations. Figure 6.4, shows the input along with the critical regions

respectively, the image shows the input, the critical parts highlights the region that the network

believes to be critical in classifying and the super-imposed image shows the two imposed. It can

clearly be seen that the regions highlighted are indeed where the unique to that image. Figure

6.5 shows the network architecture that lead to the optimal performance for species.

Predicted Class
1 2 3 4 5 6 7 8

A
ct

ua
lC

la
ss

1 15.52% 6.90% 24.14% 12.07% 8.62% 20.69% 1.72% 10.34%
2 1.02% 9.18% 17.35% 13.27% 5.10% 19.39% 6.12% 28.57%
3 4.19% 1.20% 57.49% 16.17% 8.98% 7.78% 1.80% 2.40%
4 2.42% 2.02% 13.71% 51.61% 0.81% 14.11% 0.81% 14.52%
5 4.65% 3.88% 52.33% 6.59% 18.99% 8.91% 0.78% 3.88%
6 1.68% 2.35% 7.72% 10.07% 2.35% 62.75% 1.68% 11.41%
7 5.42% 5.64% 14.32% 6.94% 4.12% 11.93% 32.10% 19.52%
8 2.58% 4.51% 6.87% 7.51% 0.86% 12.88% 10.30% 54.51%

Table 6.15: Confusion Matrix obtained with Convolution Neural Network and spectrograms for
Order on Test Set

40

6.6. CONVOLUTIONAL NEURAL NETWORKS

Figure 6.2: Filters of Convolutional Layer learned by the CNN, white pixels show the region
that will be extracted and transferred to the next layer. It can be seen that the key features are
concentrated around the top right corner, as some filters focus primarily on these region. Also
some filters also convolve along the frequency axis too suggesting that combining frequencies
and time also helps in the classification.

41

CHAPTER 6. RESULTS

Figure 6.3: Filters of Convolutional Layer learned by the CNN applied to an example input

42

6.6. CONVOLUTIONAL NEURAL NETWORKS

Figure 6.4: Plot showing parts of the image that are particularly important for the network to
classify the image correctly.

43

CHAPTER 6. RESULTS

Figure 6.5: Visualisation of the network architecture for Species, one dimensional layers that
convolve only across the time axis were also tested but led to performance lower than that
obtained for two dimensional layers. 44

6.6. CONVOLUTIONAL NEURAL NETWORKS

6.6.3 Wavelets

Order Family Species

Network
Architecture

input size 1x20009,
conv1 filters 10 size 50,
pool1_pool_size=(5),
conv2 filters 5 size 10,
pool2_pool_size=(2),
hidden4_num_units=5000,
hidden5_num_units=1000,
output_num_units=8

input size 1x20009
conv1 filters 10 size 100,
pool1_pool_size=(5),
conv2 filters 5 size 100,
pool2_pool_size=(2),
hidden4_num_units=5000,
hidden5_num_units=1000,
output_num_units=15

input size 1x20009
conv1 filters 100 size 10,
pool1_pool_size=(1),
conv2 filters 50 size 5,
pool2_pool_size=(2),
conv3 filters 20 size 3,
pool3_pool_size=(3),
conv4 filters 10 size 2,
pool4_pool_size=(4),
conv5 filters 5 size 2,
pool5_pool_size=(5),
hidden4_num_units=500,
hidden5_num_units=1000,
output_num_units=36

Learning
Rate

0.02 0.02 0.01

Accuracy 42.8 34.7 33.5
UAR 37.8 34.4 32.3
UAP 38.3 34.3 31.0
Unweighted
Average
F1 Value

38.0 34.3 31.6

Table 6.16: Optimal parameters and performance on Test set for CNNs with wavelets, where
chance levels are 12.5%, 6.67% and 2.78% for Order, Family and Species respectively

The performance is very similar to the performance obtained from raw audio although it is

higher here. The confusion matrix below for Order shows a similar pattern to that was observed

in raw audio. The confusion matrix below shows the findings for order and it can be seen that

only classes 3, 4, 6, 7 and 8 are recognised with relatively less confusion, the other classes are

subjected to a large amount of confusion, and in fact the actual classes are predicted less often

than other classes.

45

CHAPTER 6. RESULTS

Predicted Class
1 2 3 4 5 6 7 8

A
ct

ua
lC

la
ss

1 22.41% 12.07% 12.07% 0.00% 6.90% 17.24% 17.24% 12.07%
2 5.10% 28.57% 5.10% 7.14% 8.16% 15.31% 20.41% 10.20%
3 5.39% 1.20% 66.47% 2.99% 11.38% 7.78% 2.99% 1.80%
4 1.21% 3.23% 6.05% 64.52% 3.63% 8.06% 3.63% 9.68%
5 4.03% 4.44% 23.79% 6.45% 48.79% 6.85% 0.40% 5.24%
6 3.69% 5.03% 5.70% 7.38% 7.38% 51.01% 4.70% 15.10%
7 1.52% 4.56% 11.93% 3.69% 6.72% 5.64% 57.70% 8.24%
8 1.72% 2.79% 2.15% 3.43% 5.58% 4.94% 10.94% 68.45%

Table 6.17: Confusion Matrix obtained with Convolution Neural Network and wavelets for Order
on Test Set

6.7 Summary of Results

The tables below show the performance of all the classifiers. It can be seen that almost all the

classifiers have consistent performance across the different taxonomic rank. Since all the classi-

fiers’ performance has exceeded the chance level we can conclude that the features investigated

here are indeed capable of differentiating between birds.

Table 6.18: Summary of classifiers for Order, chance level: 12.5%

Classifier Accuracy UAR UAP
Unweighted Average
F-1 Value

ANN 83.7 79.6 80.2 79.9
NuSVC 78.4 70.4 70.8 70.6
SVC 75.7 69.9 68.3 69.1
KNN 75.9 68.9 68.4 68.6
LDA 67.0 64.1 60.7 62.4
CNN - spectrograms 57.0 51.0 49.5 50.2
CNN - raw audio 44.2 40.0 40.0 40.0
CNN - wavelets 42.8 37.8 38.3 38.0

46

Table 6.19: Summary of classifiers for Family, chance level: 6.67%

Classifier Accuracy UAR UAP
Unweighted Average
F-1 Value

ANN 88.9 88.2 87.6 87.9
NuSVC 84.9 81.8 82.8 82.3
SVC 82.3 80.5 78.7 79.6
KNN 75.6 74.3 71.9 73.1
LDA 67.5 68.3 64.1 66.1
CNN - spectrograms 60.9 55.6 56.1 55.8
CNN - raw audio 39.1 38.4 36.8 37.6
CNN - wavelets 34.7 34.4 34.3 34.3

Table 6.20: Summary of classifiers for Species, chance level: 2.78%

Classifier Accuracy UAR UAP
Unweighted Average
F-1 Value

ANN 91.2 90.7 90.3 90.5
NuSVC 86.9 84.9 85.8 85.3
SVC 84.1 82.8 82.7 82.8
LDA 81.0 80.0 79.0 79.5
KNN 78.0 77.2 76.8 77.0
CNN - spectrograms 65.5 61.7 61.0 61.4
CNN - raw audio 37.6 36.9 36.8 36.8
CNN - wavelets 33.5 32.3 31.0 31.6

C
H

A
P

T
E

R

7
CONCLUSIONS AND OUTLOOK

This section will reflect on the results obtained from this project and also any further works that

could be done.

Extensive research has been done previously in this area with satisfactory results. However

they primarily focused on the classification of only species. In addition only a specific feature

set or a specific classifier was tested and hence the result obtained was only a good indicator

of that specific method applied to bird classification not of bird classification in general. In this

project numerous classifiers and feature sets were investigated for classifying bird sounds to

its species, family and order. Engineered features were used as the first feature set and this

was investigated with classifiers that have proven to work well with small feature sets such

as Artificial Neural Network and Support Vector Classification. Subsequently Spectrograms,

Wavelets and Timeseries were investigated with Convolutional Neural Network to extract key

features from the large feature set. The UAR obtained from the three fold cross validation was

used to compare the different classifiers. An optimal UAR of 90.7% was obtained with Artificial

Neural Network.

The optimal results obtained in this project has exceeded the results obtained from extreme

machine learning techniques. The optimal classification UAR obtained was 90.7% for classi-

fication consisting of 36 species whereas in extreme machine learning discussed in Previous

works (Section 2.1) an UAR of 89.6% was obtained with 30 species [41]. Although the species

used for this project may not be the same as the species used in the Extreme Machine Learning

task. This project proved that a strong correlation does indeed exist between the bird sound and

its Taxonomic rank and it has also shown that there is a potential of using machine learning

techniques in the study of the biodiversity of an area. The results obtained for CNN do not

49

CHAPTER 7. CONCLUSIONS AND OUTLOOK

accurately represent the true optimal results that could have been obtained. Optimising a CNN

requires a lot of time and since time was a constraint in this project, it could very well be that the

optimal CNN model reported in the previous chapter was not optimal. Also the convolutional

layers tested for Spectrograms were two dimensional, whereas one dimensional convolutional

layer may make more sense in case of Spectrogram, as the network should only convolve over the

time axes.

One of the many ways of extending the work carried out here is by using additional metadata

in the classification. Currently only the sound data is used but additional data such as the

location and altitude data are available which would certainly aid in classification, since some

birds will not be found in a certain area or at a certain altitude.

The initial aim of this project was to classify a large number of species (272) from sound.

However due to the imbalanced dataset problem, a large number of species had to be discarded.

Hence the number of species that were investigated at the end was only a mere 36 species. A

real world classification rate would only be obtained if the algorithm was trained on a database

consisting of a large number of species with adequate instances.

Although a range of different feature input were tested in this project, there are yet so many

that could be tested. openSMILE alone has many different configuration files and can be adapted

to extract engineered features that we deem necessary. There could be further research in the

features that truly differentiate birds of different species and these could then be extracted and

tested.

The project only had audio samples that mostly consisted of some noise and the sound of one

individual bird. This however is not a true reflection of the audio samples that may be obtained if

recordings were to be actually done in the wild. They may capture multiple bird sounds of different

species simultaneously. Some further research could be done here by cutting the audio samples

to a short duration and then classifying the individual fragmented audio samples or by applying

multilabel classification. Also since species is a more specific classification than order or family,

species classification can be used to classify birds into order or family for a multitask classification.

One slightly unrelated yet useful research could be to investigate if individual birds could

be identified. This is known as bird banding, where an individual bird will be ringed and upon

discovery in the future could provide useful information relating to the understanding of the

species. It would prove to be very useful as current methods requires getting physical access to

the bird so that it is equipped with a tag for future identification. However in countries such as

Australia, laws exist to prevent banding certain species as it may cause damage and distress to

50

the bird. Thus a method to identify birds without potentially harming it would definitely prove to

be useful.

51

C
H

A
P

T
E

R

8
APPENDIX

Classification Details
Species (Latin,German,English) (e,g, Accipiter gentilis)

Order (Latin,German„English) (e.g. Accipitriformes)
Family (Latin,German,English) (e.g. Accipitridae)

Audio Details
Name (e.g. AccGen00001)

Duration (e.g 2.703s)
Quality ((e.g b)
Bitrate (e.g. 24)

Sampling rate (e.g. 96000Hz)

MetaData
Location (e.g. Hom-Bad Meinberg, OT Belle)

NationalCode (e.g DE)
DegreeOfLatitude (e.g 51.9◦)

DegreeOfLongitude (e.g 9.03◦)
Date (e.g. 33719)

Equipment (e.g. Uher CR 210)

53

CHAPTER 8. APPENDIX

Order Family Species
Kernel RBF RBF RBF
Gamma 0.1 0.1 0.1
C 30 90 50

Accuracy 78.1 82.0 84.9
UAR 71.5 81.1 83.0
UAP 70.2 79.6 82.9
Unweighted Average F1 Value 70.8 80.3 82.9

Table 8.1: Optimal Parameters and results on Validation set for SVC

Order Family Species
Kernel RBF RBF RBF
Gamma 0.1 0.1 0.1
Nu 0.201 0.001 0.001

Accuracy 81.1 85.6 88.2
UAR 77.6 84.7 86.9
UAP 78.6 84.5 85.2
Unweighted Average F1 Value 78.1 84.6 86.1

Table 8.2: Optimal Parameters and results on Validation set for NuSVC

Order Family Species
Solver Eigen LSQR LSQR
shrinkage 0.201 0.401 0.001
n_components 30 140 105

Accuracy 68.1 69.7 82.3
UAR 68.0 69.4 81.2
UAP 67.6 68.2 81.6
Unweighted Average F1 Value 67.8 68.8 81.4

Table 8.3: Optimal Parameters and results on Validation set for LDA

54

Order Family Species
Neighbours 1 5 1
Weights distance distance uniform
Algorithm kd_tree kd_tree kd_tree
LeafSize 25 20 35

Accuracy 72.8 75.9 79.6
UAR 67.2 73.6 75.1
UAP 67.0 72.6 75.5
Unweighted Average F1 Value 67.1 73.1 75.3

Table 8.4: Optimal Parameters and results on Test set for KNN

Order Family Species
Layers [384,192,80,8] [384,192,15] [384,192,36]
Learning Rate 0.01 0.03 0.02
Momentum 0 0 0

Accuracy 85.6 89.2 90.3
UAR 81.5 88.6 89.9
UAP 80.6 88.9 89.8
Unweighted Average F1 Value 81.0 88.7 89.8

Table 8.5: Optimal Parameters and results on Validation set for ANN

Order Family Species

Network
Architecture

input size 1x40000,
conv1 filters 30 size 5,
pool1_pool_size=(10),
conv2 filters 20 size 10,
pool2_pool_size=(10),
hidden4_num_units=2000,
hidden5_num_units=1000,
output_num_units=8

input size 1x40000,
conv1 filters 10 size 5,
pool1_pool_size=(10),
conv2 filters 10 size 20,
pool2_pool_size=(10),
hidden4_num_units=2000,
hidden5_num_units=1000,
output_num_units=15

input size 1x40000,
conv1 filters 10 size 5,
pool1_pool_size=(10),
conv2 filters 10 size 20,
pool2_pool_size=(10),
hidden4_num_units=2500,
hidden5_num_units=1000,
output_num_units=36

Learning
Rate

0.04 0.04 0.04

Accuracy 40.1 38.2 37.9
UAR 39.5 38.6 37.4
UAP 38.7 38.3 3 37.7
Unweighted
Average
F1 Value

39.1 38.5 37.6

Table 8.6: Optimal parameters and performance on Validation set for raw audio

55

CHAPTER 8. APPENDIX

Order Family Species

Network
Architecture

input size 1x125x125,
conv1 filters 64 size 2x2,
pool1_pool_size=(2,2),
conv2 filters 64 size 1x1,
pool2_pool_size=(2,2),
conv3 filters 64 size 2x2,
pool3_pool_size=(2,2),
hidden4_num_units=3000,
hidden5_num_units=1500,
output_num_units=8

input size 1x125x125,
conv1 filters 64 size 2x2,
pool1_pool_size=(2,2),
conv2 filters 64 size 1x1,
pool2_pool_size=(2,2),
conv3 filters 64 size 2x2,
pool3_pool_size=(2,2),
hidden4_num_units=3000,
hidden5_num_units=1500,
output_num_units=15

input size 1x125x125,
conv1 filters 32 size 20x20,
pool1_pool_size=(2,2),
conv2 filters 32 size 10x10,
pool2_pool_size=(2,2),
hidden4_num_units=3000,
hidden5_num_units=1500,
output_num_units=36

Learning
Rate

0.045
initially 0.0001 with adam
(adaptive learning rate)

0.02

Accuracy 58.2 60.2 67.6
UAR 52.3 55.0 62.1
UAP 50.3 56.1 62.3
Unweighted
Average
F1 Value

51.3 55.6 62.2

Table 8.7: Optimal parameters and performance on Validation set for Spectrograms

56

Order Family Species

Network
Architecture

input size 1x20009,
conv1 filters 10 size 50,
pool1_pool_size=(5),
conv2 filters 5 size 10,
pool2_pool_size=(2),
hidden4_num_units=5000,
hidden5_num_units=1000,
output_num_units=8

input size 1x20009
conv1 filters 10 size 100,
pool1_pool_size=(5),
conv2 filters 5 size 100,
pool2_pool_size=(2),
hidden4_num_units=5000,
hidden5_num_units=1000,
output_num_units=15

input size 1x20009
conv1 filters 100 size 10,
pool1_pool_size=(1),
conv2 filters 50 size 5,
pool2_pool_size=(2),
conv3 filters 20 size 3,
pool3_pool_size=(3),
conv4 filters 10 size 2,
pool4_pool_size=(4),
conv5 filters 5 size 2,
pool5_pool_size=(5),
hidden4_num_units=500,
hidden5_num_units=1000,
output_num_units=36

Learning
Rate

0.02 0.02 0.01

Accuracy 43.5 39.5 35.2
UAR 38.1 36.2 33.1
UAP 37.3 36.8 32.6
Unweighted
Average
F1 Value

37.7 36.5 32.8

Table 8.8: Optimal parameters and performance on Validation set on Wavelets

57

BIBLIOGRAPHY

[1] audEERING UG (haftungsbeschränkt) - openSMILE.

http://www.audeering.com/research/opensmile, 2016.

accessed 01-02-2016.

[2] Noramalina Abdullah.

Using labview and a support vector machine to classify normal and abnormal brain images.

http://sine.ni.com/cs/app/doc/p/id/cs-14132, 2016.

accessed 06-05-2016.

[3] Ethem Alpaydin.

Introduction to machine learning.

MIT press, 2014.

[4] P. Alstrom and R. Ranfft.

The use of sounds in avian systematics and the importance of bird sound archives.

BULLETIN-BRITISH ORNITHOLOGISTS CLUB, 123:114–135, 2003.

[5] Justin Johnson Andrej Karpathy.

CS231n Convolutional Neural Networks for Visual Recognition.

http://cs231n.github.io/, 2016.

accessed 06-05-2016.

[6] Miguel B. Araújo and Miska Luoto.

The importance of biotic interactions for modelling species distributions under climate

change.

Global Ecology and Biogeography, 16(6):743–753, 2007.

[7] Chris Bagwell et al.

SoX - Sound eXchange.

http://sox.sourceforge.net/, 2016.

accessed 01-02-2016.

[8] Yong Joseph Bakos.

K-nearest neighbors.

59

http://www.audeering.com/research/opensmile
http://sine.ni.com/cs/app/doc/p/id/cs-14132
http://cs231n.github.io/
http://sox.sourceforge.net/

BIBLIOGRAPHY

http://mines.humanoriented.com/classes/2010/fall/csci568/portfolio_exports/

lguo/knn.html, 2016.

accessed 06-05-2016.

[9] Yoshua Bengio and Yves Grandvalet.

No unbiased estimator of the variance of k-fold cross-validation.

The Journal of Machine Learning Research, 5:1089–1105, 2004.

[10] C.J. Bibby.

Putting Biodiversity on the Map: Priority Areas for Global Conservation.

BirdLife International, 1992.

[11] birdwatching-bliss.com.

How do birds sing? Learn about bird song.

http://www.birdwatching-bliss.com/bird-song.html, 2016.

accessed 01-02-2016.

[12] Millie Bond.

Animal Classification.

http://a-z-animals.com/reference/animal-classification/, 2016.

accessed 01-02-2016.

[13] Michael Buckland and Fredric Gey.

The relationship between recall and precision.

Journal of the American society for information science, 45(1):12, 1994.

[14] CJ Cela-Conde.

The meaning of Hominidae.

Human evolution, 13(3-4):251–264, 1998.

[15] Nitesh V. Chawla.

Data mining for imbalanced datasets: An overview.

In Data mining and knowledge discovery handbook, pages 853–867. Springer, 2005.

[16] John B. Colby, Jeffrey D. Rudie, Jesse A. Brown, Pamela K. Douglas, Mark S. Cohen, and

Zarrar Shehzad.

Frontiers in Systems Neuroscience.

http://journal.frontiersin.org/article/10.3389/fnsys.2012.00059/full, 2016.

accessed 06-05-2016.

[17] Ronan Collobert and Jason Weston.

A unified architecture for natural language processing: Deep neural networks with multitask

learning.

60

http://mines.humanoriented.com/classes/2010/fall/csci568/portfolio_exports/lguo/knn.html
http://mines.humanoriented.com/classes/2010/fall/csci568/portfolio_exports/lguo/knn.html
http://www.birdwatching-bliss.com/bird-song.html
http://a-z-animals.com/reference/animal-classification/
http://journal.frontiersin.org/article/10.3389/fnsys.2012.00059/full

BIBLIOGRAPHY

In Proceedings of the 25th international conference on Machine learning, pages 160–167.

ACM, 2008.

[18] Jarrad A. Cousin.

The Speciation and Biogeography of Birds.

Pacific Conservation Biology, 10(3):202–203, 2004.

[19] Chris Drummond and Robert C Holte.

C4. 5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling.

In Workshop on learning from imbalanced datasets II, volume 11. Citeseer, 2003.

[20] Florian Eyben.

Real-time speech and music classification by large audio feature space extraction.

Springer, 2016.

[21] Florian Eyben, Felix Weninger, Stefano Squartini, and Björn Schuller.

Real-life voice activity detection with LSTM recurrent neural networks and an application

to hollywood movies.

2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013.

[22] Florian Eyben, Martin Wöllmer, and Björn Schuller.

openSMILE: the munich versatile and fast open-source audio feature extractor.

In Proceedings of the 18th ACM international conference on Multimedia, pages 1459–1462.

ACM, 2010.

[23] Seppo Fagerlund.

Bird species recognition using support vector machines.

EURASIP Journal on Applied Signal Processing, 2007(1):64–64, 2007.

[24] W.T. Fitch and David Reby.

The descended larynx is not uniquely human.

Proceedings of the Royal Society of London: Biological Sciences, 268(1477):1669–1675, 2001.

[25] Jerome H Friedman.

On bias, variance, 0/1‚Äîloss, and the curse-of-dimensionality.

Data mining and knowledge discovery, 1(1):55–77, 1997.

[26] Amar Gondaliya.

Regularization implementation in R.

http://pingax.com/regularization-implementation-r/, 2016.

accessed 06-05-2016.

[27] Kaizhu Huang, Haiqin Yang, Irwin King, and Michael R. Lyu.

61

http://pingax.com/regularization-implementation-r/

BIBLIOGRAPHY

Imbalanced learning with a biased minimax probability machine.

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 36(4):913–923,

2006.

[28] Anil K. Jain, Jianchang Mao, and K.M. Mohiuddin.

Artificial neural networks: A tutorial.

Computer, (3):31–44, 1996.

[29] Pablo A. Jaskowiak and R.J.G.B. Campello.

Comparing correlation coefficients as dissimilarity measures for cancer classification in gene

expression data.

In Proceedings of the Brazilian Symposium on Bioinformatics, pages 1–8, 2011.

[30] Taghi M Khoshgoftaar, Jason Van Hulse, and Amri Napolitano.

Comparing boosting and bagging techniques with noisy and imbalanced data.

Systems, Man and Cybernetics, Part A: Systems and Humans, 41(3):552–568, 2011.

[31] C.V. Krishnaveni and T. Sobha Rani.

On the classification of imbalanced datasets.

IJCST, 2:145–148, 2011.

[32] Balaji Lakshminarayanan, Raviv Raich, and Xiaoli Fern.

A syllable-level probabilistic framework for bird species identification.

In Machine Learning and Applications, 2009. ICMLA’09. International Conference on, pages

53–59. IEEE, 2009.

[33] Mario Lasseck.

Large-scale identification of birds in audio recordings.

In CLEF (Working Notes), pages 643–653, 2014.

[34] Jia Li.

Linear Discriminant Analysis.

http://sites.stat.psu.edu/~jiali/course/stat597e/notes2/lda.pdf, 2016.

accessed 01-04-2016.

[35] A. I. Marques, V. Garcia, and J. S. Sanchez.

On the suitability of resampling techniques for the class imbalance problem in credit scoring.

Journal of the Operational Research Society, 64(7):1060–1070, 2012.

accessed 01-02-2016.

[36] MathWorks.

Introduction to wavelet families.

62

http://sites.stat.psu.edu/~jiali/course/stat597e/notes2/lda.pdf

BIBLIOGRAPHY

http://mathworks.com/help/wavelet/gs/introduction-to-the-wavelet-families.

html, 2016.

accessed 06-05-2016.

[37] Tom M Mitchell.

Machine Learning.

McGraw-Hill, 1997.

[38] Mohamad T. Musavi, Wahid Ahmed, Khue Hiang Chan, Kathleen B. Faris, and Donald M.

Hummels.

On the training of radial basis function classifiers.

Neural networks, 5(4):595–603, 1992.

[39] Dennis O’Neil.

Classification of Living Things: Kingdom to Subphylum.

http://anthro.palomar.edu/animal/animal_3.htm, 2016.

accessed 01-02-2016.

[40] Maja Pantic.

Machine Learning Lecture - Instance Based Learning.

http://ibug.doc.ic.ac.uk/media/uploads/documents/courses/lect_slides_2012_

2013/ML-lecture4.pdf, 2016.

accessed 01-04-2016.

[41] Kun Qian, Zixing Zhang, Fabien Ringeval, and Björn Schuller.

Bird Sounds Classification by Large Scale Acoustic Features and Extreme Learning Ma-

chine.

[42] RE Ricklefs and GW Cox.

Morphological similarity and ecological overlap among passerine birds on st. kitts, british

west indies.

Oikos, pages 60–66, 1977.

[43] Björn Schuller and Anton Batliner.

Computational paralinguistics: emotion, affect and personality in speech and language

processing.

John Wiley & Sons, 2013.

[44] Arja Selin, Jari Turunen, and Juha T Tanttu.

Wavelets in recognition of bird sounds.

EURASIP Journal on Applied Signal Processing, 2007(1):141–141, 2007.

63

http://mathworks.com/help/wavelet/gs/introduction-to-the-wavelet-families.html
http://mathworks.com/help/wavelet/gs/introduction-to-the-wavelet-families.html
http://anthro.palomar.edu/animal/animal_3.htm
http://ibug.doc.ic.ac.uk/media/uploads/documents/courses/lect_slides_2012_2013/ML-lecture4.pdf
http://ibug.doc.ic.ac.uk/media/uploads/documents/courses/lect_slides_2012_2013/ML-lecture4.pdf

BIBLIOGRAPHY

[45] John Shawe-Taylor and Grigoris Karakoulas.

Optimizing classifiers for imbalanced training sets.

Advances in neural information processing systems, 11:253, 1999.

[46] soundingwell.

Reading and writing wave files.

https://soundingwell.wordpress.com/, 2016.

accessed 06-05-2016.

[47] Johan A.K. Suykens and Joos Vandewalle.

Least squares support vector machine classifiers.

Neural processing letters, 9(3):293–300, 1999.

[48] Theano Development Team.

Convolutional Neural Networks (LeNet).

http://deeplearning.net/tutorial/lenet.html, 2016.

accessed 06-05-2016.

[49] Kagan Tumer and Joydeep Ghosh.

Analysis of decision boundaries in linearly combined neural classifiers.

Pattern Recognition, 29(2):341–348, 1996.

[50] Dion Walker.

Statistical modelling services.

http://www.statisticalconsultants.co.nz/services/statistical-modelling-services.

html, 2016.

accessed 06-05-2016.

64

https://soundingwell.wordpress.com/
http://deeplearning.net/tutorial/lenet.html
http://www.statisticalconsultants.co.nz/services/statistical-modelling-services.html
http://www.statisticalconsultants.co.nz/services/statistical-modelling-services.html

	Introduction
	Background
	Previous Works
	Machine Learning Models
	Support Vector Machines
	Linear Discriminant Analysis
	K Nearest Neighbour
	Artificial Neural Network
	Convolutional Neural Network

	Dataset
	Features
	Engineered Features
	Automatic Feature Extraction
	Raw Audio Data
	Spectrogram
	Discrete Wavelet Transform

	Implementation
	Overfitting
	Parameter Optimisation
	Pre-processing
	Method

	Results
	Support Vector Classification
	NuSVC
	Linear Discriminant Analysis
	K Nearest Neighbour
	Artifical Neural Network
	Convolutional Neural Networks
	Raw Audio
	Spectrogram
	Wavelets

	Summary of Results

	Conclusions and Outlook
	Appendix
	Bibliography

