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Abstract

Database Query Optimisation has been researched extensively, commercialised Relational
Database Management Systems uses Cost Based Query Optimisation frequently. At the
same time, Big Data tools such as Apache Pig do not perform these kind of Cost Based
Optimisation, and it is up to the users to decide the best way their queries are executed.
Since both Pig are SQL are Relational Algebra like, it is interesting to know whether
the approaches in traditional Query Optimisation can be used with Pig well. In this
project, I have explored the cost model, one important component of Cost Based Query
Optimisation, that assign a cost to each alternative query plan. Using the amount of
data transferred within the network required to execute a Pig query as the cost, I have
designed and developed two cost models using existing theories in Query Optimisation as
well my own ideas. One model estimates cost using the sizes of tables in dataset, and the
other model would make use of distributions of individual attributes of tables in dataset.
Both models are performing well in terms of ranking queries based on their costs. This
project can serve as a good foundation of further researches in Pig query analysis and
optimisation.
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Chapter 1

Introduction

Big Data is the word that you will hear everywhere nowadays, and everyone seems eager to
make use of it one way or another. Retail sector companies analyse customer behaviours
from the enormous amount of data they have collected to improve their business strategies,
scientists and engineers at CERN consume 30 petabyte of data annually [1], about 3600
GB per hour, and even politicians uses Big Data to win themselves elections [2].

With the sheer amount of data that is there to be cracked open, traditional Relational
Database Management Systems (RDBMS) are not up to the job in most cases. The scala-
bility of RDBMS suffers from the fact that they often offer ACID (Atomicity, Consistency,
Isolation, Durability) properties, and large amount of data would considerably worsen the
performance of RDBMS, also the fact that data has to be loaded into the database, and
allow all processing to be done before analysis can be performed[3] also adds unnecessary
overheads. Furthermore, ACID properties are sometime not required, such as analyses
of website logs. Usually the user wants to quickly go through all of the logs and see if
anything interesting can be found, such as correlations in customer behaviours. In these
applications, the losses of some files are tolerable.

Google released their paper on Map Reduce [4] a decade ago, and this provide a scalable
model which utilises large clusters of commodity hardware to process a large amount of
data. This model take cares of the parallelisation, fault-tolerance, data distribution and
load balancing [4] and all the programmers need to do is to convert their program into map
jobs and reduce jobs, and therefore made analyses of large amount of data easier. Hadoop
is an widely used open source library which employs a similar approach to Google’s Map
Reduce which allows scalable distributed processing for large dataset and some notable
users include Adobe, eBay, IBM and Yahoo! [5].

Hadoop and MapReduce solve the problem of difficulties on processing large amount of
data in a distributed environment, but certain features are missing, two of them are
particularly relevant to the thesis of this project namely the use of relational-algebra-like
language and automatic query optimisations. When using Hadoop users were required
to provide map functions and reduce functions in Java which would be submitted to
the clusters and executed, frequently used database operation such as projection, and
selection must to be implemented in Java. This adds some unnecessary redundancy and
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repetitiveness when working on Hadoop as programmers may constantly have to write
map tasks that are only two lines to achieve projections. Programmers also loss the
luxury of only having to consider the functional description of their code and let the query
optimiser to come up with a query plan as they do when working with SQL in RDBMS,
this mean efforts must be put in to make sure their query are efficiently and they do not
waste valuable network resources by reading in unnecessary fields or passing unused rows
around the cluster.

Pig is a platform which allows programmer to write relational algebra with Pig Latin and
execute these programs by compiling them to equivalent Map Reduce jobs in Hadoop [6].
Pig solves the problems we described partially. The fact that Pig Latin implements a
subset of relational algebra and is therefore highly declarative means programmer can
write code similar to SQL and enjoy the scalability of Hadoop at the same time. What
Pig does not do is query optimisation similar to the ones offered by most RDBMS, while
Pig does perform some optimisations, it is nowhere near as sophisticated as what RDBMS
can offer, and therefore much work is place on the shoulders of programmers.

1.1 Objectives

The aim of this project is to explore the possibilities query optimisations in Pig. Since this
is a relatively new area, there are many possibilities as well as difficulties. There are many
problems that needs to be worked on and perfecting on all aspect of query optimisation
is well beyond the scope of the project.

There are two important parts of query optimisations, an accurate cost model and good
query plan enumeration algorithms and both topics are difficult and can be studied in
depth, and choosing a correct scope for the project is therefore important.

One important factor that we must take into consideration is the fact that a good cost
model must come before the actual optimisation algorithms. An algorithm can be as good
as you want, but if the things that you are optimising actually bears no relation to the
real world application, the optimisation will not work well. For example, for a RDBMS,
usually the system would try to minimise the usage of I/O and CPU time, and there are
usually a cost model which will estimate the cost of query plans, assuming calculating this
estimated cost is cheaper than running the queries, it would make sense to find a query
plan with the lowest estimated cost. The problem would arise when the estimation is
significantly inaccurate such that it bear little resemblance to how costly the queries are
in the real world, we would be wasting our time trying to find the query with the lowest
estimated cost. Putting it in the context of this project, we need to have an acceptable
cost model before we explore algorithms that optimise a query agains the costs in our
model. Therefore the main objective would be to design a good cost model for Pig queries
that serve as the basis of any cost based optimisation algorithms.

In this project I would focus on the development of some working models for estimating
cost of executing Pig queries, based on existing theories in query optimisations as well as
my own solutions to problems that were not present in traditional RDBMS. I would try
two different approaches of estimating the cost of Pig queries, one that only take the sizes
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of the input tables into account, and another that also considers the distributions of values
in those tables, and assess how well they work.

To assess how well the models work, I would measure how well they can rank different
queries in terms of their cost instead of how accurate and precise the models can calculate
the exact resources needed to complete those queries. This is because if the model is
adapted to be used in cost base optimisation, we want the model to help us pick the least
costly query out of all of the alternatives, and as long as the relative ranking is correct,
the model is working well for the intended purpose.
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Chapter 2

Background

In this chapter, we are going to have an overview of background knowledge that is im-
portant for this project. During the discussions of these background knowledge, I would
try to relate these to the project if possible, talk about what each point meant from the
point of developing a good cost model, and what we should pay attention to during the
development.

2.1 Hadoop

2.1.1 MapReduce

MapReduce is a programming model for processing and generating large dataset [4]. In
MapReduce, programmers specify their program in a map function, which process a set
of key/value pair and generate another set of intermediate key/value pair, and a reduce
function, which merge all the intermediate values with the same keys.

One example is to find the most read news article of a website, and the map reduce can
be structured as

Input: logs of web page requests
Map: url → list of (url, 1)
Reduce: (url, [int]) → (url, count)

What this says is that in the map phase, each entry of logs will be processed, and produce
a tuple of the url and the number 1, meaning it has been accessed once. After the map
phase, all the 1’s of an url will be put into a list, and in the reduce phase, the list will be
counted so that we know how many times a url has been visited.

This simple paradigm allows programs to be parallelised automatically and be executed
on a large cluster of commodity machines. Low level details such as data partitioning,
scheduling, communication and failure handling are taken care of by the run-time of the
library [4].
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While these setups might incur some overhead, the main advantage of this programming
model is scalability. The same task might have better speed running on a single machine
using code specific for the task, but when the data gets large and many machines is needed
to perform these computation in parallel, a programmer will then have to spend many time
setting up the machines using libraries such as Condor[7] and manually split up the tasks
into different jobs. Which is time consuming for the programmer, compare to only having
to worry about the functional side of the program and all parallelisation problems to be
taken care of by MapReduce.

2.1.2 Hadoop’s MapReduce

There can be many different implementation of MapReduce, and the right choice depend
on the environment [4]. Since we are going to study how Pig query to be optimised, it is
important to understand the design of MapReduce of Hadoop, so that we can know what
can or cannot be optimised under the architecture and how.

The MapReduce framework has a Master/Slave architecture where there is a ResourceM-
anager on a node acting as the master and a NodeManager on each slave nodes [8]. The
Resource Manage is responsible for allocating resources monitoring tasks, scheduling tasks
and providing status to the client. There is also an ApplicationMaster for each job, and
it asks resources from the ResourceManager and work with the NodeManager to execute
the tasks.

During a MapReduce job, the input data is usually split into independent partition, de-
termined by the block size, each partition is then processed by a map task running on a
cluster node independent and parallel to other map tasks [9]. The framework would take
care of sheduling, monitoring, detecting failure tasks and re-executes the failed tasks. Af-
ter the map tasks are completed, shuffles” are performed where relevant data are fetched
from the map nodes, then the data are sorted so that each output from the mappers with
the same key are grouped together. Then the reducers provided by the user would be
executed.

Figure 2.1: MapReduce

In figure 2.1, the input file is a list of students and the year group they belong to. We
are trying to find out how many students there are per year. As we can see, the input
is splited into some partitions, and each would be processed by a map task. The map
tasks procude tuples with number of students they have seen each year, and the reducer
combines the results and output the list of number students at each year.

To achieve smaller usage of network, and take advantage of locality, tasks are usually
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scheduled on nodes where data are stored, and only schedule them to nodes where data
have to be copied from somewhere else if all nodes are unavailable. This is achieved by
making the HDFS and MapReduce run on the same nodes, and this minimise the use of
the scarce network bandwidth which is critical for the performance.

2.1.3 HDFS

The Hadoop Distributed Filesystem is a distributed file system that works with Hadoop [10].
It is designed to run on commodity hardware. The significance of HDFS is that it is highly
fault-tolerant, high throughput, scalable for large files and built on the write-once-read-
many access model for files.

The following assumptions are made when designing HDFS [10]:

2.1.3.1 Hardware Failure:

Hadoop is design to be used to distributed environment with commodity hardwares where
failures are highly likely, if this is not automatically dealt with, a file system with thousands
of machine will probably not able to run at all. This is due to the increase probability
of failure of at least one machine grows quickly when the number of machine increases.
Assuming failures happens in one particular day for one machine is one in thousand and
each machine is independent to another, with merely 100 machines the probability of at
least one failure occurred in one day is about 10

2.1.3.2 Large Data Sets:

HDFS is designed to support large data sets, which means it must be able to store files
that are terabytes in size.

2.1.3.3 Streaming Data Access:

Since the Hadoop is a tool to aid data analysis, and interactive use by users are not
expected but the assumed pattern is write-once-read-many. After the dataset is loaded
many analysis will be performed on them with little modifications, therefore the system
would be made to have a high throughout instead of low latency, and therefore not all
POSIX requirements are met to allow steaming access to the data in the file system.

2.1.3.4 Design of HDFS

The HDFS employs a mater/slave architecture where a NameNode is the master server
which manage file system namespace and regulate file access by clients, it also stores all
the metadata and the the file system tree. There would also be many DataNodes, the
slaves, which manage storage in each node, and store and retrieved data on request of
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the NameNode or Clients, and keep the NameNode updated on the blocks that they are
storing.

A block in HDFS is similar to a block in normal file systems, acting as unit of storages.
The difference is that a block is typically 128 MB in HDFS oppose to a few KB in the
traditional file systems. This brings the benefit of less seeks would be performed and more
time could be used on file transfer. Administrators should find a balance in block size as
a block size too big mean too few takes would be performed in parallel, because the Map
phases usually operates on single blocks.

HDFS achieve availability and fault-tolerance by data replication, and each file can be
specified to have a certain number of replicas. When the number is three, HDFS will
place two at the same rack and one at another rack, which ensure both availability and
network traffic efficiency, as nodes in the same rack is likely to have a better connection
between them.

You might have realised there is something wrong with the design of HDFS which might
have compromised the availability. The fact that there is only one master node, the
NameNode, means if it fails the system will fail, this is a single point of failure. There are
a few ways to tackle this issue, one is to have a ”secondary NameNode”, which, despite
the name, is not a name node, but a node which record snap shots of the NameNode, and
in the event of failure human interaction is needed and data since last checkpoint will be
lost. Another way is to have a standby node which will can be automatically substituted
in the event of failure, however this require extra setups.

2.2 Measuring Cost

Now that we have some understanding of how Hadoop and MapReduce works, we should
decide on what constitute ”cost” in this project. In other words, what should we use to
represent the cost of each query? In centralised RDBMS, we usually use the number of
pages on the disk were read and written[11], and by optimising the I/O, we could optimise
the execution time, but is this what we should be adopting in this case?

Since Pig operates on Hadoop, a library for distributed data analytic, we would typically
have cluster set up in a server room with a number of machines, and to communicate,
each node needs a connection to each other. The implication is that we can easily buy
more machines, so we can easily have more CPU time, more data being read at the same
time, but the cost of upgrading the connections to allow each node to communicate with
each other directly growth in n2. Because for n nodes we need (n− 1) + (n− 2) + ... + 1
connections. In most setting, nodes do not connect to each other, and we would expect
inter-rack communication to be slow as each node in a rack shares the switch.

This means network is the most scarce resources, and our focus should be on reducing the
amount of data being sent through the network. In the context of Pig, we aim at reducing
the data sent from map nodes to reduce nodes, as Hadoop would they to ensure as little
data is transferred in map phase as possible[9].

Another important feature of Hadoop is that very often users are not expecting a quick
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result as they are analysing a huge amount of data, and often many jobs are run at the
same time or the machines are shared in a certain way. This means reducing the network
usage of a Pig job would have a good overall impact on other tasks in the system.

When it comes to optimising Pig queries, we should optimise them so that as little network
is used as possible and therefore we shall use network usage as our sole performance
indicator. Since each map jobs are usually performed where the data is stored, we would
consider the data sent from map nodes to reduce nodes as the cost of a query.

2.3 Pig

Pig is a platform which for analysing large dataset, it uses the language Pig Latin to
express the data analysis programs, and convert the program to Hadoop’s MapReduce
jobs, and execute on Hadoop architecture [6].

Pig Latin is a high level language which includes many traditional data operations such as
join, sort and filter, as well as allow user to use their own user defined functions (UDFs)
for processing data. MapReduce, despite having some great advantages we have discussed
in previous sections, has its own short coming. In addition to asking programmer to write
all of the low level operations, another big problem is that join operation is very difficult
to perform, but joins are used commonly when different data sets need to be combined.

It would be a good time to have a look at what Pig Latin looks like. Lets say if you are
going through your database, and you want to find out about the toys sales revenue from
each country, a typical SQL query would look like

SELECT country, SUM(price)

FROM sales_log

WHERE category = "toy"

GROUP BY country

An equivalent Pig Latin program would look like

toy_sales = FILTER sales_log BY category MATCHES toy

groups = GROUP toy_sales BY country

output = FOREACH groups GENERATE country, SUM(toy_sales.price)

As long as you have some experience with SQL, it is easy to tell that the FILTER and
FOREACH in Pig Latin is equivalent to WHERE and SELECT in SQL respectively.

2.3.1 Pig Latin

We will now discuss the Pig Language [12], this part of the report would focus the discus-
sion on how each operators in Pig would be used in MapReduce and its costs as our goal
is to optimise the Pig Latin query and not to teach people how to write Pig programs.
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2.3.1.1 LOAD

The LOAD operator load data from HDFS into the memory to be used by other part of
the program, you can used using to specify the loading function to load data in different
format and as to specify the schemas. Since data must be loaded in order to be processed,
not much optimisation can be done here. Some optimisation such as not loading unused
columns are already implemented by Pig, and therefore we will not focus on the LOAD
operator.

2.3.1.2 STORE

The STORE operator allows user to save the processed data to HDFS. User can use using
to specify the function and into to specify the path. Since the user should have the final
say on what to be written on the disk, and we will not look into how to optimise STORE.

2.3.1.3 DUMP

DUMP is similar to STORE but it print out result to the screen instead of writing them
to files. This can be useful for some ad hoc queries. Just like STORE we will not consider
DUMP for optimisation.

2.3.1.4 FOREACH GENERATE

FOREACH student GENERATE id, mark;

FOREACH trades GENERATE high - low as range;

FOREACH is similar to SELECT in SQL and selection in Relational Algebra. It takes
a data set, go through each record, and apply the expressions to generate new records.
values in each column can be referred by the name or by position such as $1. It also works
with complex data types such as map and bags, and the semantic would change when
processing a bag.

Usually FOREACH would reduce the amount of data, and therefore we want this to be
done as early as possible, so that less data will be sent through the network.

2.3.1.5 FILTER BY

FILTER student BY score >= 70;

FILTER is similar to WHERE in SQL and selection in Relational Algebra. It takes a data set,
and apply the logical predicate after BY to every record. The example above returns all
student scored at least 70. If the predicate is evaluated to true for a particular record,
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then the record is will be passed down the pipeline. It has the same semantic when dealing
with null, and is (not) null should be used.

Just like FOREACH, FILTER reduces the amount of data and therefore should be executed
before data is sent through the network.

In the cost model, FILTER is particularly important as it determine the tables that subse-
quent operators have to process, and whether we can correctly estimate how many rows
in the data would pass the condition would directly affect the accuracy of the model.

To demonstrate this, we can look at an example that shows that depending on the condi-
tions written in the queries or the selectivity of the attributes, the resulting tables’ sizes
can vary significantly.

Lets look at the three different queries below:

men = FILTER student BY gender == ’m’;

adult = FILTER student BY age >= 18;

awarded = FILTER student BY score >= 95;

For the men table, assuming the university has equal ratio of male and female students
(which is not true for Imperial!), we would expect it to have 50% of the rows of the student
table. On the other hand, assuming the university consist of mainly adult students, which
is a fair assumption to make, we would expect the adult table to have more than 90%
of rows from the student table. Since not many student scores over 95, we would expect
the awarded table to contain only 1% of the rows from student.

if these table are passed down to perform further analysis, we would expect to have a big
difference in cost, and being able to distinguish them is very important if I were to develop
an accurate model, the tasks gets more difficult when the conditions of FILTER becomes
more complex. How to predict the FILTER well would be discussed in further chapters
including the use of selectivity, cardinality and histograms.

2.3.1.6 GROUP, COGROUP, CUBE

years = GROUP student BY year;

best = FOREACH years GENERATE group, MAX(score)

A GROUP statement, being identical to COGROUP, in Pig is similar to GROUP BY in SQL but
is also, at the same time, fundamentally different. The example above gives you the best
score from student in each year group, but GROUP BY in SQL must immediately be consumed
by aggregate functions, like what we have done in the example, but this is not the case in
Pig. What Pig returns after GROUP BY is a set of keys and a set of bags associate with
the each key. Since Pig allow complex type such as bag to be a value in a record, there
is no difference between the relation ”years” above and others. GROUP ALL is a special
case where the produce will be one record with key all and the value as a bag containing
all records, this forces things to be done sequentially.
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A CUBE is similar to COGROUP, only that the group keys are all combinations of the group
attributes.

years = CUBE student BY (year, age);

For example, in the above query, table student will be grouped on (year, age), (year,
), (, age) and (,).

In MapReduce, a GROUP BY is usually done in the Reduce phase, which means if the
pipeline is already in Reduce phase, GROUP BY will pass through a new Mao, Shuffle
and Reduce phases. This is due to the fact that grouping collects all records with the
same key, which is exactly what you get at the start of a reduce phase.

Since you can have skewness in data sets, that is amount of values are not uniformly
distributed to all the keys, and some reduce job might take much longer to finish than
others. In some cases this can be helped by using combiners, which can be understood as
do part of the reduce phase in before data is passed to the reduce nodes.

Another problem would be the key chosen to group on. If there are only a few possible
value, then the number of rows after grouping is likely to stay the same when data increase
in size, in the example above, a university typically have several year groups, no matter
how many students we have, we will have still have that many rows. If, however, we
are grouping on url address for a big online forum where new pages are generated every
seconds, then the number of rows is likely to grow with the number of records. The
implication of Hadoop is that if the number of rows is small, we would need to have some
Reduce tasks that handles a huge amount of data for a single key and if the number of
rows is too large, then it will be easier to balance the load with different reduce nodes.

If we look at the example of counting url clicks, the map phase produce many (url, 1)
and the at reduce phase the input would be (url, [1,1,1,,1]). This can be improved if the
reduced can also be performed at each map node, so the map node would produce many
(url, x) where x is the number of (url, 1) seen in data provided to this map node, and
then reduce nodes would have input which looks like (url, [109, 75,, 12]).

Pigs operator and Pigs user defined functions (UDFs) would use combiner when possible,
and the users UDFs can use combiner by implementing the Algebraic Interface.

In terms of estimating the cost of GROUP, an interesting observation is that, intuitively,
the amount of data being transferred on a GROUP statement should be easily calculated.
Regardless of what you are grouping on, the amount of data being sent through the
network should be roughly the same, i.e. the whole table. The only difference would be
the overhead and the values of attributes that were being grouped on. What is important
is that what comes out of these operators would make a huge difference to the following
statements.

If the GROUP was performed on the gender attributes, we are usually going to have two or
three rows as the result, and if a aggregating function such as COUNT or MAX is used, we
should expect to have a very small table, and hence any future cost involving this table
would be very low. but if we GROUP on the id attribute, we should expect to have the same
number of rows as the original tables and any resulting tables from aggregating functions
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is likely to be very large.

Another complication for designing a cost model in Pig is that results of GROUP in Pig
is treated the same as any other table whereas in SQL the relation must be preceded by
an aggregation function such as SUM. This adds another layer of complication because
if the sum table is not proceeded by aggregating functions, then it will be more difficult
to estimate the cost of following operations as we would end up working with a bag data
type.

2.3.1.7 ORDER BY

ord = ORDER student BY score;

ORDER BY is the same as ORDER BY in SQL which sorts the data according to columns
specified after gym and ASC and DESC can be specified at the end to choose ascending
order or descending order respectively.

Similar to GROUP BY, ORDER BY happens in the reduce phase, but the skewness issue
is automatically optimised by Pig as it would send a small sample through to test the
ORDER statement, and balance the load on each reduce nodes.

As ORDER BY always takes place in reduce phases, we also want to make sure that as
little data is sorted as possible, considerations similar to GROUP by can be taken on order
by, so that we project/select early and maybe combine a few ORDER BY together.

2.3.1.8 DISTINCT

DISTINCT remove duplicated records, and contrary to SQL, DISTINCT in Pig can only
be applied to records, not individual fields. It forces a join phase and combiner is auto-
matically used. Similar to ORDER BY and GROUP BY, we should make sure as little
data is transferred as possible.

2.3.1.9 JOIN

j = JOIN student BY id, locker BY student_id;

JOIN is the same as JOIN in SQL, where columns from data sets are indicated and records
with the same values in those columns will be joined together. Pig also support outer joins
(left, right and full).

For left join, Pig must have schema for the right side to fill in nulls when no records are
matched, the same with right and full join which schema for left side and both sides are
needed respectively. Records with null values for the keys will not match with anything.

In MapReduce, the map phase would be used to mark each record which input it same
from, and the join keys will become the shuffle key (where data is grouped). Cross product
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between the records from both inputs with the same key is produced in the reduce phase.
Pig also make sure data on the left side arrive first and they would be kept in memory,
then each right record is crossed with all of the left records in memory as they arrive.

To improve the performance of joins, one should put the record with more records per
value to the right side and thus reduce memory usage and improve performance. Just like
all the operators that forces a reduce phase, the timing and amount of data pass through
to JOIN is important to be considered when doing optimisation.

Pig also provide many other implementation of JOIN, and we should access the which one
to be the best at which situation and recommend to the user when possible.

Since Join is a very important tool in data analysis, and a large part of Cost base Optimi-
sation is Join Ordering, it is very important to accurately calculate the sizes of output of
joins, and accurately calculate it’s sizes. The distribution of join keys of the tables being
joined is very important to accurately determine the size of the table after the join. If
both table has only one value of the join key, then we are basically performing a Cartesian
product of the two table, which is very costly, on the other hand, if table X and Y are
joining on attribute a, and we know that a is a foreign key to table X, then the output
would have the same number of records as Y.

The above two are the cases where we know exactly how many records we are going to
have, and in many cases we are going to have something in between, in this case we would
have to estimate what the output would look like, often with the help of histograms.

We also need to work out the cost of each join operation accurately, and Pig provides a
few different algorithms for JOIN. The default behaviour of JOIN in Pig is that the map
phase to annotate each record with it’s input, then it shuffles on the join key, and a cross
product is made on records with the same values on the join keys from all of the tables
in the join [13]. Apart from the default one, one can use replicated where a small table
is sent to all machines in the Map phase and therefore no Reduce phase is needed, in
this case the cost would be much smaller as no Reduce phase is performed, and loading
of the small tabel can be taken care of by optimisations on the Hadoop platform such
as loading the replicated input into Hadoops distributed cache [13] or maybe performing
many different Map tasks on the same physical machines. if we have seen replicated and
have verified the right table is small enough, our model might potentially regard the cost
of this operation as 0 as we are only considering the bandwidth cost of reduce phases.

There are many other join algorithms such as skewed and merge that accommodates to
different situations, a good model need to be able to clearly distinguish and recognise the
cost of each algorithms and therefore evaluate different join plans. Skewed join samples
the data first and tries to balance the load between reducers, intuitively it does not seem
to reduce the bandwidth usage and is therefore not too much of a concern in our model. If
the data is sorted already, one can use merge where is uses a MapReduce job to sample the
input and require a second Map phase to complete the join, which is virtually no Reduce
phase. If this is used out model can also potentially regard this as 0 cost.
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2.3.1.10 LIMIT

LIMIT makes sure the number of records in result is bounded by the number specified by
the user, and ordering is generally not guaranteed. LIMIT also forces a reduce but the
limit is also applied by the combiner.

Pig does not stop reading input when the limit is reached, but other optimisations can be
performed such as doing limit early.

2.3.1.11 SAMPLE

SAMPLE gets a will get a percentage of the records in a data set according to the value
specified by user. SAMPLE A 0.1 is the same as FILTER A BY random() ¡= 0.1 and can
therefore be optimised the same as as FILTER.

2.3.1.12 PARALLEL

PARALLEL specifies the number of reducer to have and should only be used on operators
that force reduce phases. It is set for each operator only and does not affect subsequent
operators. The value of PARALLEL can also be a variable and provided at run rime.
Determine this number can be very important for achieving good performances. When
PARALLEL is not set, Pig will usually set one reducer for 1GB of data.

2.4 SQL query optimisations

In SQL, programmer suppose to only care about the functional side of their code, making
sure their code behave correctly and hand the efficiency to the query optimiser. Query
optimisation is very important for traditional SQL. Consider simple query such as

SELECT name, grade

FROM student, department

WHERE student.departmentId = department.id and student.mark > 80

In centralised RDBMS, the cost is usually calculated by the number of disk reads required
for each query. A bad query plan will create the cross product by reading one page of
student at a time, go though all pages for dept for each page of student records. Then
writes the cross product to disk, re-read the pages and filter by the requirement. A better
plan would to filter the mark of students first, then proceed with a join algorithm.

The same principle can be applied to Pig. If a programmer writes

c = JOIN population BY driving_license_id, car_ownership BY owner_id;

d = FILTER c BY age >= 20 AND age <= 24;
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This gives all the records of car owners who are 20 year old. This query, if executed as
written will be very efficient. Assumes that 10% of the population are age 20− 24, which
means we reduce the network usage for the population table by 90% if we filter first. This
kind of trivial optimisation is already performed by Pig. However, there are cases where
Pig do not automatically optimise, those areas are going to be the main focus of this
project.

When an SQL query is sent to be executed, the query would be parsed and represented
as a tree, which each operator would be represented as relational algebra. For example,
the following query would be represented as the diagram in figure.

SELECT name, grade

FROM student, department

WHERE student.departmentId = department.id and student.mark > 80

Figure 2.2: Parse Tree of an SQL Query

Pig also uses structure similar to these trees, and details would be discussed in later
chapters.

After the tree like the one in figure 2.2 is constructed, the optimiser would try to evaluate
the cost different query plans with equivalent results, then select the one with the lowest
estimated cost and send to the execution engine. The three important components are
equivalent results, different query plans and evaluating the cost.

Query optimiser usually try to generate many alternative plans, and try to find the best
plan out of all of the candidates using a suitable cost model. There could be planing
using different join algorithms or complete restructure of the tree. One problem is that
we must make sure all the plans generated are actually equivalent. How do one make sure
the different query plans you consider yield the same result? After all, your query can
be as fast as you like, but if the result is wrong, the optimised query plan is useless. As
mentioned earlier, the query is represented in relational algebra, which means there are
mathematical laws that can be proven to show equivalence in two query, and as long as
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the alternative queries can be shown to be equivalent in relational algebra, we would have
confidence that they are equivalent.

One example of the laws is, if both R and S have attributes C[11], then

σC(R ./ S) = σC(R) ./ σC(S)

There are many other rules that generates equivalent quires, but it will not be discussed
further as the focus of this project is not query plan enumeration but cost model design.

2.5 Mathematical Tools

During this project, to perform analysis and evaluate the performance of the models, we
would need some mathematical tools to help us in different situations. While assuming all
readers are familiar with basic mathematics and statistics such as the meaning of uniform
distribution, average and sum, some less well-known formulae to the general public would
also be used. I will discuss these formulae so that reader who are not familiar with them
can follow the content of the report easily.

2.5.1 Spearman’s Rank Correlation Coefficient

After models have been designed and implemented, we would need to evaluate the model
and see how well it works in estimating the cost of queries. As discussed before, we would
like the model to be able to differentiate the cost of different plans, hence we want the
model to be able to rank different queries accurately.

To measure how two ranking systems correlates with each other, we can use the Spearman’s
Rank Correlation Coefficient. Assuming there is no repeating values, a value of 1 means
two ranking systems have exactly the same ranks for every members, and -1 means on is
the reverse of the other.

Assuming we have two lists of ranks, X and Y , where Xi and Yi represent the rank of
cost of query i in TPC-H, and the formula for Spearman’s Rank Correlation Coefficient is
as follow:

r = 1− 6
∑
d2i

n(n2 − 1)

di is the difference of rank of query i, and di = Xi − Yi.

The advantage would be that we can have a single value that indicates the performance
of a particular model, and thus allow us to easily compare against different models or
different performance of the same model after modifications. The disadvantage would be
that it encapsulate too much information and therefore further analysis would also be
done when we are look at the results of each model.
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2.5.2 Sigmoid Function

When we are doing estimations, we sometimes want to have an output value between
the upper bound and lower bound. If we, however, want the output value to scale with
another variable, t, so that the output grows as t grows, while at the same time we do not
want our output to go above the upper bound, we cannot just simply take the average.

The sigmoid function, or the logistic function, written below is a function that has the
properties we want.

S(t) =
1

1 + e−t

Figure 2.3: Plot of S(t). Image Source: http://fooplot.com

If we look at the plot of the sigmoid function, we can see that the output is trapped
between 0 and 1. This corresponds to the upper bound and lower bound of the output
value. As the input, t, grows, the output also grows and never exceed the upper bound. In
our project, we can transform the function multiplying the function to the range of output
and add the lower bound, so that the output range will be exactly the upper bound and
lower bound that we required.

S(t) = min +
1

1 + e−t
× (max−min)

If we want to scale the function so that the amount needed for t to affect the output grows
as the range grows, we should have

S(t) = min +
1

1 + e−t/(max−min)
× (max−min)

The reason why we required this in our project is that we would need to estimate the num-
ber of unique tuples in the tables, and it is difficult if we only know about the distributions
of each attribute in the tuple.
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For example, we might want to know how many unique tuple we have in tables with
attributes (age, gender, grade). Lets assume that we have 4 different ages, 2 different
genders and 4 different grades in the table, the total combinations we can have is 4×2×
4 = 32. Assuming we have only 10 students, that makes the number of unique tuples to
be bounded by 4 and 10, that is, we cannot have lower than 4 unique tuples as we already
have 4 unique ages, and we cannot have more than 10 because 10 is all we have.

This give us the lower bound and upper bound, and it is natural to assume that the more
combinations we have, the more likely we would have more unique tuples, and therefore
the estimation we give must grow as the number of combination grows, and this make the
difference between the number of combinations and the upper bound, 32− 10, our input
variable.

Using the formula we have above, we have:

S(t) = 4 +
1

1 + e−(32−10)/(10−4)
× (10− 4)

S(t) = 4 +
1

1 + e−22/6
× 6

S(t) ≈ 9.85

S(t) ≈ 10

Therefore in this case we would estimate that the number of unique tuple is 10.

2.5.3 Histogram

Histogram is a representation of distribution. This is used in one of the model to represent
the distributions of values in individual attributes in tables. Inside a histogram, we have
bins and frequencies. Bin represents some values, and frequencies shows the amount
of values that belong to a particular bin. In the scope of this project, for numerical values,
each bin represent a range of values, and for string values, each bin represents a particular
string.

Numeric Histogram

Bin Frequency

0+ 0

20+ 10

40+ 50

60+ 300

80-100 100

String Histogram

Bin Frequency

”Alice” 2

”Bob” 10

”Charles” 8

”David” 6

”Ed” 9

Table 2.1: Examples of different types of histogram used in this project

If we look at table 2.1, we can see in the Numeric Histogram that the bin with ranges 0+
(any value i that 0 ≤ i < 20) has a frequency of 0, which mean no values in the attribute
falls into this range. The frequency of bin 40+ (any value i that 40 ≤ i < 60) has a
frequency of 50, which means in the attribute, 50 values falls into this range.
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If we look at the String Histogram in table 2.1, there are 10 people whose name are exactly
”Bob” in a given table.
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Chapter 3

Project Set-ups

3.1 Hadoop Cluster

To be able to run and test queries, we need to have a Hadoop cluster at our disposal. This
would allow us to test alternative queries and measure running time and cost through the
logs of Pig jobs.

To set up the cluster, I have created nine virtual machines through CSG’s Cloud Stack
service[14][15], one as the master and eight as slaves. The virtual machines may not run
as fast as typical server machines, as it is sharing resources with other virtual machines
hosted in the environment. This would potentially affect the running time of Pig queries,
however this might not be a problem of our project as we are only measuring the amount
of data transferred between nodes, which is not affected by the speed of CPU at each
nodes, therefore it would not affect our measurement of Pig quries’ cost.

3.2 Local Machine

At my local machine, I have written programs that allows Pig queries to be run remotely
in the Hadoop via Java’s method call, as well as programs that can generate Pig scripts
from templates given schemas and other informations. This allows tests to be carried out
easily from my development environment without using SSH.

The Java programs that runs Pig script is done using Linux’s system call, and would need
Hadoop’s URL to be set up in the local operating system. The logs and text output of
each Pig jobs can be stored separately, and allow future analysis after queries have been
executed. To be able to submit Pig queries to the cluster, I would also need to connect to
Imperial College’s network, i.e. via Imperial College’s VPN[16].
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3.3 Benchmark

To be able to measure how well my models are working, I would need to have some
sample queries that I can measure the cost then compare against estimations produced by
my models.

I can download some sample data from the internet and write some sample queries on
those data, but this would often not be representative of what queries a typical user would
want to run. I can alternatively find some ”real world” data and sample queries, which
might gives me a more typical query that people do actually run, but this approach has
limitation that the data is usually fixed or is difficult to adjusted in size to suit my need.
As discussed in later chapter, the ability of having a variable dataset size is very useful
when evaluating the performance of our models.

One good solution to this problem is that I can make use of common benchmark database
such as TPC-H [17]. TPC-H contains a set of non-trivial queries that would involves us-
ingGROUP, JOIN and many other Pig’s features, and it has a good mixture of costly,
time-consuming quires as well as some quires that are light-weight. This provides the
advantage that I can benchmark against a commonly used benchmark database and see
how my model performs on complex queries.

TPC-H also comes with a database generator that allows it’s dataset to be scaled so that
it can have any sizes [17]. This allows me to test my model in many different settings
and might provide insight into problems that could not be detected when we are running
against a fixed size dataset.

I have generated TPC-H dataset in the size of 10 MB, 100 MB, 1 GB AND 10 GB, and all
are uploaded to HDFS to be used by pig queries later on.

While TPC-H provides SQL codes that represent it’s queries, Pig code is not provided. To
make sure that I cannot tune the Pig queries specifically to make it runs well with my
model, I would be best to make use of Pig version of TPC-H queries written by others.

Fortunately this is done by Jie Li from Horton Work, and the code is published on [18].
Since readers might want to see the code when those queries are referred to in later
chapters, I have included these codes by Jie Li in the Appendix. During this project, I
would use these queries as a benchmark, I would measure the cost of running these queries
through my Hadoop cluster, and make comparisons to my estimations for those queries
on the specific dataset.
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Chapter 4

Parsing and Analysis the Pig
Script

To develop models that can analyse Pig scripts, it is important that we can parse the Pig
scripts and allow our programs to understand them. There are two ways we can build
a parser, I can write a parser from scratch, which will give us much more flexibility and
control over the data structures and we would not have dependencies on external projects,
or, as Pig is an open-sourced project, I can make use the parsers in the Pig project itself,
in this case I will not have to implement the details of Pig Latin language, but face the
problem that there might be limitations in what I can do with the existing architectures.

After researching through the Pig’s Source code, it turns out that Pig codes provide a
very good and general architecture where I can extend to suit my own need, namely the
pig programs are parsed to a tree like structure and visitor classes and walker classes are
already defined. Since the tools provided by Pig is very general and flexible, clearly the
benefit of extending the Pig project far outweigh the cost and I am going to modify the
source code to suit my own need should any limitation arises.

4.1 The Overall Picture

To obtain the parsed tree, we would need to invoke method registerScript(InputStream

in, Map<String,String> params) in PigServer, and the PigServer class would perform
parameters substitution and parsing, at this stage, the LogicalPlan is generated.

The LogicalPlan is a tree of LogicalOperator [19] such as LOLoad which represent the
load statment of a Pig Latin program, and inside these operators, there are associated
informations such as the path to load for a LOLoad operator or the expression tree for a
LOFilter operator.

When a physical plan is needed, the ExecutionEngine would compile the LogicalPlan

into a PhysicalPlan and when a MapReduce plan is needed the laucher would covert the
PhysicalPlan to a MROperPlan which consists of descriptions of several MapReduce Jobs.
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The Pig project contains visitor classes already defined for all of these plans and I can
therefore extend those classes to implement my cost models which requires trversing the
parse tree of a pig program. Walker classes which guarantees the order of nodes being
visited in the tree is already provided in the Pig project, which makes analysis easier.
For example, when analysing the cost of a particular operator of a script, it would be
essential to have already analysed the operators that the current operator depends on,
when estimating the cost of a join statement, it would be important to know the sizes
of the two tables that is being joined. the DependencyOrderWalker classes would make
sure that the operators are visited in the order of dependency and therefore take away the
unnecessary complexity when analysing the plans..

4.2 Choice of Plans to work with

Since there are three different kind of plans generated for each Pig query, namely LogicalPlan,
textttPhysicalPlan and MROperPlan, it would be important to pick one of the plan to work
with. Naturally, LogicalPlan would be the closest to what we have written in Pig Latin,
MapReduce would be the closest to what actually get executed on the Hadoop Cluster. If
we have a look at this simple Pig Latin code

join1 = JOIN orders BY o_custkey, customer BY c_custkey;

PigServer would produce the following Logical and MapReduce plans(with some details
omitted).

Figure 4.1: Logical plan generated for the above query

We can see that logical plan consists of two LOAD’s, and one JOIN, and in the MapReduce
plan, we can see that there are also two LOADs, but the there is a Local Rearrange after
each LOAD and there is a Package at the start of the Reduce stage. We can see that it is
not immediately obvious what the MapReduce plan is trying to do, at least not as easy
to understand as the LogicalPlan.
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Figure 4.2: MapReduce plan generated for the above query

I have made the decision to focus on the logical plan and use it as the basis of cost analysis
because I feel that it gives a closer resemblance to relational algebra, and thus it might
be easier to understand the semantic and apply cost estimation techniques which are well
established in SQL queries.

4.3 Data Structure of the LogicalPlan

Now that we have chosen LogicalPlan as the Pig’s query plan representation in our
models, we should understand what how this data structure works and what information
it provides, at a high level, so that we know what we can use for analysis.

4.3.1 The LogicalPlan

The LogicalPlan is a directed graph of the Pig’s Logical Operators, with the nodes
being each operators in the Pig query plan and the edges being the dependencies (data-
flow) between two operators. For example, in figure 4.1, the arrows from LOADs to JOIN

shows that the JOIN depends on the two LOADs and data flows from the LOADs to the JOIN.

In addition to all of it’s functionalities which aids the parsing of of the pig query, the plan
can give us informations about the dependencies and hence we need to enquire it when we
need dependencies informations. Usually the plan would start with a LOAD operator and
ends with a STORE operators.

Visitor class for the LogicalPlan is also provided in the Pig project and this allows easy
implementation of any class that requires traversing the plan, and for our cost models,
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we are going to make use of the visitor and hence we can leave out many unnecessary
difficulties not related to the optimisation of Pig query.

4.3.2 The Schema

The operators which falls into a LogcialPlan are LogicalRelationalOperators, and
they all contains a LogicalSchema which is basically a collection of LogicalFieldSchema,
which is a class that records the schema informations of individual attributes of tables. It
includes informations such as the alias, type and id of an attribute. The most important
pieces of information here are the type and id. we have to make different interpretation
and calculations according to the type of an attribute, and in the context of this project,
for example, estimations about the bag type can not be calculated as accurately as the
integer type. The id is also a very important piece information, if the an attribute is
the same after an operators, such as being in the result of SELECT without alteration, the
column is going to have the same id, so this would give us valuable information regarding
whether we can have a known accurate distribution of a column.

The assumption in this project is that schema information would be provided for the
queries we optimised, which is a reasonable requirement and would properly limit the
scope of the project to work with queries without having to put type inferences into
account.

4.3.3 LOLoad

LOLoad is the entry point of Pig queries, it provides the path where the input files are
loaded. This is very important as it allows the program to automatically collect informa-
tion about the input without user having to manually provide them. Users need to make
sure the path in the Pig script and the URL to the HDFS site are correct, which, if not,
the Pig script will not run, and the program can send requests to collect information about
the input files either via either HDFS commands in Java or pre written Pig scripts. And
this is exactly what we have done when implementing out models and will be discussed in
following sections.

4.3.4 LOFilter

As discussed in previous chapters, FILTER can change the size of it’s output, and the
percentage changed can vary from 0% to 100% of the original output depending on the
condition. The LOFilter class provides a LogicalExpressionPlan, an expression tree, to
represent the select condition. The LogicalExpressionPlan has a similar structure to the
LogicalPlan and consist of operators such as add, subtract, and, or, larger than and
etc. We can make use of this plan and evaluate the condition ourself and make estimation
of the selectivity of the condition.

Similar to the LogicalPlan, a visitor class is also provided and it should allow easier
implementation of any evaluation of the LogicalExpressionPlan.
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4.3.5 LOCogroup

For grouping, the most essential piece of information is what attributes we are group-
ing on, as it decides the number of records we are going to get. The LOCogroup op-
erator has a map of LogicalExpressionPlan which maps from input table to plans.
Each LogicalExpressionPlan provides information on what attributes are being used
for grouping via the ProjectExpression class which each contains the id and type of the
attribute for grouping.

Since LOCogroup permits grouping multiple tables together, having the map data-structure
here facilitate a general implementation of analysis that accomondates any number of input
tables.

4.3.6 LOJoin

Similar to LOCogroup, LOJoin operator also provides information on the attributes being
join, and can therefore be used in analysis of the operator. They information is provided in
the same way that a map from input table to LogicalExpressionPlan and each attribute
is contained in a ProjectExpression object.

4.3.7 LOLimit

The LOLimit operator provides the number which the table is limited to, thus we can use
it for our analysis.

4.3.8 The Walkers

Although not part of the LogicalPlan, the walkers of the visitor class is there to ensure
a specific traversal order, and depending of what we are doing with the plans, we might
need different traversal orders.

For cost estimations, we usually need informations about predecessors of operators in
order to perform analysis. If we were to determine the size of a JOIN operator, we would
definitely need to know about the sizes of the input tables, and would probably be better
off having more information such as the distribution of each attributes of each input tables.
This means we need the traversal to be done in the order of data dependency. In this case
we can use the DependencyOrderWalker provided in the Pig project and ensure that we
have all of the information needed when performing analysis on operators.

If we were to analysis the conditions of FILTER, it is a different story. As we know
from evaluating any mathematical formulae, we need to solve from bottom-up, as each
operators would be expecting values from it’s child-nodes. In this case we can use the
DepthFirstWalker which would be suitable in this situation as it would ensure all child-
nodes to be traversed before visiting the parent nodes.
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Chapter 5

The Simple Cost Model

5.1 Design Philosophy

At the start, we would like to develop a simple model, a model which estimates cost of
queries with very limited informations, and therefore require little overhead and assistance
from the users. This model is likely to be inaccurate due to the fact that it does not have
information such as cardinality, selectivity and distribution of values in attributes of input
tables, but it can be very useful in the situation when those information are not available or
are very expensive to collect. In some RDBMS, if the user do not explicitly provide these
extra informations or command the RDBMS to collect these informations, the RDBMS
would in fact have to rely on assumptions made without looking at the actual data.[11]

We have decided to require two pieces of information of input tables, the schema for the
the input tables and the sizes of the tables. We would expect programmers who want
their pig script to be optimised to provide schema details, and the sizes information is
very cheap to obtain and is actually very important to estimating the cost of a query. A
good example would be a Cartesian product is viable if one or both of the tables are very
small, i.e. less than 10 rows, and having table’s sizes would be a very important indication
of whether a query is viable in terms of cost.

From the information we are given, we are not going to look at the details of each operators,
i.e. we will not analyse the condition for FILTER or look at what attributes are used
as join keys. Instead, we would do experiment to find out the general behaviours of
certain operators or to use analysis and established theories to make assumptions about
the behaviour of operators, then we would implement the model using assumption made
from those analysis or experiments.

To analyse the pig script, we have also decided to look at each operators in the script
sequentially, such that the model would assign a cost to each operator depending on the
type of operators and sizes of it’s inputs, and the total cost would be the sum of all
individual costs. This would ignore the fact that Combiner can be used to reduce the cost
of certain operators, and thus some operators are not as expensive as estimated.

As discussed before, we would use the bandwidth being used in reduce phase, i.e. from
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map nodes to reduce nodes, as the cost of each operators.

5.2 Specification

This model must be able to take in any Pig scripts and informations about the sizes of the
input and produce an estimation of cost in terms of the amount of data transferred from
map nodes to reduce nodes when the script is executed on a Hadoop Cluster. It must be
able to provide the answer quickly, i.e. less than a few seconds for each query.

5.3 Design

According to this specification, we would need a few components in this program:

1. An object which can read in a Pig script and produce a data structure that can be
analysed

2. An object which retrieve size informations about input tables from HDFS

3. An object which can perform the analysis based on data provided by the other two
objects

I have also decided to use Java as there are libraries to work with both Pig and HDFS in
Java, and it is a compatible language that can be used on almost all platforms.

5.4 Experiments

Before we actually implement the model, it is important to confirm some of our hypothesis,
so that we can produce a model with more confidence.

5.4.1 Obtaining the cost of Pig query

Since we want are using the bandwidth between map nodes and reduce nodes as the cost,
this information can be obtained by parsing the log files of Pig jobs. By matching lines
like these in the log file using regular expression, we can obtain the cost of each Pig job
easily.

2016-05-24 15:03:51,518 [localfetcher#1] INFO org.apache.hadoop.mapreduce

.task.reduce.InMemoryMapOutput - Read 1582367 bytes from map-output for

attempt_local1615850287_0001_m_000000_0
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5.4.2 Number of attributes in GROUP and CUBE

One interesting fact that we should know about is the whether the cost increases if we are
grouping or cubing on different number of attributes. The intuition of grouping would be
that the cost should stay the roughly the same regardless of the number of attributes it
is grouping on, because apart from the newly formed group column which represents the
group keys, the results will contain one copy of the original input table that has been split
into many different buckets, and therefore the size should not change much. Where as
for CUBE, a tuple is going to be matched with multiple group keys. If a tuple is matched
with (female, 100), it will also match with (female,), (,100) and (,), and presumably
these copies of tuples all have to be sent through the network from map nodes due to they
are associating with a different key in MapReduce, so we should expect an 2n increase
from respected groups with the same group attributes, where n is the number of attributes
being grouped on.

I have conducted an experiment which I wrote quires that GROUP and CUBE on different
attributes, and the I measure the cost of these queries.

Query CUBE GROUP ratio

PART brand type 9.74× 107 2.76× 107 3.53

PART size type 1.01× 108 2.76× 107 3.66

PART brand type size 1.94× 108 2.76× 107 7.03

ORDER custkey orderstatus 7.22× 108 1.86× 108 3.89

ORDER orderpriority orderstatus 7.01× 108 1.85× 108 3.78

ORDER custkey orderstatus orderpriority 1.38× 109 1.85× 108 7.45

Table 5.1: cost (byte) of GROUP and CUBE running on 1GB of TPC-H dataset

Result of the experiment can be found in 5.1, the capital words in the first column represent
tables in the TPC-H dataset and words in lower case are the attributes being grouped on.
According to this result, previous analysis is likely to be correct. We can clearly see that
when grouping the PART table, the cost is identical and varies less than 1% in the case of
the ORDER table. We can also see when the cost of CUBE is roughly 2n the cost of GROUP on
the same attributes, where n is the number of attributes, the difference is likely to do with
the overhead, and the extra column generated as the shuffle key. As we can see from the
table ORDER, being the larger table, has a closer ratio to 2n possibly due to the overhead
is relatively smaller.

5.4.3 GROUP with multiple input

GROUP and COGROUP, being identical operators, allows multiple tables to be grouped at the
same time, and it would be important to know whether this have any implication on the
cost, i.e. would this reduce the cost compare to grouping multiple tables individually. If
we think about the algorithm, which each tuple would be grouped with it’s group key, and
and sent to reduce nodes to combine, it is likely that the cost would be linearly correlated
to the cost of grouping them individually as all tuples from all input tables have to be
sent to reduce nodes once. If this is the case, estimating the cost of GROUP can be done
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by simply summing the cost of grouping on individual tables.

TABLE key Cost (byte)

CUSTOMER c custkey 2.67× 106

CUSTOMER c nationkey 2.68× 106

NATION n nationkey 2.50× 103

ORDERS o custkey 1.83× 107

PART p brand 2.67× 106

PART p brand p type 2.73× 106

Table 5.2: Cost of grouping individual tables on 100MB TPC-H

TABLE attributes Cost (byte) Sum of Individual Groups

NATION n nationkey CUSTOMER c nationkey 2.69× 106 2.69× 106

PART PART p brand 5.34× 106 5.34× 106

PART PART p brand p type 5.45× 106 5.45× 106

PART PART PART p brand p type 8.18× 106 8.18× 106

CUSTOMER c custkey ORDERS o custkey 2.10× 107 2.10× 107

Table 5.3: Compassion of COGROUPs and individual GROUPs on 100MB TPC-H

Amazingly, the cost, which is the bytes from map node to reduce nodes in the context of
this project, of grouping multiple tables is identical to the sum of the cost of individual
tables as suggests in table 5.2 and table 5.3. This suggests that, at the time of the
experiments are conducted, grouping multiple tables together in Pig is implemented as
they were grouped separately. Although this can be changed in future version of Pig, we
can safely assume the cost of grouping multiple table is the sum of individual tables, as
our earlier analysis suggests any optimisation would still result in similar results.

This result also suggests that COGROUP should always be preferred over grouping separately
then join as we are effectively omitting a join stage, which would incur a separate reduce
phase.

5.4.4 Growth of the queries cost

Another important information that we are interested to know is that how the cost of
the queries grow when the sizes of input increases. Intuitively, a query that involves only
SELECT, FILTER, GROUP and other operators that does not involve operation resembling
cross product should have their cost increases linearly or less with the input size, because
these operators can be implemented via algorithms with linear or constant space. For
queries involving JOIN, the cost might be exponential or less depending on the nature
of the join. If the joins are on attribute with only one value, then we are effectively
performing Cartesian product between the input tables. Although the cost of a single
JOIN is likely to be the same regardless of what we are joining on, because cross product
is done in the reduce phase hence the extra tuples do not come from map nodes, bigger
result from JOIN is going to increase the cost of operators which depend on that output
and hence increase the cost of the overall query.
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I have conducted this experiment by generating different copies of TPC-H data set each
with size 10 MB, 100 MB, 1 GB and 10 GB, run all 22 of the TPC-H queries with these
different input sizes, the I calculate the growth in cost of each query and what we have
in table 5.4 is the result. A value of 10 would represent perfect linear growth of cost of
query.

TPC-H queries 1 2 3 4 5 6
Cost growth 5.54 10.02 9.99 10.01 9.84 5.56
TPC-H queries 7 8 9 10 11 12
Cost growth 9.99 10.40 10.23 9.94 10.08 10.00
TPC-H queries 13 14 15 16 17 18
Cost growth 10.20 10.01 17.85 10.04 9.99 10.04
TPC-H queries 19 20 21 22
Cost growth 9.99 11.26 10.20 9.99

Table 5.4: Average growth of cost of each TPC-H queries

As we can see from table 5.4, most of the queries do grow linearly with values very close
to 10 with the exceptions of Q1, Q6 AND Q15.

For Q1, the growth of cost of dataset size size 10 MB, 100 MB, 1 GB and 10 GB are 854
bytes, 884 bytes, 5096 bytes and 50112 bytes receptively, and for Q6, the growth are 23
bytes, 23 bytes, 138 bytes and 1334 bytes respectively. We can see that their costs do not
vary much from 10MB and 100MB, since TPC-H recommend minimum size of 1 GB[20],
it is entirely possible that the 10 MB and 100 MB are not distributed the same way as
dataset with sizes above 1 GB. Since the 1 GB and 10 GB dataset does show a growth
factor of 10, we can reasonably conclude that the growth of both queries are linear.

flineitem = filter lineitem by l_shipdate >= ’1996-01-01’

and l_shipdate < ’1996-04-01’;

sumlineitem = foreach flineitem generate l_suppkey,

l_extendedprice * (1 - l_discount) as value;

glineitem = group sumlineitem by l_suppkey;

revenue = foreach glineitem generate group as supplier_no,

SUM($1.value) as total_revenue;

...

For Q15, if we look at the snippet above, we can see that there is a group and aggregate
onto some filtered results from lineitem. We can see that the aggregation function is
SUM which can be optimised by the Combiner. Since the number of unique l suppkey

are scaled with the Scale Factor of the dataset[20], we would have more l suppkey at
a larger dataset, and therefore more unique groups at each map nodes, therefore less can
be optimised by the Combiner as the dataset grows.
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5.5 Implementations

In this section, we are going discuss the overall picture of the implementation of this model,
without going into details about the actual programs, we will explore the design choices
we made and overall algorithms.

5.5.1 Parsing the script

For parsing a Pig script, as we have discussed in previous chapters, this is already imple-
mented in the Pig project. The only limitation here is that the LogicalPlan class that
we are going to use is not exposed by the PigServer class, luckily the project itself is
open sourced and I had added a few lines of code in the PigServer class to expose the
LogicalPlan inside. This might become a problem for distributing my project as I would
have to provide my own version of Pig if others would like to use my model, but it is not
a problem within the scope of this project which is to develop a working cost model for
Pig.

5.5.2 Retrieving sizes’ information from HDFS

This can be easily achieved through FileStatus provided by Hadoop library and by calling
the status.getLen() method we can retrieve the size of a particular file in byte. All we
need from the user would be the URL to the HDFS site.

5.5.3 Overall work-flow of the Model

During the analysis, the LogicalPlan will be traversed in the order of data dependency,
and therefore I have made a OperatorMetadata class which holds information about each
operators, namely their output size and the cost of the operator. The size information
would be used by other operators which depends on it and the cost is used when calculating
the total cost of the Pig query.

As each operator is visited, the cost would be calculated based on the sizes of the prede-
cessors, and cost would be stored and when all of the operators are analysed, the total
cost would be calculated by summing the costs of individual operators.

5.5.4 LOLoad

In this stage, we collect the sizes information about the table being loaded, by connecting
to HDFS and enquire about the file path contain in the LOLoad operator, and store this
as the output size of this operator.

One of the potential complication of using the file size as the table size is that the actual
table size is usually smaller in memory, one reason could be that the TPC-H data set input
files are strings of characters, and all data types, including numbers and dates are stored
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this way. When those data are loaded into memory, or bring sent through the network,
they are usually smaller as they are represented using more efficient data types. A 10 digit
integer require 10 × 2 bytes to be represented in characters but only need 4 bytes with
Java’s int.

However, as the model only need to be able to distinguish the relative difference in cost,
i.e. be able to rank different query plans according to the cost, this approach should not
be a problem if used consistently throughout all queries analysed by this model.

5.5.5 LOFilter

For this operator, we must decide on how much of the table would remain after the filter
conditions has been applied. To acquire an accurate prediction, one should look at the
specific condition and the distribution of values of the input table. But in this simple
model we have decided to not have information about distribution of values in the input
table.

One way forward is to look at the filter conditions and make assumptions about the
distribution via the attributes type and name. For example, we might be able to say we
always assume uniform distribution, and if the attribute name is ”gender” or ”birthday”
we can kind of have an idea of the range of possible values can be hold in the column.

Implementing this estimation means that we need to have a table of attribute aliases and
some assumed distribution of the values. These assumptions are very likely to be wrong
and the construction of such table is complex, on top of that, we might not be able to
achieve a significant improvement in accuracy of estimating the reduction rate of a query
over a constant reduction. Apart from the obvious problem of large number of aliases to
consider, and many different form of the same alias, lets consider we have a way to work
out whether an attribute is ”birthday”, to have a default distribution, we can lookup the
age distribution of world’s population, but then the age distribution of students at a school
would be very different from the age distribution of members of a country club, and they
would both be very different from the world’s population’s age distribution. For most
of the attribute we just cannot have any meaningful assumptions, such as the comment

attribute which frequently appear on many tables in TPC-H dataset.

Another approach we can take is to assume a constant reduction rate, while this is not
going to be very accurate, this approach is recommended in [11] for estimating the output
of FILTER. This approach allows fast estimation of FILTER and it is also a monotonic
function, which would be the case if the same condition of FILTER are applied onto tables
with the same distribution but larger size.

In this case, I have adopted the second approach and half the size of the input table
whenever a FILTER is applied, and the cost is assumed to be 0 as no reduce phase is
required to complete the FILTER in Pig.
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5.5.6 LOStore

This is the operator that we do not need to pay much attention to as data arrive at this
stage would be the same regardless of intermediate processing, otherwise we would have
incorrect optimisation.

5.5.7 LOForEach

LOForEach has no reduce phase, therefore we can set the cost of it as 0. To estimate
the output size of LOForEach, we should notice that the number of tuples (rows) in the
output would always be the same as it is a Projection from the table. Since we can have the
schema of the input table and output table, the approach I have chosen is to approximate
the average size of a tuple by looking at the type of each attributes. After calculating
the size of tuples of input and tuples of output, we can estimate the shrink ratio by
calculating size of input tuple

size of output tuple and multiply by the input size.

Type Size (bits)

BOOLEAN 1

BYTE 8

INTEGER 32

LONG 64

FLOAT 32

DOUBLE 64

DATETIME 24 * 8

BYTEARRAY 128 * 8

CHARARRAY 256 * 8

MAP 4096 * 8

TUPLE 64 * 2

BAG 1024 * 16 * 8

Table 5.5: Estimation of type size

To estimate the tuple size, I have chosen to assign a size to each data type as shown in
table 5.5, for many types such as BOOLEAN and DOUBLE, their sizes are fixed and this is
likely to be accurate, whereas for type like BAG, this is going to be inaccurate. Although
this approach is not going to work very well with these dynamic data-types, it does serve
the purpose for providing a quick and easy estimation of output size.

5.5.8 LOJoin

For LOJoin, we need to decide both the output size and the cost of the operation. As
discussed earlier, it is relatively easy to determine the cost of joins, i.e. both tables have
to sorted by the join key and sent to reduce node according to the sort keys. so we can
estimate the cost of joins as the sum of the table sizes.

Estimating the output size of the JOIN is much more difficult to do. Usually, the simplest
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estimation formula requires the cardinality of the join keys [11], which in this case is not
available. We of course can consider the approach which was discussed in the analysis
of LOFilter, namely to assume some distribution according to types and aliases, and we
would just face the same problems.

In this case, I have chosen the same approach as I have done in LOFilter, which is to
assume a constant factor of 2 multiplied by the sum of sizes of input tables. While it is
possible for have a smaller table after join, in many cases we join because we normalised
the table to accommodate one-to-many or many-to-many relationships, and usually the
size increases in this case as those matched keys produce Cartesian Products.

5.5.9 LOCogroup, LOCube

To estimate the output size and the cost of LOCogroup is very easy, as it is linearly related
to the input size, a good estimation can simply be the input size. This is because regardless
of what attribute is used for grouping, each tuple table will need to be sent to the reduce
nodes once and the output is going to have all tuples in the input table (now stored in
bags). The same goes to LOCube, since for each attribute that we group on, a tuple is
going to be matched 2n times, where n is the number of attributes we are grouping on, and
each would have to be sent to the reduce nodes, hence both the cost and the size is going
to be 2n of the corresponding join.These claims are confirmed by previous experiments.

What we do not have is the number of tuples of the output, as it often determine the size
of the aggregates that follows the group. What we have effectively done is that we have
set a fixed ratio of size reduction of aggregation by giving a fixed size to bags and other
types that it can be aggregated to, as shown in table 5.5.

5.5.10 LOSplit, LOSplitOutput

SPLIT allows multiple filters to be applied to a table at the same time and produced
multiple tables, under the hood, the input to SPLIT will be the input to LOSplit, but
LOSplit do not contain any conditions, it serves as an input to LOSplitOutput, and
LOSplitOutput is basically an LOFilter and contains the filter conditions. Therefore each
LOSplit has it’s input size as it’s output size and 0 cost, where as the LOSplitOutput is
implemented the same way as LOFilter.

5.5.11 LOUnion

Since the only information we are keeping throughout the analysis is the size, LOUnion
can simply be calculated by adding the sizes of all of the input tables, and it would have
a cost of 0 as it does not require a reduce phase.

43



5.5.12 LOSort

LOSort does not change the size or the distribution of the input, as all it does is to re-order
the table in a certain way, therefore we can us the input size as the output size. We can
also set the cost of the operator as the input size as all tuples have to be sent through the
cluster to reduce nodes.

5.5.13 LORank

LORank is very similar to Sort as a sort is required to rank a table and can be implemented
almost the same way, with only two differences. One is that sometimes a sort is not
necessary if no attributes are specified, in this case pig will simply prepends a sequential
value to each tuple[21], and no reduce phase is required, and therefore has a 0 cost.
Another difference is that a new column with int type is always created to store the ranks
and we can use table 5.5 to estimate the increase in average tuple size and generate an
estimation of change in table size.

5.5.14 LODistinct

For distinct, a reduce phase is required, although some duplicates might be removed by
the Combiner before the reduce phase, I would still assume the whole table would be sent
through as it would be difficult to determine how much work would be done by combiners,
and whether duplicate records to exists in the same file split that can be picked up by the
combiner.

In terms of output size, I have chosen 0.9 as the constant reduction factor of LODistinct.

5.5.15 LOLimit

For LOLimit, we know the number of tuples that it is going to produce, so we need to
know the number of tuples in the input table to work out the reduction ratio. Although
we do not have this information, we can estimate it by dividing the input size by the
average tuple size using table 5.5.

no. of input records =
size of table

size of a record

size reduction ratio =
no. of output records

no. of input records

The cost of LOLimit would be 0 as it does not require a reduce phase.

5.5.16 LOCross

The row count (number of rows) in the output of LOCross is the product of number of rows
of the input tables, which we can estimated using the method mentioned in the analysis of
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LOLimit. After the output row count is known, we multiply this by the estimated output
schema size using table 5.5 to get the estimated table size.

The cost of the cross is not immediately obvious, as it depends on the implementation. Pig
implements CROSS by generating a synthetic join key, replicating rows, and then joins[11],
and the cost is going to increase as the parralell factor increases as input record are
duplicated by the factor of square root of parallel level[11].

Therefore the cost of cross would be√
parallel level×

∑
sizes of input tables

5.6 Evaluation

To evaluate the effectiveness of the model, we would first run all TPC-H queries in our
Hadoop cluster with data-set size of 1GB, then we would measure it’s cost by parsing it’s
log files. We would also let our model to run on these queries, and we would collect the
estimated cost of each. After we have the real costs and estimated costs, we will rank each
queries according to the cost then use Spearman’s Rank Correlation Coefficient to score
the performance of the model’s ability to rank the model by the cost and the results are
presented in table 5.6.

Query Estimated Cost Estimated rank Measured Cost Measured Rank d dˆ2

Q1 2.37× 107 11 5.10× 103 2 9 81

Q2 4.55× 107 14 1.98× 108 17 -3 9

Q3 3.55× 107 13 1.18× 108 14 -1 1

Q4 1.01× 107 8 4.87× 107 10 -2 4

Q5 6.30× 107 18 2.66× 108 20 -2 4

Q6 5.80× 105 2 1.38× 102 1 1 1

Q7 8.84× 107 19 1.16× 108 13 6 36

Q8 5.51× 107 16 1.85× 108 16 0 0

Q9 1.66× 108 22 3.81× 108 22 0 0

Q10 5.41× 107 15 9.57× 107 12 3 9

Q11 1.34× 106 3 2.29× 107 5 -2 4

Q12 9.73× 107 20 3.49× 107 9 11 121

Q13 5.04× 105 1 2.54× 107 6 -5 25

Q14 1.10× 107 9 2.89× 107 8 1 1

Q15 1.79× 106 4 2.01× 106 3 1 1

Q16 5.59× 106 7 2.74× 107 7 0 0

Q17 4.67× 106 6 1.74× 108 15 -9 81

Q18 2.35× 107 10 2.00× 108 18 -8 64

Q19 5.55× 107 17 3.69× 108 21 -4 16

Q20 2.40× 107 12 4.92× 107 11 1 1

Q21 1.09× 108 21 2.36× 108 19 2 4

Q22 3.15× 106 5 1.72× 107 4 1 1

coefficient 0.74

Table 5.6: Result of Simple Model, cost in bytes

As we can see from table 5.6, this model has achieved a coefficient of 0.74, which is a
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indication of good performance of this model, it clearly shows that the Simple Model’s
ranking has a good correlation to the actual ranking of cost of queries, and can give useful
insight how how costly a particular query plan would be when doing optimisations.

However, there are a few queries that appears to have diverted away from the actual rank
considerably, they are Q1 ,Q12, Q17 and Q18, and it is important for use to analysis why
this is the case. Q1 and Q12 are over estimated, such that their cost rankings are too high,
whereas Q17 and Q18 had been underestimated as their cost rankings are too low.

We will now look at each quires individually to see what is causing our model to under-
perform when analysing these queries.

5.6.1 Q1

SubLineItems = FILTER LineItems BY shipdate <= ’1998-09-02’;

StatusGroup = GROUP SubLine BY (returnflag, linestatus);

PriceSummary = FOREACH StatusGroup GENERATE ...

SortedSummary = ORDER PriceSummary BY returnflag, linestatus;

If we take a look at the snippet of Q1 above, we can see that there is a FOREACH immediately
after GROUP, and since we are grouping on (returnflag, linestatus), two attributes
with very few distinct values, the cost of the ORDER is likely to be very low. But this
is not enough to explain the cost being in thousands of byte. LineItems is a very large
table, with more 700 MB in size, and the FILTER condition still output a majority of rows
in the table. On possible reason would be that many of the aggregations after groupong
are done in the Combiner stage, where a reduce is performed on the map nodes before
data being sent to reduce nodes. Since the cardinality of group keys is very small, each
map nodes would aggregate them and only output hundreds of bytes of data as there are
only a few rows in from each map nodes.

For more detailed code of any TPC-H queries, please refer to the Appendix.

5.6.2 Q12

flineitem = FILTER lineitem BY l_shipmode MATCHES ’MAIL|SHIP’ AND

l_commitdate < l_receiptdate AND l_shipdate < l_commitdate AND

l_receiptdate >= ’1994-01-01’ AND l_receiptdate < ’1995-01-01’;

l1 = JOIN flineitem BY l_orderkey, orders by o_orderkey;

sell1 = FOREACH l1 GENERATE l_shipmode, o_orderpriority;

grpResult = GROUP sell1 BY l_shipmode;

sumResult = FOREACH grpResult ..

sortResult = ORDER sumResult BY group;

For Q12, we can see that the initial FILTER is using a very specific condition and is likely to
filter out many rows and have a mall number of rows in the output. Since we are assuming
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the table size to be cut in half, the output size is obviously too large, thus we have over
estimated the query.

5.6.3 Q17

...

COG1 = COGROUP part by p_partkey, lineitem by l_partkey;

COG1 = filter COG1 by COUNT(part) > 0;

COG2 = FOREACH COG1 GENERATE COUNT(part) as count_part,

FLATTEN(lineitem), 0.2 * AVG(lineitem.l_quantity) as l_avg;

...

There are two possible reason that leads to the underestimation of this query. As we
can see from the snippet above COG1 is the product of COGROUP of part and lineitem.
lineitem itself is a very large table. COG2 is the result of applying FLATTEN to a bag, which
is going to produce a cross product between all elements in the bad and other attributes
in the GENERATE.

Another factor is that the FILTER after GROUP is based on the number of element in the
bag, which is not something you can do in the Combiner stage. If Combiner was active in
many other queries but not this one, and our model do not take combiner into account,
we would estimate this query just as costly as some other, but in fact others might have
been optimised by the Combiner and therefore this query would have a much higher cost
ranking than we have anticipated.

5.6.4 Q18

...

COG = cogroup lineitem by l_orderkey, orders by o_orderkey;

COG = filter COG by SUM(lineitem.l_quantity) > 300;

...

Q18 is also very similar to Q17, such that the FILTER after GROUP can only be applied once
all results has been known, and is therefore not optimised by Combiner.

5.6.5 Discussion

In conclusion, the Simple Model is working well given the information it has, it clearly
has the ability to distinguish queries based on their cost in most cases. Although many
assumptions are made, the ranking of quires it has analysed has a strong correlation with
the real rankings and it could sometime be used in cost based query plan optimisation
when information are limited.

If we look at the four misbehaving queries, we can see that three of the mistakes could be
caused by not anticipating the Combiner, a mechanism in Pig, and only one is inaccurate
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because we our assumption is too unrealistic. This might suggest when considering Pig
and Hadoop, we might need to pay more attention to it’s own design instead of only the
traditional database optimisation theories as I have done.

One thing that can definitely be improved on is the number of bytes we have estimated.
Although we only aim at getting the ranking right, so that we can use it in query plan
selection, it would still be good if we can have a correct idea of how much resources will
be spent on each query, and might give users some useful feedback if they have some very
limited resources.
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Chapter 6

The Histogram Cost Model

6.1 Design Philosophy

Now that we have developed a very basic model, which emphasis on speed and relies
on many wild assumptions, it is time to move onto a more sophisticated model, that
emphasis accuracy and does less ”rule of thumbs” but rely more on statistics and maths.
In this model, we are going to try to estimate cost and output sizes based on available
statistics, such as the distribution of values in attributes and number of rows in each
intermediate tables. We are also going to make use of many of the information provided
by the LogicalPlan, such as evaluating the filter conditions or look at specific join keys
so that we can have a complete understanding of each queries.

Having some statistics allow us to sometime make very accurate calculations, knowing
how many distinct value (cardinality) there is in the group key, we can know exactly how
many columns would be produced after the aggregations, and know how many times a
particular value occurs on both side of the JOIN allows us to know the exact size of the
output of a JOIN.

In this model, we would try to calculate estimations base on all available statistics. If
we have enough statistics to produce an almost exact output, we would do it that way, if
there is not enough information to determine the output size and cost exactly, we would
make estimations based on all available statistics and some reasonable assumptions.

Another important consideration is that we still want to rely as little user input as possible,
which is why we have automate the statistics collections where possible.

6.2 Specification

This model must be able to take in any Pig scripts and informations such as distribution
of values (which include number of rows, cardinality, selectivity, minimum, maximum and
a histogram) of attributes of input tables and the sizes of input tables, to determine the
cost of the script in terms of the amount of data transferred from map nodes to reduce
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nodes when the script is executed on a Hadoop Cluster. And it needs to be accurate in a
way that can accurately identify the relative cost difference between different Pig queries.

6.3 Design

According to this specification, we would need a few components in this program:

1. An object which can read in a Pig script and produce a data structure that can be
analysed

2. An object which retrieves relevant statistics of input tables from HDFS

3. An object which can perform the analysis based on data provided by the other two
objects

Clearly the first component from the Simple Model can be reused, and we only need to
implement the other two components.

6.4 Implementations

6.4.1 Collecting Statistics

For each attribute, I would aim at collecting a histogram that represents the distribution
of the values in the column. I categories different types into two categories: Numeral and
String. Any attributes with numeral types such as int or double would be classified as
Numeral and all other types will be classifies as String. I chose String as the general type
for a few reasons. One is that all data re originally stored as String and they can perhaps
be converted into other types if required. Another reason is that values such as dates and
time can be represented by string well because we can perform comparison of time using
their string values if they are formatted properly.

There are two different approaches to gathering the histograms. For a numeric one, I can
save space by having ranges as the the bins and count all values in the range into that
bin. Inside the bin, the numbers are assumed to be uniformly distributed. This approach
means we will not have the exact distribution for numerical values, but considering there
are 264 different values a long typed variable can hold, we would have to make sacrifices
in accuracy in order to have a reasonable complexity. The min and max values of each
attribute would be collected first, and depending on the range, a reasonable number of

bins would be chosen (capped at 500). Each bin would have an equal size so the range
at each bin would be max−min+1

number of bins .

For string histograms, there would be a choice, we either have a histogram that have a
frequency of each individual strings (a complete distribution) or we do not have a histogram
at all. We would not collect a histogram if the selectivity, meaning the ratio of unique
values to number of rows, is high and at the same time the number of tuples in the table is
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also high. This is because a high selectivity means for each unique strings there is usually
only one occurrence in the table, in this case having a histogram is the same as copying
the entire column locally, and is very inefficient. Since the analysis involves constantly
manipulating many histograms, and after waiting for results of analysis for more than
half an hour and realising most of the time is spent on dealing with the large histograms,
I have imposed this restriction to make the analysis more efficient. The reason why a
ranged bin is not chosen for string is that it is not meaningful to have ranges in string,
using lexical graphical order, there is an infinite amount of strings that can be fit into a
bin, simply by adding more characters at the end. Due to this fact, the probability of
any string occurring in any bucket is 0, and it is therefore almost impossible to be used
in estimate how many keys would join.

To collect statistics about these data, we need access to those files stored in HDFS. It
would be impractical to load the data to locally as Hadoop is design for processing large
dataset that can reach the magnitude of Terabytes. Instead, we can make use of Pig.
Since during LOAD (and FOREACH), we would be given information such as the path to the
tables, the schema of the tables and aliases of each columns that we are interested in, we
can simply make some template pig scripts to help us collect these statistics. This way,
not only we are not putting huge stress onto the user’s machine, we are also making use
of infrastructure that is already in placed for large dataset analysis. Obviously, we need
to recognised that collecting these statistics is sometime just as expensive as the queries
that we are trying to optimised, and we would need to store these statistics into a cache
for future use to avoid loading the histograms multiple times.

To achieve the collection of statistics, I have implemented a few pig script templates
for collecting maximum, minimum, row count, cardinality and histograms for specific
attributes in specific tables. When required, the file path, schema and required column
would be sent to the statistic collection object, and if cache is not present, it would
construct a temporary Pig script and submit the Pig job. The results would be sent back
and stored in cache, and would be parsed and used in further analysis.

6.4.2 PigColumnMetadata

In order for the statistics we have collected to be used throughout the analysis, we need a
data-structure that can store the data and provide easy manipulation. I have implemented
the PigColumnMetadata class to accommodate this need. Apart from storing the metadata
(statistics) about each columns, this class also implements many methods that would allow
easy creation of new information about tables used at intermediate stage of the analysis,
and they would be discussed below.

6.4.2.1 Equalities and Inequalities

It is very common in database queries that you would want to filter by some equalities or
inequalities.For example, if you want a table that gives you all of the student whose scores
are higher than or equal to 40, or you might want a table showing all of the students with
fee status equal to ”International”. When this kind of queries occurs, I would like to slice
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the histograms so that future queries can also have accurate distribution of data.

For example, if we have a distribution of the score attribute, after the condition of >= 40
is applied, we should pass on a distribution similar to what we have on the right of table
6.1, so that the analysis of any future operators that depends on this FILTER will have
this updated distribution to work with.

Histogram before FILTER

Score Frequency

0+ 0

20+ 10

40+ 50

60+ 300

80+ 100

Histogram after FILTER

Score Frequency

40+ 50

60+ 300

80+ 100

Table 6.1: Table illustrating effect of FILTER to a histogram

6.4.2.2 Uniformly Reduce

What happens to other attributes that is not in the FILTER condition? If we do not change
and maintain the distribution of values of other attributes in the table, later operators
would have a set of histograms that are uneven, such that each have a different number
of rows, and is difficult to make sense of it.

Therefore after each operation to histogram for one attribute, it is necessary that we
increase or decrease the row count of other attributes accordingly. The assumption we are
going to make here is that each column would be independent to each other, and what
it allows us to do is to keep the same distribution of other attributes and just reduce the
frequencies of each bin accordingly.

There are a few ways we can perform the reduction (expansion), one is to calculate the
ratio of reduction, and multiply the ratio to the frequencies at each bin. This is, however,
problematic when the number is small. Since the type of frequency is integer, after mul-
tiplication, we can round, ceil or floor the result. Consider the case when all frequencies
are 1, multiplying by the same ratio (that is smaller than 1) would result in either all
frequencies being 0 or 1 depending how you covert the floating-point number to integer.
And this means we either have a column with 0 rows or column with 10 rows, which are
both wrong.

Another way that we can do it is to do some ”dart throwing”, where we randomly pick
one bucket at a time (probability proportional to the size of frequency in the bucket), and
decrease (increase) the frequency by one, until the the number of rows (total frequency) is
the same as required. This is also problematic, mainly due to performances concern. For
a ”throw”, we need to go through every buckets to pick the correct bucket, and we need
to do the it again for all other ”throws” because the probability changes after each throw.
The iterations we need is:

number of attributes× number of rows to change× number of bins

52



If we are dealing with a table with millions of records, dozens of attributes, and we are
cutting the table by half, you can see how much time we would be wasted on ”dart
throwing”.

The solution I have thought of is a variation of the first approach. Instead of always
rounding the floating point number, I would decide to ceil or floor the number with a
probability equal to how the big decimal part of the number is.

decimal = x− bxc

x =

{
bxc if r ≥ decimal
dxe otherwise

, 0 ≤ r ≤ 1

In the above formulae, r is a random number generated between 0 and 1, the larger decimal
part is, the higher the probability it would be rounded up, and vice versa. This way, we
would in average achieve the correct amount of frequency and handle the edge cases of
having small frequencies in some bins well.

6.4.2.3 Union, Intersect and Complement

Very often we would deal with a combination of boolean conditions joined together by
AND, OR and NOT, therefore, we need to be able to combine the two independently filtered
histograms, and estimate what would the distribution be when all conditions are applied.

For Union, I would match each bin on both side, and take the larger frequency of the same
bin as demonstrated in table 6.2, and for Intersect, I would take the smaller value for each
bin.

Before Union

Score Frequency

0+ 0

20+ 5

40+ 10

60+ 30

80+ 10

Before Union

Score Frequency

0+ 0

20+ 10

40+ 2

60+ 40

80+ 5

After Union

Score Frequency

0+ 0

20+ 10

40+ 10

60+ 40

80+ 10

Table 6.2: Tables demonstrating the effect of Union

For Complement, I would take a histogram that was not altered by any operations as the
universe and the histogram that is under a NOT operator and do subtraction on individual
bins as demonstrated in table 6.3

6.4.3 Overall work-flow of the Model

The histogram information would be collected during the FOREACH immediately after
LOAD, where Pig would assign schema information to the tables. When those informa-
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Universe

Score Frequency

0+ 0

20+ 10

40+ 50

60+ 300

80+ 100

Before Complement

Score Frequency

0+ 0

20+ 10

40+ 2

60+ 40

80+ 5

After Complement

Score Frequency

0+ 0

20+ 0

40+ 48

60+ 260

80+ 95

Table 6.3: Tables demonstrating the effect of Complement

tion are collected and stored, it would be stored in a map which map from attribute’s
id to the PigColumnMetadata. Every subsequent operators would make use of these
PigColumnMetadata generated by previous operators and produce a set of PigColumnMetadata
of their own which represents the distribution of attributes in it’s output. Apart from cal-
culating the distribution of output and sizes of output, each operators would also calculate
and store the bandwidth cost. At the end, when all operators have been analysed, the
total cost is calculated by summing the individual bandwidth cost of each operators.

6.4.4 LOLoad, LOForEach

The difference in this model about LOLoad and LOForEach is that we need to collect the
relevant statistics at this stage. In Pig, if schema information is provided, an extra FOREACH

stage would be added and the output would be the same with shcema information added.
Therefore the LOLoad would remain mostly unchanged, and if the LOForEach’s predecessor
is an LOLoad, then we would initiate the statistics collection process.

For the general case of LOForEach, we would need to look at the output schema, and
copy over any histograms of existing attributes. For newly generated attributes, a new
histogram is not calculated due to it’s complexity. It can be the result of any user defined
functions, and it is not possible in project to estimate them.

6.4.5 LOFilter

We need to evaluate the filterPlan inside the LOFilter in order to have an accurate
estimation of the output. As discussed before, the filterPlan is an expression tree that
represent some boolean values after evaluation.

To limit the scope of the project, I have imposed some restrictions in what for of conditions
I can evaluate. For example condition such as

score+ weight == 3× house number

would be legal in Pig, but to analyse it with a set of histograms and produce an estimated
distribution after this condition is applied required mathematics way beyond the scope
of this project. Although a possible extension to the project would be to find ways to
approximate arbitrary conditions.
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In this project, I would only analyse inequality/equality conditions that has one attribute
on one side and a constant on the other. To analyse the filterPlan, we also have a
similar structure to the LogcalPlan, such that we would be given an initial set of his-
tograms, and each LogicalExpressionOperators within the filterPlan would make use
of distributions from previous operators, and produce it’s own estimation of distribution.
There is also a separate map storing the literal values being used in the conditions. The
LogicalExpressionOperators that we need to analyse are:

6.4.5.1 ProjectExpression

This indicates what attribute is concerned in the next operators, there is no need to modify
any distribution so the output would be the same as input.

6.4.5.2 Binary Boolean Expressions

These operators includes NotExpression, AndExpression and OrExpression, as dis-
cussed previously, each would have two input histograms, and we would need to estimate
the output distributions by combining the two input histograms. For AND conditions, we
perform an intersect between the two input histograms, and union for OR. For NOT, we
would perform a Complement against the unaltered histogram.

6.4.5.3 Equalities and Inequalities

These operators includes GreaterThan, LessThan, LessThan, Equal, Negative and etc. We
would first confirm which side is the constant and which side it the ProjectExpression.
After which we can use the built in methods in PigColumnMetadata to partition the
histogram of the attribute in the condition, and reduce the histograms of other attributes
uniformly.

6.4.5.4 Arithmetic Expressions

For these expressions, I would require both side to be a numeric value, and once the
calculation is done, it would be stored in a map to be used in equality/inequality conditions.

6.4.5.5 RegexExpression

This represents the MATCHES condition in Pig. If we have a histogram for the strings, we
would perform Java’s string matching to see what strings in the distribution matches, and
produce a histogram with only those string that matches the regular expression.

55



6.4.5.6 Others

For any other operators, such as UserFuncExpression, I have decided to leave them out
due to the scope of the project. For these operators, and cases that is not considered
in other operators, such as inequality between two attributes, they would all reduce the
input histograms by a fixed reduction ratio which would allow the analysis to be performed
without actually implementing them.

6.4.5.7 Output

After the analysis of filterPlan is done, we would be given the output histograms of the
LOFilter operator, and therefore it would be used as the output of LOFilter.

6.4.6 LOJoin

For LOJoin, we will first work out how the join keys would be joined together, i.e. how
many would not be joined, how may are joined more than once and therefore we would
have a mini Cartesian Product. Once the distribution of the join key are worked out, we
would calculate how the number of rows has changed regarding both input tables, and
uniformly expand(reduce) all other attributes.

For numerical histograms, we would assume uniform distribution in each bins to estimate
how many would match. The formula we would use is

Fnew
i =

F left
i × F right

i

cardinality

where Fi represents frequency at bin i, and cardinality would be the bin’s range. This
might be inaccurate if the value store is floating point numbers which means we might
assumes a small cardinality and overestimated the frequency.

Before JOIN

Score Frequency

0+ 20

20+ 100

40+ 0

Before JOIN

Score Frequency

0+ 20

20+ 40

40+ 0

After JOIN

Score Frequency

0+ 20

20+ 200

40+ 0

Table 6.4: Tables showing changes to join keys attributes

A problem is that the bin might not be aligned perfectly, therefore we need to regroup the
histogram and make sure both side of the join has the same bin fragments. This can be
achieved by assuming uniform distribution in each bin and cut a bin into smaller bins to
match the bin of the other histogram.
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For string attributes, it is much easier to match because we know exactly what values
from both sides would matched, and we can therefore get a very accurate row counts from
these joins.

If one side do not have histogram, then we cannot estimate each bin individually, and we
would estimate the output row count of the entire attribute using the following formula
[11]

Fnew =
Fleft × Fright

max(Cardleft, Cardright)

where F is the row count of tables and Card is the cardinality. Once the output row count
is computed, all histograms would be reduced(expanded) by the ratio of Fnew/Fleft and
Fnew/Fright

For attributes that cardinality information is not available, we would assume it to be half
of the row count.

In terms of the cost of Joins, Pig provides a few algorithms that effectively eliminates the
reduce phase, if those are used, we would set the cost to 0, otherwise, we would estimate
the cost by the sum of input sizes.

6.4.7 LODistinct

LODistinct only works on the whole tuple, so that a tuple would only be considered
duplicate is every attribute has the same values as another tuple. It is difficult to calcu-
late how many rows will remain after the operation because we do not have information
about correlation between the columns, and if we start considering all combinations of all
columns, the possible combinations would soon become astronomical, and might be way
more than the number of rows that we have.

Since we cannot usually estimate how many unique tuples we are going to have directly,
we can try using upper and lower bounds to get some idea. The lower bound would be
the maximum cardinality among all attributes, because we must have at least that many
unique rows sine one of the column has that many unique values. The upper bound is
either the row count of the whole table, or the product of cardinality of all attributes,
whichever is lower.

We can just pick the middle between the lower bound and the upper bound, but then
we are not taking into account how large the number of possible combinations is, and
it is reasonable to assume that the more possible combinations you can gave, the more
likely you would have more distinct tuples in the output. We would need a function that
would give us a value that gets closer to the upper bound when the number of possible
combinations are larger.

We can make used of a sigmoid function as discussed in previous chapters.

S(t) =
1

1 + e−t
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This function has the good property that the output will between 0 and 1 regardless of the
input, and it will be closer to 1 as the input get larger, similar to the property that we need
for output’s cardinality approach the row count as the number of possible combinations
gets larger. We can adapt the formula as:

range = rowCount−min

cardinality = min+
1

1 + e
rowCount−combinations

range

× range

As we can see, the cardinality will be somewhere between min and min + range, and the
larger the combinations is, the closer we get to min + range. The reason why we need to
divide rowCount− combinations by range is that we need to scale the input to sigmoid
function rather than using the absolute difference, otherwise a small difference between
combinations and rowCount would make the output extreamely close to rowCount. This
function also has nice property that when combinations is the same as rowCount, we get
min + 0.5× range, effectively taking the average.

The cost, as discussed previous chapters, is going to be the size of the input table as we
are assuming many duplicate eliminations are performed at reduce nodes.

6.4.8 LOCogroup

For grouping, it is essential to work out the number of rows that would be in the output
table, and this is determined the number of distinct values in the group keys. If we
are grouping on one attribute, it is easy as we (usually) have a the information about
attribute’s cardinality. It is more difficult when we are grouping on multiple attributes,
as it is difficult to estimate the cardinality of tuples of multiple attributes when we do not
have information about the correlations between columns.

Notice this is the exact same problem we are facing with LODistinct, and we can approach
it the same way. In the case of multiple attributes are used for grouping, we use the sigmoid
function to approximate how many rows are actually unique.

One problem that we would face is that, although we can calculate how many rows we
would have after the group, it is very difficult to keep track of the information any further.
For the data being grouped, they are all stored in the bag data type, and since they are not
simple values, it is very difficult to have a histogram for the distributions of bags. the same
goes to the group key when we are grouping on multiple attributes, it would be difficult
to have a histogram for tuples since we do not know the the actual distribution. This
would cause information loss after grouping, and this might prevent accurate estimation
in subsequent calculations.

6.4.9 LOCube

To estimate the number of rows in the output of LOCube, we need to consider the output
of all combinations of attributes. For examples, if we have three attributes (name, age,
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gender), then the input will also be grouped by (, age, gender), (name, , gender),
(name, age, ), (name, , ), (, age, ), (, gender) and (). This is a power-set of the
set of attributes that we are grouping on, and it would have 2n combinations. What we
need to do is to generate a power-set of of these group attributes, and for each set in
the power-set, we perform the same cardinality estimation using the sigmoid function like
what we have done with group. Then we can sum up the cardinality of each combinations
and use it as the row count of the output.

6.4.10 LOSplit, LOSplitOutput

Since LOSplit is just a place holder for LOSplitOutput, this operator will copy over all of
the histograms for each input attributes. Sometimes the id of attributes would change at
this stage, therefore we need to match the output attributes and input attributes by their
alias.

LOSplitOutput is basically the same as LOFilter, therefore I have reused most of the
implementation of LOFilter. Th only differences is that LOSplitOutput needs to change
the uid of output attributes, and a map is provided.

6.4.11 LOUnion

Since Pig allows union to be performed on tables that do not share the same schemas, and
would cause any subsequent operators to to have a schema, we will not be considering cases
like these in out model, as attributes that contains multiple type cannot be reasonably
analysed using out histogram methods.

Assuming the schema is the same, then we would merge the histogram information on
each attributes. If both attributes have histograms, their bins would be split as we have
done for LOJoin and the frequency at each new bin would be the sum frequencies at the
corresponding bin of the input attributes.

6.4.12 LOSort

For LOSort, we do not need to do much about the output’s distributions, as they would
stay the same. The extra information that came from sorting is that we now know for sure
whether some attributes in the output tables are ordered. This would have implication on
LOLimit and Merge Join.

To accommodate this, there is a field in PigColumnMetadata that indicate whether this
attribute is sorted, and it has three status: NONE, ASC and DESC which represents not
sorted, sorted in ascending order and sorted in descending order respectively.

Apart from changing the orderedStatus of the PigColumnMetadata, all other data such
as the histograms and cardinalities would remain unchanged and be passes onto subsequent
operators.
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6.4.13 LORank

As discussed in previous chapters, LORank would sort the table according to the attributes
specified, and when none is specified, each row would be numbered by their original order.
If those attributes are specified, it would reused the code from LOSort, and then it would
add an extra histogram, where the type is always int, with minimum equal 1 and maximum
equal to the row count of the input table. The cardinality equals to the cardinality of the
attributes being grouped on and the histogram would be a uniformly distributed one.

6.4.14 LOLimit

In limit, we need to retrieve the number of limit, n. Then we would go through each
attributes’ histogram, if the attribute is not ordered, we would uniformly reduce it using
the ratio n/input rowCount. If the attribute is ordered, we would pick out the top/bottom
most n frequencies in the input histograms and store them into the ouput histograms
depends on how the attribute is ordered.

6.4.15 LOCross

For LOCross, we need to multiply the rowCount of all input tables, and use it as the
rowCount of the output table. Then we need to calculate the ratio of expansion on each
table i using formula

ratioi = rowCountoutput/rowCounti

then we would uniformly expand each attributes in each table by this ratio, and this would
be the estimation of the output of LOCross.

6.5 Evaluation

6.5.1 FILTER

To see how effective the new algorithm can estimate size change for FILTER, I have con-
ducted an experiment. I have written a few simple quires that consist of one FILTER

operator, after which a GROUP if applied to the table produced by the FILTER so that I
can measure the size of the result. I used GROUP because earlier experiment shows that
the cost of a GROUP operator is almost about the size of the table. I also performed GROUP

on the tables before they were passed to FILTER, and divide them to calculated the ratio
of changes in table sizes after FILTER.

Then, I record how my model have estimated the ratio of size reduction, and the results
are shown in table 6.5. All of the code for each test queries can be found in the Appendix.

The percentage shows how big the output is compare to the input, and 100% mean no
changes at all and 0% means no rows has passed the filter conditions.
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Query Real Change Estimated Change Difference

filter1 100.00% 67.20% 32.80%

filter2 0.09% 1.35% -1.26%

filter3 0.09% 0.40% -0.30%

filter4 99.61% 99.60% 0.01%

filter5 90.04% 86.81% 3.24%

filter6 50.01% 33.59% 16.42%

filterNation 5.05% 4.00% 1.05%

Table 6.5: Percentage of output table as the input of FILTER operator

As we can see, most queries are estimated accurately, and the only one that is way off is
filter1, which is a combinations of OR conditions, which results in 100% of tuples passing
the condition, but since we evaluate each boolean operators individually, and assume all
other attributes are reduced uniformly, it is difficult to correctly predict that all tuples
would pass the conditions.

This is a problem in the design of the model as the assumption of independence between
attributes are very unrealistic, but otherwise the complexity of estimation would be much
larger than what we currently have in this model. Depending on what kind of quires are
written more, this problem may or may not seriously affect the accuracy of this model.
If most filter conditions are simple, then this would be a reasonable assumption to make,
and it might not worth the resources to develop a more sophisticated model.

6.5.2 GROUP

To find out how well the GROUP estimation method works, I have conducted a small exper-
iment. I have written a few queries that group on different tables with different attributes,
after aggregation (COUNT in this case) I then DUMP the output and calculate the number of
rows in the output.

These are then compared against the estimated row numbers after aggregation in my
model, and the results are shows in table 6.6.

Query Actual row Estimated row % Difference

CUSTOMER all ORDERS all 1 1 0.00%

CUSTOMER c custkey ORDERS o custkey 15000 15000 0.00%

ORDERS o custkey o orderpriority 46230 50000 -8.15%

PART p type p brand 3733 3750 -0.46%

NATION all 1 1 0.00%

ORDERS o custkey 10000 10003 -0.03%

ORDERS o orderpriority 5 5 0.00%

PART p partkey 20000 20000 0.00%

PART p type 150 148 1.33%

Table 6.6: Number of rows in the output of GROUP and aggregation
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In table 6.6, the first column shows the table we are grouping on in capital, and the keys
of each table in lower case. As we can see, most of the estimation are very accurate, but
it starts to to less accurate when we are dealing with more than one group key, which is
expected as we are using the sigmoid functions to estimate the output row count.

One thing that we can do is that we can tweak the scaling of sigmoid function over time
according how well it has predicted the number of output rows, if the queries is needed to
be run multiple times.

6.5.3 JOIN

I have performed a similar experiment for the JOIN operator to test how well the JOIN
analysis algorithms work. This is also done by counting the number or rows in the output
of some queries that involves only one JOIN operator, then those numbers are compared
against the output row count that has been estimated by the model.

Query Actual row Estimated row % Diff

PART PARTSUPP SUPPLIER 8.00× 104 1.09× 105 -35.84%

SUPPLIER NATION REGION 1.00× 103 1.31× 103 -31.00%

PART PARTSUPP SUPPLIER NATION 8.00× 104 1.14× 105 -42.41%

PART PARTSUPP SUPPLIER NATION REGION 8.00× 104 1.42× 105 -78.04%

nil PART PARTSUPP 0.00× 100 2.00× 104 N/A

non key PART SUPPLIER 9.64× 102 9.49× 102 1.56%

non key PARTSUPP NATION 1.60× 103 2.02× 103 -26.50%

non foreign PART NATION 2.40× 101 2.40× 101 0.00%

non foreign PART SUPPLIER 1.00× 103 1.00× 103 -0.20%

ORDERS CUSTOMER 1.50× 105 1.55× 105 -3.11%

PART LINEITEM 6.01× 105 6.15× 105 -2.33%

PART PARTSUPP 8.00× 104 8.18× 104 -2.31%

PARTSUPP LINEITEM 2.40× 106 2.46× 106 -2.36%

PARTSUPP LINEITEM PART 2.40× 106 2.52× 106 -4.96%

SUPPLIER NATION 1.00× 103 1.05× 103 -4.80%

Table 6.7: number of rows in the output of JOIN

From the table above, the top four queries are joins that involves different foreign keys, i.e.
part joins with partsupp using partkey, partsupp to supplier using suppkey and etc.
The queries with prefix non key means they were joined not using keys of wither table,
and non foreign means they were join on keys of each table but those keys are not in a
foreign key relationship and the one with nil prefix is one that bears no relationship at
all and know to produce 0 output. All other queries are join on foreign keys.

As we can see, when joining two tables on foreign keys, the model is working very well,
it also work well when we are joining two tables on non-foreign keys. The reason why
it starts to diverge when joining on more than two tables is that we are assuming the
distribution of attributes other than the join keys to be the same after the join, but this
is probably not the case in the real-world.
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Take the first query in the table as an example, when we joined both part and partsuppon
partkey, we are keeping the distribution of suppkey in the result of JOIN the same, and
then the subsequent JOIN with supplier would be based on a wrong distribution of
suppkey.

6.5.4 Row Count

Although estimating the row count of final output table not the most important perfor-
mance measure in this project, it would be interesting to know how well the model can
estimate the number of rows in the output table of each query.

I have counted the number of rows each TPC-H queries would project and compared them
against the row count estimated by the model as shown in table 6.8.

Query Estimated Rows Real Rows Diff

Q1 6 5 1

Q2 8019 101 7918

Q3 78697 11 78686

Q4 1 6 -5

Q5 9 6 3

Q6 1 2 -1

Q7 1 5 -4

Q8 976 3 973

Q9 69708794 176 69708618

Q10 117264 21 117243

Q11 16002 1049 14953

Q12 7 3 4

Q13 12500 43 12457

Q14 1 2 -1

Q15 4996 2 4994

Q16 187500 18315 169185

Q17 1 2 -1

Q18 2 58 -56

Q19 1 2 -1

Q20 1 187 -186

Q21 1 101 -100

Q22 175274 8 175266

Table 6.8: Comparison of the number of rows in the output between estimated and actual

As we can see from table 6.8, about half of the estimations are quite accurate, with a
difference form actual row count being lower than 5, this shows that for these queries,
the model can correctly understand most of the operators and filter conditions. However,
many other estimations are off by a huge margin, these are mainly caused by UDFs in
filter conditions or newly generated attributes.

In the Histogram Model, there is no distribution information available for attributes that
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is generated during the execution of the script, for example, if we look at the snippet from
Q3 below

...

sell1 = foreach l1 generate l_orderkey,

l_extendedprice*(1-l_discount) as volume

...

the new column volume is formed by arithmetic combination of l extendedprice and
l discount. In this model, I have not implemented functions to estimate the distribu-
tions of these attributes, as the mathematics is beyond the scope of this project. For
these columns, as well as any columns that is selected using User Defined Functions, are
approximated by taking a fixed size reduction. Which is why the final row count is very
far from the actual number.

6.5.5 Overall

Again, we are going to look at our benchmark, how well the model can rank the cost of
TPCH queries, we are going to do the same measurement as we have done for the Simple
Model, we would measure the bytes being sent from map nodes to reduce nodes during
the execution of each TPC-H quires and rank them according to the number of bytes costs,
and compare that against the ranking of cost estimated by the model, and the result is
shown in table 6.9.

We can see from table 6.9 that the Histogram Model is performing well and is better than
the Simple Model. The Spearman’s Rank Correlation Coefficient has improved from 0.74
in the Simple Model to 0.78. We can also see that there are only three big differences in
ranking this time, i.e. Q1, Q12 and Q16. Q1 and Q12 are already the outliers in the Simple
Model, and the difference is that Q12 has been underestimated in the Histogram Model
instead of being overestimated.

We will now have a closer look at each queries and discuss why they are not working so
well under out Histogram Model.

6.5.5.1 Q1

SubLineItems = FILTER LineItems BY shipdate <= ’1998-09-02’;

StatusGroup = GROUP SubLine BY (returnflag, linestatus);

PriceSummary = FOREACH StatusGroup GENERATE ...

SortedSummary = ORDER PriceSummary BY returnflag, linestatus;

The reason why Q1 is over estimated is the same as in the Simple Mode, because we
have not anticipated the optimisation of the Combiner, which in this particular case had
reduced the costs by order of magnitudes.
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Query Est. Cost Est. Rank Measured Cost Measured Rank d dˆ2

Q1 5.35× 108 14 5.10× 103 2 12 144

Q2 2.72× 108 11 9.57× 107 12 -1 1

Q3 1.20× 108 5 2.29× 107 5 0 0

Q4 2.60× 108 10 3.49× 107 9 1 1

Q5 3.19× 107 3 2.54× 107 6 -3 9

Q6 4.87× 108 13 2.89× 107 8 5 25

Q7 1.58× 107 2 2.01× 106 3 -1 1

Q8 2.24× 108 8 2.74× 107 7 1 1

Q9 7.60× 108 16 1.74× 108 15 1 1

Q10 9.56× 108 20 2.00× 108 18 2 4

Q11 7.84× 108 17 3.69× 108 21 -4 16

Q12 2.33× 108 9 1.98× 108 17 -8 64

Q13 3.94× 108 12 4.92× 107 11 1 1

Q14 8.44× 108 18 2.36× 108 19 -1 1

Q15 1.86× 108 7 1.72× 107 4 3 9

Q16 1.45× 108 6 1.18× 108 14 -8 64

Q17 4.15× 107 4 4.87× 107 10 -6 36

Q18 1.66× 109 21 2.66× 108 20 1 1

Q19 6.24× 106 1 1.38× 102 1 0 0

Q20 6.21× 108 15 1.16× 108 13 2 4

Q21 9.03× 108 19 1.85× 108 16 3 9

Q22 7.98× 100 22 3.81× 108 22 0 0

coefficient 0.78

Table 6.9: Result of Histogram Model, cost in byte

6.5.5.2 Q12

flineitem = FILTER lineitem BY l_shipmode MATCHES ’MAIL|SHIP’ AND

l_commitdate < l_receiptdate AND l_shipdate < l_commitdate AND

l_receiptdate >= ’1994-01-01’ AND l_receiptdate < ’1995-01-01’;

l1 = JOIN flineitem BY .......

For Q12, which is underestimated in this model, we can see that a very specific filter
condition is applied right at the start of the query. One property of the Histogram Model
is that earlier operators tends to be more accurate, because this is when we have the most
accurate information. Through the analysis, more assumptions would be made, and the
distribution information we have would tends to get more and more inaccurate and hence
the estimations would be inaccurate. Since not many other queries has such a specific
filter at the start, later filter tends to be approximates less accurately, and therefore this
is underestimated compare to other queries where FILTERs occurring later in the script
caused the reduction rate to be less extreme.
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6.5.5.3 Q16

fsupplier = FILTER supplier BY (NOT s_comment MATCHES ’.*Customer.*Complaints.*’);

.....

Similar to Q12, Q16 also has a very specific filter condition at the start. Also, contrary
to many other FILTER conditions, this one is properly handled by our model, such that
it does not contain UDF and is the comparison between a column and a literal. Since
this can be estimated reasonably well, it might causes this query to be underestimated
compare to others.

6.6 Discussion

Although this model only work slightly better than the Simple Model, there are potentials
for this model to work very well. We have seen that most of our concepts are correct,
this can be shown in those small experiments on FILTER, JOIN and GROUP, and the main
factor that affect the accuracy is that there are too many limitations set in this model.
Many FILTER conditions are actually done with UDF, which is ignored in this model. The
information loss after applying the GROUP operator means our model cannot properly asses
subsequent queries well. And the assumption of individual attributes being independent
in tables also hurt the accuracy especial when the query is long.

Since all of the operators are analysed using statistics, an important feature of this model
is that one improvement in one operator has the potential of improving the accuracy of
this model by a large margin. This is because analysis of each operator depends heavily
on distributions generated by previous operators, and therefore if some distributions from
previous operators are more accurate, the subsequent operators can be improves as well. If
we compare to the Simple Model, even if we have made the analysis of one operator much
more accurate, other operators are still relying on these unrealistic assumptions which
makes it difficult to improve.

This allows the extension and improvement of the model to be made easily, which, on top
of it’s already good performance, can serve as a good basis of any future more sophisticated
plans.

In conclusion, this model has adopted a more scientific approach, and relied on statistics
of the input table, although many features in Pig is still not supported, the model is
still working well under these restrictions. If some improvement can be added, such as
recognition of some UDF’s, then the accuracy of the model should be improved.
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Chapter 7

Applying the Histogram Model to
Bigger Data

7.1 Motivation

As we have discussed in the introductory chapters, Pig and Hadoop are tools that are
designed to work with large dataset, and therefore any cost model of Pig should in principle
be able to work well with large datasets. Throughout this project, we have been testing
my models with modest dataset sizes, mostly 100 MB and 1 GB due to the limitation
of disk and computing power available, and we have seen that the models are showing
promising results. We can reasonably assumes that the Histogram Model can work just
as well when the distribution informations about the large dataset are given, since most
of the estimations made in that model are based on the distributions of values within the
dataset. However, a big challenge we would face is that, as mentioned previously, the
queries of collecting the distributions of values are not cheap.

strip = FOREACH $table GENERATE $col;

dist = DISTINCT strip;

card = FOREACH (GROUP dist ALL) GENERATE MIN(dist.$col),

MAX(dist.$col), COUNT(dist);

DUMP card;

For a typical attribute, I would first find out it’s minimum, maximum and cardinality,
which is implemented by selecting the distinct values in that particular attribute them
perform a group and aggregate to work out the three values, as shown in the script above.
This itself involves two reduce phase, since the GROUP can be easily optimised by the
Combiner since they are all algebraic function, we can say all of the data in the attribute
has been sent through the cluster once.

strip = FOREACH $table GENERATE $col;

bucket_vals = foreach strip generate
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$min + (($max- $min) / $buckets)*(((int)$col- $min) * $buckets / ($max- $min + 1))

as bucket, $col;

group_by_bucket = group bucket_vals by bucket;

bin_id = foreach group_by_bucket generate group, COUNT(bucket_vals.$col);

DUMP bin_id;

After these informations are generated, the model would then proceed to collect the his-
togram, which is done by annotating each row by their bin and then group on the bin and
count the rows in each bin, as shown in the script above. This is again another reduce
phase and in total all the values in each attribute are sent through the cluster twice.

Above analysis shows us how expensive these operations are, although in this project
I have implemented a cache, that might not be very helpful if the data being analyses
are different every times. If we think about a typical use case of Hadoop which is web
log processing, it is likely that we have slightly different distribution of data every day,
otherwise why bother analysing everyday.

One approach that can be used for solving this problem is that we can try to collect the
distribution about a fraction of the data and try to make estimations with those sample
distribution instead of the actual distribution. This would allow the model to work with
relevant distributions and at the same time keep down the cost of pre-processing.

7.2 Implementation

To test whether the Histogram Model can work well in this setting, I have done the
following.

1. Generate a 10 GB TPC-H dataset and a 1 GB TPC-H dataset and upload both to
HDFS.

2. Collect metadata about the 1GB dataset.

3. Modify the code so that when a distribution is loaded in Java, it will be scaled up by
10. (Multiply each frequencies by 10 and in the case of numeric histograms, extend
the range of bins by 10).

4. Analysis each TPC-H queries with the scaled distributions.

7.3 Results

To test how well the model work in this setting, we let our model to run on all of the TPC-H
queries, and we would collect the estimated cost of each. After we have the real costs and
estimated costs generated with the scaled distributions, we will rank each queries according
to the cost then use Spearman’s Rank Correlation Coefficient to score the performance of
the model’s ability to rank the model by the cost and the results are presented in table
7.1.
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Query Est. Cost Est. Rank Measured Cost Measured Rank d dˆ2

Q1 5.35× 109 12 5.01× 104 2 10 100

Q2 4.76× 109 11 1.99× 109 17 -6 36

Q3 1.45× 109 6 1.18× 109 14 -8 64

Q4 4.21× 108 4 4.87× 108 10 -6 36

Q5 1.46× 1010 21 2.66× 109 20 1 1

Q6 1.40× 107 1 1.33× 103 1 0 0

Q7 6.35× 109 14 1.16× 109 13 1 1

Q8 9.05× 109 19 1.93× 109 16 3 9

Q9 8.84× 1018 22 3.92× 109 22 0 0

Q10 8.34× 109 17 9.72× 108 12 5 25

Q11 1.27× 109 5 2.32× 108 5 0 0

Q12 2.60× 109 9 3.49× 108 9 0 0

Q13 3.19× 108 3 2.54× 108 6 -3 9

Q14 5.94× 109 13 2.89× 108 8 5 25

Q15 1.66× 108 2 4.72× 107 3 -1 1

Q16 2.24× 109 8 2.75× 108 7 1 1

Q17 7.60× 109 15 1.74× 109 15 0 0

Q18 9.56× 109 20 2.01× 109 18 2 4

Q19 7.84× 109 16 3.69× 109 21 -5 25

Q20 3.94× 109 10 5.46× 108 11 -1 1

Q21 8.44× 109 18 2.44× 109 19 -1 1

Q22 1.88× 109 7 1.72× 108 4 3 9

coefficient 0.80

Table 7.1: Result of Histogram Model using the data of a 1 GB dataset to estimate query
cost of a 10 GB dataset.

As we can see from the result shown in table 7.1, this model is working well. The Spear-
man’s Rank Correlation Coefficient in this case is actually higher than when we estimate
a cost against a 1 GB dataset with actual distribution collected on those data.

Is this evidence that the model actually works better when using small sample distributions
to estimate the cost of queries on larger dataset? I would argue this is not the case.
One possible explanation is that according to TPC-H specification[20], many attributes
in the table are randomly generated with a uniform distribution, and this matches the
assumptions in our model. Therefore when we scale the distributions by 10, it is still
providing an accurate representation. To cause the model to work better with 10 GB, it
could be due to the fact that the more data is generated randomly, the closer the data
is to the intended distribution. If we are generating 100 numbers in the range of 1 to
100, it is very likely that not all number is generated exactly once, if we generate 50,000
rows between 1 an 100, we are very likely to get a frequency around 500 for each bucket
form 1 to 100. Since the columns in the 10 GB dataset is likely to be closer to a uniform
distributed than those of 1 GB dataset, out model would match the dataset more.

Since we are still having a relatively accurate distribution, and the real distribution in
the 10 GB dataset is closer to what we have assumed in the model, it is not too much a
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surprise our model will be working better in this setting.

Although this scenario is perhaps unique to testing on benchmarks, we can still deduce
useful conclusions from it. This experiment demonstrates that if the sample distribution is
representative of the actual dataset, the model, should be performing close to the level of
having an set of real distributions, and therefore the model would be useful when it comes
to estimating cost of queries that analyse large dataset, provided that a good sampling
technique is used.
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Chapter 8

Future works

8.1 Type sizes

Type Size (bits)

BOOLEAN 1

BYTE 8

INTEGER 32

LONG 64

FLOAT 32

DOUBLE 64

DATETIME 24 * 8

BYTEARRAY 128 * 8

CHARARRAY 256 * 8

MAP 4096 * 8

TUPLE 64 * 2

BAG 1024 * 16 * 8

Table 8.1: Estimation of type size

This is a table that is heavily used in the Simple Model, for estimating the size of a partic-
ular tuple according to it’s schema, and it’s accuracy is therefore vital to the performance
of the Simple Model. Many assumptions are made here, a part from the dynamic types,
such as CHARARRAY and BAG, have not been able to verify whether the size information for
the primitive types are correct.

For example, what Java types are actually used for BOOLEAN, and whether the seriali-
sation process actually convert a into 1 bit.

Another problem related to this is that I have been using the file size as the size of input
tables, and this very often leads to the actual cost it has estimated to be less helpful as
the size in memory and through the network might be very different, i.e. a more efficient
types are used.

If some work can be done on working out hoe Pig does the serialisation, and the ratio

71



input file and their in-memory and serialised size would be a great improvement to the
project.

8.2 Histogram of bags and tuples

In the Histogram Model, I have decided not to keep track of any information about the
bags, because the distribution of bags is hard to represent with a traditional histogram.
Perhaps some future projects can focus on designing ways to estimate the distributions
within each bags and to keep track of information about the bags that can accommodate
the aggregations after grouping.

This might be achieved by some recursive data structures that can represent distribution
of arbitrary types.

8.3 UDF

A feature of Pig is that user can make use of User Defined Functions in Pig. These
functions are written in Java and can provide many functionalities that is not easily
implemented in Pig. During this project, it has been ignored to keep the scope of the
project in check, but it is still very important to be able to work with these UDF so that
we can analyse all the details in a script.

Although it would not be possible to understand all UDFs, perhaps a project can be done
on implementing the analysis a set of UDFs that is commonly used in Pig, such asMAX, and
test how much more accurate the model would have become if those UDFs can be analysed.

8.4 Combiner and MapReduce Plan

Combiner can optimise the cost of Pig queries a lot as demonstrated in previous chapters,
and is currently not considered in the model. If a model can be developed on MapRe-
duce plan, that includes information about Combiners, this might have the potential of
improving the accuracy of the estimations.
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Chapter 9

Conclusions

I have started the project as a initial attempt to bring cost based optimisation into Pig
by developing cost models that estimate Pig queries cost in terms of bandwidth used.
Throughout the project we have explored two very different approached in doing cost
analysis, one through assumptions that do not depend on the structure of the input at all,
and another that looks at distributions of individual attributes of input tables.

As expected, both methods has shown promises and are working well in terms of the test
and benchmark we have set, and the more sophisticated Histogram model does work better
than the Simple Model when it comes to ranking queries by their costs.

While the performance of individual models are evaluated in previous chapters, we now
need to have a look at both models together and compare their strength and weaknesses.
We have to realise that the improvement of the Histogram Model over the Simple model
is only modest. With the cost of running an expensive query to gather all the information
needed for the query to run, one might want to ask the question of whether it is worth
using the Histogram model at all.

The answer is that it depends. If we were going to develop an commercial cost based
query optimisation engine base on a cost model, I would argue that the approach similar
to the Histogram Model is definitely needed. The model developed in this project is not
performing to it’s potential as it cannot understand all forms of queries permitted by Pig.
Once features such as keeping track of the information in bags after GROUP and predicting
the effect of Combiner are added, the Histogram Model would work much better.

On the other hand, if what we need i a quick indication of what that cost of our query is
going to be, or which alternative ways to write the query is better, we can make use of
the quick Simple Model as a guidance that helps Pig developments.

In conclusion, this project has built a solid foundation of Pig query cost model, It has
looked at many options when facing different problems in cost estimation and has demon-
strate the strength and weaknesses in many different approaches. This project is a good
first step into building an automatic Pig query optimisation system, and better models
can be easily build based on the two models developed during this project if they can
tackle come of the know weaknesses.
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Chapter 10

Appendix

10.1 TPC-H in Pig

All of the Pig code below are written by Jie Li during his time at Horton Work, details
can be found at https://issues.apache.org/jira/browse/PIG-2397. Only input I have is to
modify the input and output to suit the need of my project, and I will list these code for
referencing purpose only.

10.1.1 Q1

LineItems = LOAD ’ $input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) AS
( orderkey : int ,

partkey : int ,
suppkey : int ,
l inenumber : int ,
quant i ty : double ,
extendedpr i ce : double ,
d i s count : double ,
tax : double ,
r e t u r n f l a g : chararray ,
l i n e s t a t u s : chararray ,
sh ipdate : chararray ,
commitdate : chararray ,
r e c e i p t d a t e : chararray ,
s h i p i n s t r u c t : chararray ,
shipmode : chararray ,
comment : chararray ) ;

SubLineItems = FILTER LineItems BY sh ipdate <= ’1998−09−02 ’;

SubLine = FOREACH SubLineItems GENERATE r e t u r n f l a g , l i n e s t a t u s ,
quantity ,
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extendedpr ice , extendedpr i ce ∗(1−di scount ) AS d i s c p r i c e ,
extendedpr i ce ∗(1−di scount ) ∗(1+ tax ) AS charge , d i s count ;

StatusGroup = GROUP SubLine BY ( r e t u r n f l a g , l i n e s t a t u s ) ;
PriceSummary = FOREACH StatusGroup GENERATE group . r e t u r n f l a g AS

r e t u r n f l a g ,
group . l i n e s t a t u s AS l i n e s t a t u s , SUM( SubLine . quant i ty ) AS sum qty

,
SUM( SubLine . extendedpr i ce ) AS sum base pr ice , SUM( SubLine .

d i s c p r i c e ) a
s sum di s c pr i c e , SUM( SubLine . charge ) as sum charge , AVG( SubLine

. quant i ty )
as avg qty , AVG( SubLine . extendedpr i ce ) as avg pr i ce , AVG( SubLine

. d i s count )
as avg d i sc , COUNT( SubLine ) as count order ;
SortedSummary = ORDER PriceSummary BY r e t u r n f l a g , l i n e s t a t u s ;
−− STORE SortedSummary INTO ’ $output /Q1out ’ ;
DUMP SortedSummary ;

10.1.2 Q2

Part = load ’ $input / part . tb l ’ USING PigStorage ( ’ | ’ ) as (
p partkey : long ,

p name : chararray , p mfgr : chararray , p brand : chararray , p type :
chararray ,

p s i z e : long , p con ta ine r : chararray , p r e t a i l p r i c e : double ,
p comment : chararray ) ;

Supp l i e r = load ’ $input / s u p p l i e r . tb l ’ USING PigStorage ( ’ | ’ ) as (
s suppkey : long ,

s name : chararray , s a d d r e s s : chararray , s nat i onkey : int , s phone :
chararray ,

s a c c t b a l : double , s comment : chararray ) ;

Partsupp = load ’ $input / partsupp . tb l ’ USING PigStorage ( ’ | ’ ) as (
ps partkey : long ,

ps suppkey : long , p s a v a i l q t y : long , p s supp lyco s t : double ,
ps comment : chararray ) ;

Nation = load ’ $input / nat ion . tb l ’ USING PigStorage ( ’ | ’ ) as (
n nat ionkey : int ,

n name : chararray , n reg ionkey : int , n comment : chararray ) ;

Region = load ’ $ input / r eg i on . tb l ’ USING PigStorage ( ’ | ’ ) as (
r r e g i o n k e y : int ,

r name : chararray , r comment : chararray ) ;
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FRegion = f i l t e r Region by r name == ’EUROPE’ ;
FR N = j o i n FRegion BY r reg ionkey , Nation BY n reg ionkey ;
FR N S = j o i n FR N BY n nationkey , Supp l i e r BY s nat i onkey ;
FR N S PS = j o i n FR N S BY s suppkey , Partsupp BY ps suppkey ;

FPart = f i l t e r Part by p s i z e == 15 and p type matches ’ .∗BRASS
’ ;

FR N S PS FP = j o i n FR N S PS by ps partkey , FPart by p partkey ;

G1 = group FR N S PS FP by ps partkey ;
Min = FOREACH G1 GENERATE f l a t t e n ( FR N S PS FP ) ,
MIN( FR N S PS FP . ps supp lyco s t ) as min ps supp lycos t ;
MinCost = f i l t e r Min by ps supp lyco s t == min ps supp lycos t ;

RawResults = fo r each MinCost generate s a c c t b a l ,
s name ,
n name ,
p partkey ,
p mfgr ,
s addre s s ,
s phone ,
s comment ;

SortedMinimumCostSupplier = ORDER RawResults BY s a c c t b a l DESC,
n name , s name , p partkey ;

HundredMinimumCostSupplier = LIMIT SortedMinimumCostSupplier
100 ;

DUMP HundredMinimumCostSupplier ;

10.1.3 Q3

customer = load ’ $input / customer . tb l ’ USING PigStorage ( ’ | ’ ) as (
c cus tkey : long ,

c name : chararray , c addr e s s : chararray , c nat ionkey : int , c phone :
chararray ,

c a c c t b a l : double , c mktsegment : chararray , c comment : chararray ) ;

o rde r s = load ’ $ input / orde r s . tb l ’ USING PigStorage ( ’ | ’ ) as (
o orderkey : long ,

o cus tkey : long , o o r d e r s t a t u s : chararray , o t o t a l p r i c e : double ,
o o rde rdate : chararray , o o r d e r p r i o r i t y : chararray , o c l e r k :

chararray ,
o s h i p p r i o r i t y : long , o comment : chararray ) ;
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l i n e i t e m = load ’ $ input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) as (
l o r d e r k e y : long ,

l p a r t k e y : long , l suppkey : long , l l i nenumber : long , l q u a n t i t y :
double ,

l e x t e n d e d p r i c e : double , l d i s c o u n t : double , l t a x : double ,
l r e t u r n f l a g : chararray ,

l l i n e s t a t u s : chararray , l s h i p d a t e : chararray , l commitdate :
chararray ,

l r e c e i p t d a t e : chararray , l s h i p p i n g s t r u c t : chararray , l sh ipmode :
chararray ,

l comment : chararray ) ;

fcustomer = f i l t e r customer by c mktsegment == ’BUILDING ’ ;
f o r d e r s = f i l t e r o rde r s by o orde rdate < ’1995−03−15 ’;
f l i n e i t e m = f i l t e r l i n e i t e m by l s h i p d a t e > ’1995−03−15 ’;

o1 = j o i n f o r d e r s by o custkey , fcustomer by c cus tkey ;
s e l o 1 = fo r each o1 generate o orderkey , o orderdate ,

o s h i p p r i o r i t y ;

l 1 = j o i n f l i n e i t e m by l o rde rkey , s e l o 1 by o orderkey ;
s e l l 1 = fo r each l 1 generate l o rde rkey , l e x t e n d e d p r i c e ∗(1−

l d i s c o u n t ) as volume ,
o orderdate , o s h i p p r i o r i t y ;

g rResu l t = group s e l l 1 by ( l o rde rkey , o orderdate ,
o s h i p p r i o r i t y ) ;

sumResult = fo r each grResu l t generate f l a t t e n ( group ) , SUM( s e l l 1 .
volume ) as revenue ;

s o r t Re s u l t = order sumResult by revenue desc , o o rde rdate ;
l i m i t R e s u l t = l i m i t s o r t R e s u l t 10 ;

DUMP l i m i t R e s u l t ;

10.1.4 Q4

Orders = LOAD ’ $input / orde r s . tb l ’ USING PigStorage ( ’ | ’ ) AS (
o orderkey : int ,

o cus tkey : int ,
o o r d e r s t a t u s : chararray ,
o t o t a l p r i c e : double ,
o o rde rdate : chararray ,
o o r d e r p r i o r i t y : chararray ,
o c l e r k : chararray ,
o s h i p p r i o r i t y : int ,
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o comment : chararray ) ;
LineItem = LOAD ’ $input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) AS (

l o r d e r k e y : int ,
l p a r t k e y : int ,
l suppkey : int ,
l l i nenumber : int ,
l q u a n t i t y : double ,
l e x t e n d e d p r i c e : double ,
l d i s c o u n t : double ,
l t a x : double ,
l r e t u r n f l a g : chararray ,
l l i n e s t a t u s : chararray ,
l s h i p d a t e : chararray ,
l commitdate : chararray ,
l r e c e i p t d a t e : chararray ,
l s h i p i n s t r u c t : chararray ,
l sh ipmode : chararray ,
l comment : chararray ) ;

DateF i l t e r = FILTER Orders BY o orde rdate >= ’1993−07−01 ’
and o orde rdate < ’1993−10−01 ’;
CommitDateFilter0 = FILTER LineItem BY l commitdate <

l r e c e i p t d a t e ;
CommitDateFilter = FOREACH CommitDateFilter0 generate l o r d e r k e y

;

COG1 = COGROUP DateF i l t e r BY o orderkey , CommitDateFilter BY
l o r d e r k e y ;

F i l 1 = FILTER COG1 by COUNT( CommitDateFilter ) > 0 ;

OrdersCount = FOREACH F i l 1 GENERATE FLATTEN( DateF i l t e r ) ;
Pr ior i tyGroup = GROUP OrdersCount BY o o r d e r p r i o r i t y ;
Pr io r i tyCheck ing = FOREACH Prior i tyGroup GENERATE group , COUNT(

OrdersCount ) AS order count ;

Sor tedPr io r i tyCheck ing = ORDER Pr ior i tyCheck ing BY group ;
DUMP SortedPr io r i tyCheck ing ;

10.1.5 Q5

customer = load ’ $input / customer . tb l ’ USING PigStorage ( ’ | ’ ) as (
c cus tkey : long , c name : chararray , c addr e s s : chararray ,
c nat ionkey : int , c phone : chararray , c a c c t b a l : double ,
c mktsegment : chararray , c comment : chararray ) ;

o rde r s = load ’ $ input / orde r s . tb l ’ USING PigStorage ( ’ | ’ ) as (
o orderkey : long , o cus tkey : long , o o r d e r s t a t u s : chararray ,
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o t o t a l p r i c e : double , o o rde rdate : chararray , o o r d e r p r i o r i t y :
chararray , o c l e r k : chararray , o s h i p p r i o r i t y : long , o comment :
chararray ) ;

verbatim
l i n e i t e m = load ’ $ input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) as (

l o r d e r k e y : long , l p a r t k e y : long , l suppkey : long , l l i nenumber
: long , l q u a n t i t y : double , l e x t e n d e d p r i c e : double , l d i s c o u n t :
double , l t a x : double , l r e t u r n f l a g : chararray , l l i n e s t a t u s :
chararray , l s h i p d a t e : chararray , l commitdate : chararray ,
l r e c e i p t d a t e : chararray , l s h i p p i n g s t r u c t : chararray ,
l sh ipmode : chararray , l comment : chararray ) ;

s u p p l i e r = load ’ $ input / s u p p l i e r . tb l ’ USING PigStorage ( ’ | ’ ) as (
s suppkey : long , s name : chararray , s a d d r e s s : chararray ,
s nat i onkey : int , s phone : chararray , s a c c t b a l : double ,
s comment : chararray ) ;

nat ion = load ’ $ input / nat ion . tb l ’ USING PigStorage ( ’ | ’ ) as (
n nat ionkey : int , n name : chararray , n reg ionkey : int , n comment
: chararray ) ;

r eg i on = load ’ $ input / r eg i on . tb l ’ USING PigStorage ( ’ | ’ ) as (
r r e g i o n k e y : int , r name : chararray , r comment : chararray ) ;

f r e g i o n = f i l t e r r eg i on by r name == ’ASIA ’ ;
f o r d e r s = f i l t e r o rde r s by o orde rdate < ’1995−01−01 ’ and

o orde rdate >= ’1994−01−01 ’;

n1 = j o i n nat ion by n reg ionkey , f r e g i o n by r r e g i o n k e y ;
s e l n1 = fo reach n1 generate n name , n nat ionkey ;

s1 = j o i n s u p p l i e r by s nat ionkey , s e l n1 by n nat ionkey ;
s e l s 1 = fo r each s1 generate n name , s suppkey , s nat i onkey ;

l 1 = j o i n l i n e i t e m by l suppkey , s e l s 1 by s suppkey ;
s e l l 1 = fo r each l 1 generate n name , l ex t endedpr i c e , l d i s c o u n t ,

l o rde rkey , s nat i onkey ;

o1 = j o i n f o r d e r s by o orderkey , s e l l 1 by l o r d e r k e y ;
s e l o 1 = fo r each o1 generate n name , l ex t endedpr i c e , l d i s c o u n t ,

s nat ionkey , o cus tkey ;

c1 = j o i n customer by ( c custkey , c nat ionkey ) , s e l o 1 by (
o custkey , s nat i onkey ) ;

s e l c 1 = fo reach c1 generate n name , l e x t e n d e d p r i c e ∗ (1 −
l d i s c o u n t ) as eachvalue ;
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grResu l t = group s e l c 1 by n name ;
sumResult = fo r each grResu l t generate f l a t t e n ( group ) , SUM( s e l c 1 .

eachvalue ) as revenue ;
s o r t R e s u l t = order sumResult by revenue desc ;

DUMP s o r tR e s u l t ;

10.1.6 Q6

l i n e i t e m = load ’ $ input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) as (
l o r d e r k e y : int ,
l p a r t k e y : int ,
l suppkey : int ,
l l i nenumber : int ,
l q u a n t i t y : double ,
l e x t e n d e d p r i c e : double ,
l d i s c o u n t : double ,
l t a x : double ,
l r e t u r n f l a g : chararray ,
l l i n e s t a t u s : chararray ,
l s h i p d a t e : chararray ,
l commitdate : chararray ,
l r e c e i p t d a t e : chararray ,
l s h i p i n s t r u c t : chararray ,
l sh ipmode : chararray ,
l comment : chararray ) ;

f l i n e i t e m = FILTER l i n e i t e m BY l s h i p d a t e >= ’1994−01−01 ’ AND
l s h i p d a t e < ’1995−01−01 ’ AND l d i s c o u n t >= 0.05 AND
l d i s c o u n t <= 0.07 AND l q u a n t i t y < 24 ;

sav ing = FOREACH f l i n e i t e m GENERATE l e x t e n d e d p r i c e ∗ l d i s c o u n t
;

grpResult = GROUP sav ing ALL;
sumResult = FOREACH grpResult GENERATE SUM( sav ing ) ;

DUMP sumResult ;

10.1.7 Q7

s u p p l i e r = load ’ $ input / s u p p l i e r . tb l ’ USING PigStorage ( ’ | ’ ) as (
s suppkey : long , s name : chararray , s a d d r e s s : chararray ,
s nat i onkey : int , s phone : chararray , s a c c t b a l : double ,
s comment : chararray ) ;
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l i n e i t e m 0 = load ’ $input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) as
( l o r d e r k e y : long , l p a r t k e y : long , l suppkey : long ,
l l i nenumber : long , l q u a n t i t y : double , l e x t e n d e d p r i c e : double ,

l d i s c o u n t : double , l t a x : double , l r e t u r n f l a g : chararray ,
l l i n e s t a t u s : chararray , l s h i p d a t e : chararray , l commitdate :
chararray , l r e c e i p t d a t e : chararray , l s h i p p i n g s t r u c t : chararray
, l sh ipmode : chararray , l comment : chararray ) ;

o rde r s = load ’ $ input / orde r s . tb l ’ USING PigStorage ( ’ | ’ ) as (
o orderkey : long , o cus tkey : long , o o r d e r s t a t u s : chararray ,
o t o t a l p r i c e : double , o o rde rdate : chararray , o o r d e r p r i o r i t y :
chararray , o c l e r k : chararray , o s h i p p r i o r i t y : long , o comment :
chararray ) ;

customer = load ’ $input / customer . tb l ’ USING PigStorage ( ’ | ’ ) as (
c cus tkey : long , c name : chararray , c addr e s s : chararray ,
c nat ionkey : int , c phone : chararray , c a c c t b a l : double ,
c mktsegment : chararray , c comment : chararray ) ;

nat ion10 = load ’ $ input / nat ion . tb l ’ USING PigStorage ( ’ | ’ ) as (
n nat ionkey : int , n name1 : chararray , n reg ionkey : int ,
n comment : chararray ) ;

nat ion20 = load ’ $ input / nat ion . tb l ’ USING PigStorage ( ’ | ’ ) as (
n nat ionkey : int , n name2 : chararray , n reg ionkey : int ,
n comment : chararray ) ;

nat ion1 = f i l t e r nat ion10 by n name1==’FRANCE’ or n name1==’
GERMANY’ ;

nat ion2 = f i l t e r nat ion20 by n name2==’FRANCE’ or n name2==’
GERMANY’ ;

l i n e i t e m = f i l t e r l i n e i t e m 0 by l s h i p d a t e >= ’1995−01−01 ’ and
l s h i p d a t e <= ’1996−12−31 ’;

s u p p l i e r n a t i o n 1 = j o i n s u p p l i e r by s nat ionkey , nat ion1 by
n nat ionkey USING ’ r e p l i c a t e d ’ ;

l i t e i t e m s u p p l i e r n a t i o n 1 = j o i n s u p p l i e r n a t i o n 1 by s suppkey ,
l i n e i t e m by l suppkey ; −− big r e l a i o n on r i g h t .

customer nat ion2 = j o i n customer by c nat ionkey , nat ion2 by
n nat ionkey USING ’ r e p l i c a t e d ’ ;

o rde r s cus tomer nat i on2 = j o i n customer nat ion2 by c custkey ,
o rde r s by o custkey ; −− big r e l a i o n on r i g h t .
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f i n a l j o i n = j o i n o rde r s cus tomer nat i on2 by o orderkey ,
l i t e i t e m s u p p l i e r n a t i o n 1 by l o r d e r k e y ; −− big r e l a i o n on
r i g h t .

f i l t e r e d f i n a l j o i n = f i l t e r f i n a l j o i n by
( n name1==’FRANCE’ and n name2==’GERMANY’ ) or
( n name1==’GERMANY’ and n name2==’FRANCE’ ) ;

sh ipp ing = fo r each f i l t e r e d f i n a l j o i n GENERATE
n name1 as supp nation ,
n name2 as cus t nat i on ,
SUBSTRING( l s h i p d a t e , 0 , 4) as l y ea r , l e x t e n d e d p r i c e ∗ (1 −

l d i s c o u n t ) as volume ;

grouped sh ipp ing = group sh ipp ing by ( supp nation , cus t nat i on ,
l y e a r ) ;

agg r ega ted sh ipp ing = fo reach grouped sh ipp ing GENERATE FLATTEN(
group ) , SUM( $1 . volume ) as revenue ;

o rde r ed sh ipp ing = order aggrega ted sh ipp ing by group : :
supp nation , group : : cus t nat i on , group : : l y e a r ;

DUMP orde r ed sh ipp ing ;

10.1.8 Q8

customer = load ’ $input / customer . tb l ’ USING PigStorage ( ’ | ’ ) as (
c cus tkey : long , c name : chararray , c addr e s s : chararray ,
c nat ionkey : int , c phone : chararray , c a c c t b a l : double ,
c mktsegment : chararray , c comment : chararray ) ;

o rde r s = load ’ $ input / orde r s . tb l ’ USING PigStorage ( ’ | ’ ) as (
o orderkey : long , o cus tkey : long , o o r d e r s t a t u s : chararray ,
o t o t a l p r i c e : double , o o rde rdate : chararray , o o r d e r p r i o r i t y :
chararray , o c l e r k : chararray , o s h i p p r i o r i t y : long , o comment :
chararray ) ;

l i n e i t e m = load ’ $ input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) as (
l o r d e r k e y : long , l p a r t k e y : long , l suppkey : long , l l i nenumber
: long , l q u a n t i t y : double , l e x t e n d e d p r i c e : double , l d i s c o u n t :
double , l t a x : double , l r e t u r n f l a g : chararray , l l i n e s t a t u s :
chararray , l s h i p d a t e : chararray , l commitdate : chararray ,
l r e c e i p t d a t e : chararray , l s h i p p i n g s t r u c t : chararray ,
l sh ipmode : chararray , l comment : chararray ) ;
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s u p p l i e r = load ’ $ input / s u p p l i e r . tb l ’ USING PigStorage ( ’ | ’ ) as (
s suppkey : long , s name : chararray , s a d d r e s s : chararray ,
s nat i onkey : int , s phone : chararray , s a c c t b a l : double ,
s comment : chararray ) ;

nat ion = load ’ $ input / nat ion . tb l ’ USING PigStorage ( ’ | ’ ) as (
n nat ionkey : int , n name : chararray , n reg ionkey : int , n comment
: chararray ) ;

r eg i on = load ’ $ input / r eg i on . tb l ’ USING PigStorage ( ’ | ’ ) as (
r r e g i o n k e y : int , r name : chararray , r comment : chararray ) ;

part = load ’ $input / part . tb l ’ USING PigStorage ( ’ | ’ ) as (
p partkey : long , p name : chararray , p mfgr : chararray , p brand :
chararray , p type : chararray , p s i z e : long , p con ta ine r :
chararray , p r e t a i l p r i c e : double , p comment : chararray ) ;

f r e g i o n = f i l t e r r eg i on by r name == ’AMERICA’ ;
f o r d e r s = f i l t e r o rde r s by o orde rdate <= ’1996−12−31 ’ and

o orde rdate >= ’1995−01−01 ’;
f p a r t = f i l t e r part by p type == ’ECONOMY ANODIZED STEEL ’ ;

n1 = j o i n nat ion by n reg ionkey , f r e g i o n by r r e g i o n k e y USING ’
r e p l i c a t e d ’ ;

s e l n1 = fo reach n1 generate n nat ionkey ;

c1 = j o i n customer by c nat ionkey , s e l n1 by n nat ionkey USING ’
r e p l i c a t e d ’ ;

s e l c 1 = fo r each c1 generate c cus tkey ;

o1 = j o i n f o r d e r s by o custkey , s e l c 1 by c cus tkey ;
s e l o 1 = fo r each o1 generate o orderkey , o o rde rdate ;

n2 = j o i n s u p p l i e r by s nat ionkey , nat ion by n nat ionkey USING ’
r e p l i c a t e d ’ ;

l i n e i t e m = foreach l i n e i t e m generate l par tkey , l suppkey ,
l o rde rkey , l e x t e n d e d p r i c e ∗ (1 − l d i s c o u n t ) as volume ;

p1 = j o i n f p a r t by p partkey , l i n e i t e m by l p a r t k e y ;

s1 = j o i n n2 by s suppkey , p1 by l suppkey ;

l 1 = j o i n o1 by o orderkey , s1 by l o r d e r k e y ;

s e l s 1 = fo r each l 1 generate SUBSTRING( o orderdate , 0 , 4 ) as o year
, volume , ( n name == ’BRAZIL’ ? volume : 0) as case volume ;

grResu l t = GROUP s e l s 1 by o year ;
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sumResult = fo r each grResu l t generate group , SUM( $1 . case volume )
/ SUM( $1 . volume ) ;

s o r t R e s u l t = order sumResult by group ;

DUMP s o r tR e s u l t ;

10.1.9 Q9

customer = load ’ $input / customer . tb l ’ USING PigStorage ( ’ | ’ ) as (
c cus tkey : long , c name : chararray , c addr e s s : chararray ,
c nat ionkey : int , c phone : chararray , c a c c t b a l : double ,
c mktsegment : chararray , c comment : chararray ) ;

o rde r s = load ’ $ input / orde r s . tb l ’ USING PigStorage ( ’ | ’ ) as (
o orderkey : long , o cus tkey : long , o o r d e r s t a t u s : chararray ,
o t o t a l p r i c e : double , o o rde rdate : chararray , o o r d e r p r i o r i t y :
chararray , o c l e r k : chararray , o s h i p p r i o r i t y : long , o comment :
chararray ) ;

l i n e i t e m = load ’ $ input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) as (
l o r d e r k e y : long , l p a r t k e y : long , l suppkey : long , l l i nenumber
: long , l q u a n t i t y : double , l e x t e n d e d p r i c e : double , l d i s c o u n t :
double , l t a x : double , l r e t u r n f l a g : chararray , l l i n e s t a t u s :
chararray , l s h i p d a t e : chararray , l commitdate : chararray ,
l r e c e i p t d a t e : chararray , l s h i p p i n g s t r u c t : chararray ,
l sh ipmode : chararray , l comment : chararray ) ;

s u p p l i e r = load ’ $ input / s u p p l i e r . tb l ’ USING PigStorage ( ’ | ’ ) as (
s suppkey : long , s name : chararray , s a d d r e s s : chararray ,
s nat i onkey : int , s phone : chararray , s a c c t b a l : double ,
s comment : chararray ) ;

nat ion = load ’ $ input / nat ion . tb l ’ USING PigStorage ( ’ | ’ ) as (
n nat ionkey : int , n name : chararray , n reg ionkey : int , n comment
: chararray ) ;

r eg i on = load ’ $ input / r eg i on . tb l ’ USING PigStorage ( ’ | ’ ) as (
r r e g i o n k e y : int , r name : chararray , r comment : chararray ) ;

partsupp = load ’ $ input / partsupp . tb l ’ USING PigStorage ( ’ | ’ ) as (
ps partkey : long , ps suppkey : long , p s a v a i l q t y : long ,
p s supp lyco s t : double , ps comment : chararray ) ;
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part = load ’ $input / part . tb l ’ USING PigStorage ( ’ | ’ ) as (
p partkey : long , p name : chararray , p mfgr : chararray , p brand :
chararray , p type : chararray , p s i z e : long , p con ta ine r :
chararray , p r e t a i l p r i c e : double , p comment : chararray ) ;

f p a r t = f i l t e r part by REGEX EXTRACT( p name , ’ ( green ) ’ , 1) != ’ ’ ;

j 1 = j o i n f p a r t by p partkey , l i n e i t e m by l p a r t k e y ; −− ’
r e p l i c a t e d ’ f a i l e d again in 100GB.

j2 = j o i n s u p p l i e r by s nat ionkey , nat ion by n nat ionkey USING ’
r e p l i c a t e d ’ ;

j 3 = j o i n j2 by s suppkey , j 1 by l suppkey ; −− ’ r e p l i c a t e d ’
f a i l e d in 100GB.

j4 = j o i n partsupp by ( ps suppkey , ps partkey ) , j 3 by ( l suppkey
, l p a r t k e y ) ;

j 5 = j o i n j4 by l o rde rkey , o rde r s by o orderkey ;

s e l o 1 = fo r each j5 generate n name as nation name , SUBSTRING(
o orderdate , 0 , 4) as o year , ( l e x t e n d e d p r i c e ∗ (1 −
l d i s c o u n t ) − ps supp lyco s t ∗ l q u a n t i t y ) as amount ;

grResu l t = GROUP s e l o 1 by ( nation name , o year ) ;

sumResult = fo r each grResu l t generate f l a t t e n ( group ) , SUM( s e l o 1 .
amount ) as sum pro f i t ;

s o r t Re s u l t = order sumResult by nation name , o year desc ;

DUMP s o r t Re s u l t ;

10.1.10 Q10

customer = load ’ $input / customer . tb l ’ USING PigStorage ( ’ | ’ ) as (
c cus tkey : long , c name : chararray , c addr e s s : chararray ,
c nat ionkey : int , c phone : chararray , c a c c t b a l : double ,
c mktsegment : chararray , c comment : chararray ) ;

o rde r s = load ’ $ input / orde r s . tb l ’ USING PigStorage ( ’ | ’ ) as (
o orderkey : long , o cus tkey : long , o o r d e r s t a t u s : chararray ,
o t o t a l p r i c e : double , o o rde rdate : chararray , o o r d e r p r i o r i t y :
chararray , o c l e r k : chararray , o s h i p p r i o r i t y : long , o comment :
chararray ) ;
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l i n e i t e m = load ’ $ input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) as (
l o r d e r k e y : long , l p a r t k e y : long , l suppkey : long , l l i nenumber
: long , l q u a n t i t y : double , l e x t e n d e d p r i c e : double , l d i s c o u n t :
double , l t a x : double , l r e t u r n f l a g : chararray , l l i n e s t a t u s :
chararray , l s h i p d a t e : chararray , l commitdate : chararray ,
l r e c e i p t d a t e : chararray , l s h i p p i n g s t r u c t : chararray ,
l sh ipmode : chararray , l comment : chararray ) ;

s u p p l i e r = load ’ $ input / s u p p l i e r . tb l ’ USING PigStorage ( ’ | ’ ) as (
s suppkey : long , s name : chararray , s a d d r e s s : chararray ,
s nat i onkey : int , s phone : chararray , s a c c t b a l : double ,
s comment : chararray ) ;

nat ion = load ’ $ input / nat ion . tb l ’ USING PigStorage ( ’ | ’ ) as (
n nat ionkey : int , n name : chararray , n reg ionkey : int , n comment
: chararray ) ;

r eg i on = load ’ $ input / r eg i on . tb l ’ USING PigStorage ( ’ | ’ ) as (
r r e g i o n k e y : int , r name : chararray , r comment : chararray ) ;

partsupp = load ’ $ input / partsupp . tb l ’ USING PigStorage ( ’ | ’ ) as (
ps partkey : long , ps suppkey : long , p s a v a i l q t y : long ,
p s supp lyco s t : double , ps comment : chararray ) ;

part = load ’ $input / part . tb l ’ USING PigStorage ( ’ | ’ ) as (
p partkey : long , p name : chararray , p mfgr : chararray , p brand :
chararray , p type : chararray , p s i z e : long , p con ta ine r :
chararray , p r e t a i l p r i c e : double , p comment : chararray ) ;

f o r d e r s = f i l t e r o rde r s by o orde rdate < ’1994−01−01 ’ and
o orde rdate >= ’1993−10−01 ’;

f l i n e i t e m = f i l t e r l i n e i t e m by l r e t u r n f l a g == ’R’ ;

c1 = j o i n customer by c custkey , f o r d e r s by o custkey ;
s e l c 1 = fo reach c1 generate c custkey , c name , c ac c tba l ,

c addres s , c phone , c comment , c nat ionkey , o orderkey ;

o1 = j o i n nat ion by n nationkey , s e l c 1 by c nat ionkey ;
s e l o 1 = fo r each o1 generate o orderkey , c custkey , c name ,

c addres s , c phone , c ac c tba l , c comment , n name ;

l 1 = j o i n f l i n e i t e m by l o rde rkey , s e l o 1 by o orderkey ;
s e l l 1 = fo r each l 1 generate c custkey , c name , l e x t e n d e d p r i c e ∗

(1 − l d i s c o u n t ) as volume , c ac c tba l , n name , c addres s ,
c phone , c comment ;
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grResu l t = GROUP s e l l 1 by ( c custkey , c name , c ac c tba l , c phone
, n name , c addres s , c comment ) ;

sumResult = fo r each grResu l t generate group . c custkey , group .
c name , SUM( s e l l 1 . volume ) as revenue , group . c ac c tba l , group .
n name , group . c addres s , group . c phone , group . c comment ;

s o r t Re s u l t = order sumResult by revenue desc ;
l i m i t R e s u l t = l i m i t s o r t R e s u l t 20 ;

−− s t o r e l i m i t R e s u l t i n to ’ $output /Q10out ’ USING PigStorage ( ’ | ’ )
;

DUMP l i m i t R e s u l t ;

10.1.11 Q11

partsupp = load ’ $input / partsupp . tb l ’ USING PigStorage ( ’ | ’ ) as (
ps partkey : long , ps suppkey : long , p s a v a i l q t y : long ,
p s supp lyco s t : double , ps comment : chararray ) ;

s u p p l i e r = load ’ $ input / s u p p l i e r . tb l ’ USING PigStorage ( ’ | ’ ) as (
s suppkey : long , s name : chararray , s a d d r e s s : chararray ,
s nat i onkey : int , s phone : chararray , s a c c t b a l : double ,
s comment : chararray ) ;

nat ion = load ’ $ input / nat ion . tb l ’ USING PigStorage ( ’ | ’ ) as (
n nat ionkey : int , n name : chararray , n reg ionkey : int , n comment
: chararray ) ;

f n a t i o n = f i l t e r nat ion by n name == ’GERMANY’ ;

j 1 = j o i n f n a t i o n by n nationkey , s u p p l i e r by s nat i onkey ;

s e l j 1 = fo r each j1 generate s suppkey ;

j 2 = j o i n partsupp by ps suppkey , s e l j 1 by s suppkey ;

s e l j 2 = fo r each j2 generate ps partkey , ( p s supp lyco s t ∗
p s a v a i l q t y ) as va l ;

g rResu l t = group s e l j 2 a l l ;

sumResult = fo r each grResu l t generate SUM( $1 . va l ) as totalSum ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(
above in s id e , below out s id e )
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outerGrResult = group s e l j 2 by ps partkey ;

outerSumResult = fo r each outerGrResult generate group , SUM( $1 .
va l ) as outSum ;

outerHaving = f i l t e r outerSumResult by outSum > sumResult .
totalSum ∗ 0 . 0 0 0 1 ;

ord = order outerHaving by outSum desc ;

DUMP ord ;

10.1.12 Q12

orde r s = load ’ $ input / orde r s . tb l ’ USING PigStorage ( ’ | ’ ) as (
o orderkey : long , o cus tkey : long , o o r d e r s t a t u s : chararray ,
o t o t a l p r i c e : double , o o rde rdate : chararray , o o r d e r p r i o r i t y :
chararray , o c l e r k : chararray , o s h i p p r i o r i t y : long , o comment :
chararray ) ;

l i n e i t e m = load ’ $ input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) as (
l o r d e r k e y : long , l p a r t k e y : long , l suppkey : long , l l i nenumber
: long , l q u a n t i t y : double , l e x t e n d e d p r i c e : double , l d i s c o u n t :
double , l t a x : double , l r e t u r n f l a g : chararray , l l i n e s t a t u s :
chararray , l s h i p d a t e : chararray , l commitdate : chararray ,
l r e c e i p t d a t e : chararray , l s h i p p i n g s t r u c t : chararray ,
l sh ipmode : chararray , l comment : chararray ) ;

f l i n e i t e m = FILTER l i n e i t e m BY l shipmode MATCHES ’MAIL | SHIP ’
AND

l commitdate < l r e c e i p t d a t e AND l s h i p d a t e <
l commitdate AND

l r e c e i p t d a t e >= ’1994−01−01 ’ AND
l r e c e i p t d a t e < ’1995−01−01 ’;

l 1 = JOIN f l i n e i t e m BY l orde rkey , o rde r s by o orderkey ;
s e l l 1 = FOREACH l 1 GENERATE l shipmode , o o r d e r p r i o r i t y ;

grpResult = GROUP s e l l 1 BY l shipmode ;
sumResult = FOREACH grpResult {

urgItems = FILTER s e l l 1 BY o o r d e r p r i o r i t y MATCHES ’1−URGENT
’ or o o r d e r p r i o r i t y MATCHES ’2−HIGH’ ;

GENERATE group , COUNT( urgItems ) , COUNT( s e l l 1 ) − COUNT (
urgItems ) ;

} ;
s o r t R e s u l t = ORDER sumResult BY group ;
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DUMP s o r t Re s u l t ;

10.1.13 Q13

customer = load ’ $input / customer . tb l ’ USING PigStorage ( ’ | ’ ) as (
c cus tkey : long , c name : chararray , c addr e s s : chararray ,
c nat ionkey : int , c phone : chararray , c a c c t b a l : double ,
c mktsegment : chararray , c comment : chararray ) ;

o rde r s = load ’ $ input / orde r s . tb l ’ USING PigStorage ( ’ | ’ ) as (
o orderkey : long , o cus tkey : long , o o r d e r s t a t u s : chararray ,
o t o t a l p r i c e : double , o o rde rdate : chararray , o o r d e r p r i o r i t y :
chararray , o c l e r k : chararray , o s h i p p r i o r i t y : long , o comment :
chararray ) ;

f o r d e r s = FILTER orde r s by (NOT o comment MATCHES ’ .∗ s p e c i a l .∗
r e q u e s t s . ∗ ’ ) ;

porders = FOREACH f o r d e r s GENERATE o custkey , o orderkey ;

pcustomer = FOREACH customer GENERATE c cus tkey ;

COG1 = COGROUP pcustomer by c custkey , porders by o custkey ;
COG2 = f i l t e r COG1 by COUNT( pcustomer ) > 0 ; −− l e f t out jo in ,

ensure l e f t s i d e non−empty
COG = FOREACH COG2 GENERATE group as c custkey , COUNT( porders .

o orderkey ) as c count ;

groupResult = GROUP COG BY c count ;

countResult = FOREACH groupResult GENERATE group as c count ,
COUNT(COG) as c u s t d i s t ;

o rderResu l t = ORDER countResult by c u s t d i s t DESC, c count DESC;

DUMP orderResu l t ;

10.1.14 Q14

l i n e i t e m = load ’ $ input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) as (
l o r d e r k e y : long , l p a r t k e y : long , l suppkey : long , l l i nenumber
: long , l q u a n t i t y : double , l e x t e n d e d p r i c e : double , l d i s c o u n t :
double , l t a x : double , l r e t u r n f l a g : chararray , l l i n e s t a t u s :
chararray , l s h i p d a t e : chararray , l commitdate : chararray ,
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l r e c e i p t d a t e : chararray , l s h i p p i n g s t r u c t : chararray ,
l sh ipmode : chararray , l comment : chararray ) ;

part = load ’ $input / part . tb l ’ USING PigStorage ( ’ | ’ ) as (
p partkey : long , p name : chararray , p mfgr : chararray , p brand :
chararray , p type : chararray , p s i z e : long , p con ta ine r :
chararray , p r e t a i l p r i c e : double , p comment : chararray ) ;

f i l t e r e d l i n e i t e m = f i l t e r l i n e i t e m by l s h i p d a t e >=
’1995−09−01 ’ and l s h i p d a t e < ’1995−10−01 ’;

l i n e i t e m 2 = foreach f i l t e r e d l i n e i t e m generate l par tkey ,
l e x t e n d e d p r i c e ∗ (1 − l d i s c o u n t ) as l v a l u e ;

l i n e i t e m p a r t = j o i n l i n e i t e m 2 by l par tkey , part by p partkey ;
l i n e i t e m par t g ro uped = group l i n e i t e m p a r t ALL;
sum al l = fo r each l i n e i t em par t g ro uped generate SUM(

l i n e i t e m p a r t . l v a l u e ) ;

f l i n e i t e m p a r t = f i l t e r l i n e i t e m p a r t by SUBSTRING( p type , 0 ,
5)==’PROMO’ ;

f l i n e i t e m p a r t g r o u p = group f l i n e i t e m p a r t ALL;
s u m f i l t e r = fo r each f l i n e i t e m p a r t g r o u p generate SUM(

f l i n e i t e m p a r t . l v a l u e ) ;

promo revenue = fo reach sum al l generate 100∗ s u m f i l t e r . $0/
sum al l . $0 ;

DUMP promo revenue ;

10.1.15 Q15

l i n e i t e m = load ’ $ input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) as (
l o r d e r k e y : long , l p a r t k e y : long , l suppkey : long , l l i nenumber
: long , l q u a n t i t y : double , l e x t e n d e d p r i c e : double , l d i s c o u n t :
double , l t a x : double , l r e t u r n f l a g : chararray , l l i n e s t a t u s :
chararray , l s h i p d a t e : chararray , l commitdate : chararray ,
l r e c e i p t d a t e : chararray , l s h i p p i n g s t r u c t : chararray ,
l sh ipmode : chararray , l comment : chararray ) ;

s u p p l i e r = load ’ $ input / s u p p l i e r . tb l ’ USING PigStorage ( ’ | ’ ) as (
s suppkey : long , s name : chararray , s a d d r e s s : chararray ,
s nat i onkey : int , s phone : chararray , s a c c t b a l : double ,
s comment : chararray ) ;

f l i n e i t e m = f i l t e r l i n e i t e m by l s h i p d a t e >= ’1996−01−01 ’ and
l s h i p d a t e < ’1996−04−01 ’;
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sumline item = foreach f l i n e i t e m generate l suppkey ,
l e x t e n d e d p r i c e ∗ (1 − l d i s c o u n t ) as va lue ;

g l i n e i t e m = group sumline item by l suppkey ;

revenue = fo reach g l i n e i t e m generate group as supp l i e r no , SUM(
$1 . va lue ) as t o t a l r e v e n u e ;

grevenue = group revenue a l l ;

max revenue = fo reach grevenue generate MAX( $1 . t o t a l r e v e n u e ) ;

top revenue = f i l t e r revenue by t o t a l r e v e n u e == max revenue . $0 ;

j 1 = j o i n s u p p l i e r by s suppkey , top revenue by s u p p l i e r n o ;

s e l = fo r each j1 generate s suppkey , s name , s addre s s , s phone ,
t o t a l r e v e n u e ;

ord = order s e l by s suppkey desc ;
DUMP ord ;

10.1.16 Q16

/∗
SELECT P BRAND, P TYPE, P SIZE , COUNT(DISTINCT PS SUPPKEY) AS

SUPPLIER CNT
FROM PARTSUPP, PART
WHERE P PARTKEY = PS PARTKEY AND P BRAND <> ’ Brand#45’ AND

P TYPE NOT LIKE ’MEDIUM POLISHED%%’
AND P SIZE IN (49 , 14 , 23 , 45 , 19 , 3 , 36 , 9) AND PS SUPPKEY NOT

IN (SELECT S SUPPKEY FROM SUPPLIER
WHERE S COMMENT LIKE ’%%Customer%%Complaints%%’)

GROUP BY P BRAND, P TYPE, P SIZE
ORDER BY SUPPLIER CNT DESC, P BRAND, P TYPE, P SIZE
∗/
−− par t s = LOAD ’ $input / part . tb l ’ USING PigStorage ( ’ | ’ ) AS
−− ( p partkey , p name , p mfgr , p brand : chararray , p type :

chararray , p s i z e , p conta iner , p r e t a i l p r i c e , p comment ) ;

−− partsupp = LOAD ’ $input / partsupp . tb l ’ USING PigStorage ( ’ | ’ )
AS ( ps partkey : int , ps suppkey : int , p s ava i l q ty ,
p s supp lyco s t : double , ps comment ) ;
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−− s u p p l i e r = LOAD ’ $input / s u p p l i e r . tb l ’ USING PigStorage ( ’ | ’ )
AS ( s suppkey : int , s name , s addre s s , s nat ionkey , s phone ,
s a c c t b a l , s comment : chararray ) ;

−− f s u p p l i e r = FILTER s u p p l i e r BY (NOT s comment MATCHES ’ .∗
Customer .∗ Complaints . ∗ ’ ) ;

−− f s 1 = FOREACH f s u p p l i e r GENERATE s suppkey ;

−− pss = JOIN partsupp BY ps suppkey , f s 1 BY s suppkey ;

−− fpartsupp = FOREACH pss GENERATE partsupp : : ps partkey as
ps partkey , partsupp : : ps suppkey as ps suppkey ;

−− f p a r t s = FILTER part s BY
−− ( p brand != ’ Brand#45’ AND
−− NOT ( p type MATCHES ’MEDIUM POLISHED. ∗ ’ ) AND
−− p s i z e MATCHES ’ 4 9 | 1 4 | 2 3 | 4 5 | 1 9 | 3 | 3 6 | 9 ’ ) ;

−− pparts = FOREACH f p a r t s GENERATE p partkey , p brand , p type ,
p s i z e ;

−− p1 = JOIN pparts BY p partkey , fpartsupp by ps partkey ;
−− grResu l t = GROUP p1 BY ( p brand , p type , p s i z e ) ;
−− countResult = FOREACH grResu l t
−− {
−− dkeys = DISTINCT p1 . ps suppkey ;
−− GENERATE group . p brand as p brand , group . p type as p type ,

group . p s i z e as p s i z e , COUNT( dkeys ) as s u p p l i e r c n t ;
−− }
−− orderResu l t = ORDER countResult BY s u p p l i e r c n t DESC, p brand

, p type , p s i z e ;

−− DUMP orderResu l t ;

RUN /home/ robe r t /Dropbox/ u n i v e r s i t y /4 th/ Pro j e c t / s r c /hadoopRun/
pig / tpch /loadTPCH . pig ;

f s u p p l i e r = FILTER s u p p l i e r BY (NOT s comment MATCHES ’ .∗
Customer .∗ Complaints . ∗ ’ ) ;

f s 1 = FOREACH f s u p p l i e r GENERATE s suppkey ;

pss = JOIN partsupp BY ps suppkey , f s 1 BY s suppkey ;

fpartsupp = FOREACH pss GENERATE partsupp : : ps partkey as
ps partkey , partsupp : : ps suppkey as ps suppkey ;
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f p a r t s = FILTER part BY
( p brand != ’ Brand#45’

AND NOT ( p type MATCHES ’MEDIUM POLISHED. ∗ ’ )
AND ( chararray ) p s i z e MATCHES ’ 4 9 | 1 4 | 2 3 | 4 5 | 1 9 | 3 | 3 6 | 9 ’ ) ;

pparts = FOREACH f p a r t s GENERATE p partkey , p brand , p type ,
p s i z e ;

p1 = JOIN pparts BY p partkey , fpartsupp by ps partkey ;
grResu l t = GROUP p1 BY ( p brand , p type , p s i z e ) ;
countResult = FOREACH grResu l t
{

dkeys = DISTINCT p1 . ps suppkey ;
GENERATE group . p brand as p brand , group . p type as p type ,

group . p s i z e as p s i z e , COUNT( dkeys ) as s u p p l i e r c n t ;
}
orderResu l t = ORDER countResult BY s u p p l i e r c n t DESC, p brand ,

p type , p s i z e ;

−− s t o r e orderResu l t i n to ’ $output /Q16out ’ USING PigStorage ( ’ | ’ )
;

DUMP orderResu l t ;

10.1.17 Q17

l i n e i t e m = load ’ $ input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) as (
l o r d e r k e y : long , l p a r t k e y : long , l suppkey : long , l l i nenumber
: long , l q u a n t i t y : double , l e x t e n d e d p r i c e : double , l d i s c o u n t :
double , l t a x : double , l r e t u r n f l a g : chararray , l l i n e s t a t u s :
chararray , l s h i p d a t e : chararray , l commitdate : chararray ,
l r e c e i p t d a t e : chararray , l s h i p p i n g s t r u c t : chararray ,
l sh ipmode : chararray , l comment : chararray ) ;

part = load ’ $input / part . tb l ’ USING PigStorage ( ’ | ’ ) as (
p partkey : long , p name : chararray , p mfgr : chararray , p brand :
chararray , p type : chararray , p s i z e : long , p con ta ine r :
chararray , p r e t a i l p r i c e : double , p comment : chararray ) ;

l i n e i t e m = foreach l i n e i t e m generate l par tkey , l quant i t y ,
l e x t e n d e d p r i c e ;

part = FILTER part BY p brand == ’ Brand#23’ AND p conta ine r == ’
MED BOX’ ;

part = fo r each part generate p partkey ;

COG1 = COGROUP part by p partkey , l i n e i t e m by l p a r t k e y ;
COG1 = f i l t e r COG1 by COUNT( part ) > 0 ;

95



COG2 = FOREACH COG1 GENERATE COUNT( part ) as count part , FLATTEN(
l i n e i t e m ) , 0 . 2 ∗ AVG( l i n e i t e m . l q u a n t i t y ) as l a v g ;

COG3 = f i l t e r COG2 by l q u a n t i t y < l a v g ;
COG = foreach COG3 generate ( l e x t e n d e d p r i c e ∗ count part ) as

l sum ;

G1 = group COG ALL;

r e s u l t = fo r each G1 generate SUM(COG. l sum ) / 7 . 0 ;

DUMP r e s u l t ;

10.1.18 Q18

l i n e i t e m = load ’ $ input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) as (
l o r d e r k e y : long , l p a r t k e y : long , l suppkey : long , l l i nenumber
: long , l q u a n t i t y : double , l e x t e n d e d p r i c e : double , l d i s c o u n t :
double , l t a x : double , l r e t u r n f l a g : chararray , l l i n e s t a t u s :
chararray , l s h i p d a t e : chararray , l commitdate : chararray ,
l r e c e i p t d a t e : chararray , l s h i p p i n g s t r u c t : chararray ,
l sh ipmode : chararray , l comment : chararray ) ;

customer = load ’ $input / customer . tb l ’ USING PigStorage ( ’ | ’ ) as (
c cus tkey : long , c name : chararray , c addr e s s : chararray ,
c nat ionkey : int , c phone : chararray , c a c c t b a l : double ,
c mktsegment : chararray , c comment : chararray ) ;

o rde r s = load ’ $ input / orde r s . tb l ’ USING PigStorage ( ’ | ’ ) as (
o orderkey : long , o cus tkey : long , o o r d e r s t a t u s : chararray ,
o t o t a l p r i c e : double , o o rde rdate : chararray , o o r d e r p r i o r i t y :
chararray , o c l e r k : chararray , o s h i p p r i o r i t y : long , o comment :
chararray ) ;

l i n e i t e m = foreach l i n e i t e m generate l o rde rkey , l q u a n t i t y ;
o rde r s = fo r each orde r s generate o orderkey , o orderdate ,

o t o t a l p r i c e , o cus tkey ;
COG = cogroup l i n e i t e m by l o rde rkey , o rde r s by o orderkey ;

COG = f i l t e r COG by SUM( l i n e i t e m . l q u a n t i t y ) > 300 ;

l i n e i t e m o r d e r s = fo r each COG generate SUM( l i n e i t e m . l q u a n t i t y )
as l quant i ty sum , f l a t t e n ( o rde r s ) ; −− orde r s has only one
tup l e per bag !
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l i n e i t e m o r d e r s c u s t o m e r = j o i n customer by c custkey ,
l i n e i t e m o r d e r s by o custkey ;

l i n e i t em or de r s cu s t om er g r oup = group l i n e i t e m o r d e r s c u s t o m e r
by ( c name , c custkey , o orderkey , o orderdate , o t o t a l p r i c e )
;

r e s u l t = fo r each l i n e i t em or de r s cu s t om er g r oup generate group .
c name as c name , group . c cus tkey as c custkey , group .
o orderkey as o orderkey , group . o o rde rdate as o orderdate ,
group . o t o t a l p r i c e as o t o t a l p r i c e , SUM(
l i n e i t e m o r d e r s c u s t o m e r . l quant i ty sum ) as l quant i ty sum ;

out = order r e s u l t by o t o t a l p r i c e desc , o o rde rdate ;

DUMP out ;

10.1.19 Q19

l i n e i t e m = load ’ $ input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) as (
l o r d e r k e y : long , l p a r t k e y : long , l suppkey : long , l l i nenumber
: long , l q u a n t i t y : double , l e x t e n d e d p r i c e : double , l d i s c o u n t :
double , l t a x : double , l r e t u r n f l a g : chararray , l l i n e s t a t u s :
chararray , l s h i p d a t e : chararray , l commitdate : chararray ,
l r e c e i p t d a t e : chararray , l s h i p i n s t r u c t : chararray , l sh ipmode :
chararray , l comment : chararray ) ;

part = load ’ $input / part . tb l ’ USING PigStorage ( ’ | ’ ) as (
p partkey : long , p name : chararray , p mfgr : chararray , p brand :
chararray , p type : chararray , p s i z e : long , p con ta ine r :
chararray , p r e t a i l p r i c e : double , p comment : chararray ) ;

l p a r t = JOIN l i n e i t e m BY l par tkey , part by p partkey ;

f l t R e s u l t = FILTER l p a r t BY
(

p brand == ’ Brand#12’
and p conta ine r matches ’SM CASE |SM BOX|SM PACK|SM PKG’
and l q u a n t i t y >= 1 and l q u a n t i t y <= 11
and p s i z e >= 1 and p s i z e <= 5
and l shipmode matches ’AIR |AIR REG’
and l s h i p i n s t r u c t == ’DELIVER IN PERSON’
)
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or
(

p brand == ’ Brand#23’
and p conta ine r matches ’MED BAG|MED BOX|MED PKG|MED PACK’
and l q u a n t i t y >= 10 and l q u a n t i t y <= 20
and p s i z e >= 1 and p s i z e <= 10
and l shipmode matches ’AIR |AIR REG’
and l s h i p i n s t r u c t == ’DELIVER IN PERSON’
)
or
(
p brand == ’ Brand#34’
and p conta ine r matches ’LG CASE |LG BOX|LG PACK|LG PKG’
and l q u a n t i t y >= 20 and l q u a n t i t y <= 30
and p s i z e >= 1 and p s i z e <= 15
and l shipmode matches ’AIR |AIR REG’
and l s h i p i n s t r u c t == ’DELIVER IN PERSON’
) ;

volume = FOREACH f l t R e s u l t GENERATE l e x t e n d e d p r i c e ∗ (1 −
l d i s c o u n t ) ;

grpResult = GROUP volume ALL;
revenue = FOREACH grpResult GENERATE SUM( volume ) ;

DUMP revenue ;

10.1.20 Q20

part = load ’ $input / part . tb l ’ USING PigStorage ( ’ | ’ ) as (
p partkey : long , p name : chararray , p mfgr : chararray , p brand :
chararray , p type : chararray , p s i z e : long , p con ta ine r :
chararray , p r e t a i l p r i c e : double , p comment : chararray ) ;

part1 = fo r each part generate p partkey , p name ;
part2 = f i l t e r part1 by SUBSTRING( p name , 0 , 6)==’ f o r e s t ’ ;
part3 = fo r each part2 generate p partkey ;
part4 = d i s t i n c t part3 ;

l i n e i t e m = load ’ $ input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) as (
l o rde rkey , l p a r t k e y : long , l suppkey : long , l l inenumber ,
l q u a n t i t y : double , l e x t endedpr i c e , l d i s c o u n t , l t ax ,
l r e t u r n f l a g , l l i n e s t a t u s , l s h i p d a t e : chararray ,
l commitdate , l r e c e i p t d a t e , l s h i p p i n g s t r u c t , l shipmode ,
l comment ) ;

l i n e i t e m 1 = foreach l i n e i t e m generate l par tkey , l suppkey ,
l s h i p d a t e , l q u a n t i t y ;
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l i n e i t e m 2 = f i l t e r l i n e i t e m 1 by l s h i p d a t e >= ’1994−01−01 ’ and
l s h i p d a t e < ’1995−01−01 ’;

l i n e i t e m 3 = group l i n e i t e m 2 by ( l par tkey , l suppkey ) ;
l i n e i t e m 4 = foreach l i n e i t e m 3 generate FLATTEN( group ) , SUM(

l i n e i t e m 2 . l q u a n t i t y ) ∗ 0 .5 as sum ;

partsupp = load ’ $input / partsupp . tb l ’ USING PigStorage ( ’ | ’ ) as (
ps partkey : long , ps suppkey : long , p s a v a i l q t y : long ,
ps supp lycos t , ps comment ) ;

partsupp1 = for each partsupp generate ps suppkey , ps partkey ,
p s a v a i l q t y ;

ps p = j o i n part4 by p partkey , partsupp1 by ps partkey ;
l p s p = j o i n ps p by ( ps partkey , ps suppkey ) , l i n e i t e m 4 by (

l par tkey , l suppkey ) ;
l p s p 2 = f i l t e r l p s p by p s a v a i l q t y > sum ;
ps suppkey pr j = fo r each l p s p 2 generate ps suppkey ;
p s s u p p k e y d i s t i n c t = d i s t i n c t ps suppkey pr j ;

nat ion = load ’ $ input / nat ion . tb l ’ USING PigStorage ( ’ | ’ ) as (
n nat ionkey : int , n name : chararray , n reg ionkey : int , n comment
: chararray ) ;

nat ion1 = f i l t e r nat ion by n name == ’CANADA’ ;

s u p p l i e r = load ’ $ input / s u p p l i e r . tb l ’ USING PigStorage ( ’ | ’ ) as (
s suppkey : long , s name : chararray , s a d d r e s s : chararray ,
s nat i onkey : int , s phone , s a c c t b a l , s comment ) ;

s u p p l i e r 1 = fo r each s u p p l i e r generate s suppkey , s name ,
s nat ionkey , s a d d r e s s ;

s n = j o i n s u p p l i e r by s nat ionkey , nat ion1 by n nat ionkey ;
s n p s = j o i n s n by s suppkey , p s s u p p k e y d i s t i n c t by

ps suppkey ;

r e s p r j = fo r each s n p s generate s name , s a d d r e s s ;
r e s = order r e s p r j by s name ;

DUMP r e s ;

10.1.21 Q21

orde r s = load ’ $ input / orde r s . tb l ’ USING PigStorage ( ’ | ’ ) as (
o orderkey : long , o cus tkey : long , o o r d e r s t a t u s : chararray ,
o t o t a l p r i c e : double , o o rde rdate : chararray , o o r d e r p r i o r i t y :
chararray , o c l e r k : chararray , o s h i p p r i o r i t y : long , o comment :
chararray ) ;
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l i n e i t e m = load ’ $ input / l i n e i t e m . tb l ’ USING PigStorage ( ’ | ’ ) as (
l o r d e r k e y : long , l p a r t k e y : long , l suppkey : long , l l i nenumber
: long , l q u a n t i t y : double , l e x t e n d e d p r i c e : double , l d i s c o u n t :
double , l t a x : double , l r e t u r n f l a g : chararray , l l i n e s t a t u s :
chararray , l s h i p d a t e : chararray , l commitdate : chararray ,
l r e c e i p t d a t e : chararray , l s h i p p i n g s t r u c t : chararray ,
l sh ipmode : chararray , l comment : chararray ) ;

s u p p l i e r = load ’ $ input / s u p p l i e r . tb l ’ USING PigStorage ( ’ | ’ ) as (
s suppkey : long , s name : chararray , s a d d r e s s : chararray ,
s nat i onkey : int , s phone : chararray , s a c c t b a l : double ,
s comment : chararray ) ;

nat ion = load ’ $ input / nat ion . tb l ’ USING PigStorage ( ’ | ’ ) as (
n nat ionkey : int , n name : chararray , n reg ionkey : int , n comment
: chararray ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−
l i n e i t e m = foreach l i n e i t e m generate l suppkey , l o rde rkey ,

l r e c e i p t d a t e , l commitdate ;
o rde r s = fo r each orde r s generate o orderkey , o o r d e r s t a t u s ;
s u p p l i e r = fo r each s u p p l i e r generate s suppkey , s nat ionkey ,

s name ;

g l = group l i n e i t e m by l o r d e r k e y ;

L2 = f i l t e r g l by COUNT( org . apache . p ig . b u i l t i n . D i s t i n c t ( l i n e i t e m
. l suppkey ) )>1;

fL2 = fo reach L2{
t1 = f i l t e r l i n e i t e m by l r e c e i p t d a t e > l commitdate ;
generate group , t1 ;

}
fL3 = f i l t e r fL2 by COUNT( org . apache . p ig . b u i l t i n . D i s t i n c t ( $1 .

l suppkey ) ) == 1 ;

L3 = fo reach fL3 generate f l a t t e n ( $1 ) ;

−−−−−−−−−−−−−−−−−−−−−−−

fn = f i l t e r nat ion by n name == ’SAUDI ARABIA’ ;
f n s = j o i n s u p p l i e r by s nat ionkey , fn by n nat ionkey USING ’

r e p l i c a t e d ’ ;

f n s L3 = j o i n L3 by l suppkey , f n s by s suppkey ;
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f o = f i l t e r o rde r s by o o r d e r s t a t u s == ’F ’ ;
f n s L 3 f o = j o i n fn s L3 by l o rde rkey , f o by o orderkey ;

g r e s = group f n s L 3 f o by s name ;
s r e s = fo r each gr e s generate group as s name , COUNT( $1 ) as

numwait ;
o r e s = order s r e s by numwait desc , s name ;
l r e s = l i m i t o r e s 100 ;

DUMP l r e s ;

10.1.22 Q22

customer = load ’ $input / customer . tb l ’ USING PigStorage ( ’ | ’ ) as (
c cus tkey : long , c name : chararray , c addr e s s : chararray ,
c nat ionkey : int , c phone : chararray , c a c c t b a l : double ,
c mktsegment : chararray , c comment : chararray ) ;

o rde r s = load ’ $ input / orde r s . tb l ’ USING PigStorage ( ’ | ’ ) as (
o orderkey : long , o cus tkey : long , o o r d e r s t a t u s : chararray ,
o t o t a l p r i c e : double , o o rde rdate : chararray , o o r d e r p r i o r i t y :
chararray , o c l e r k : chararray , o s h i p p r i o r i t y : long , o comment :
chararray ) ;

c u s t o m e r f i l t e r = f i l t e r customer by c acc tba l >0.00 and
SUBSTRING( c phone , 0 , 2) MATCHES ’ 1 3 | 3 1 | 2 3 | 2 9 | 3 0 | 1 8 | 1 7 ’ ;

c u s t o m e r f i l t e r g r o u p = group c u s t o m e r f i l t e r a l l ;
a v g c u s t o m e r f i l t e r = fo r each c u s t o m e r f i l t e r g r o u p generate AVG

( c u s t o m e r f i l t e r . c a c c t b a l ) as a v g c a c c t b a l ;

c u s t o m e r s e c f i l t e r = f i l t e r customer by c a c c t b a l >
a v g c u s t o m e r f i l t e r . a v g c a c c t b a l and SUBSTRING( c phone , 0 ,
2) MATCHES ’ 1 3 | 3 1 | 2 3 | 2 9 | 3 0 | 1 8 | 1 7 ’ ;

c u s t o m e r o r d e r s l e f t = j o i n c u s t o m e r s e c f i l t e r by c cus tkey
l e f t , o rde r s by o custkey ;

c u s t o m e r t r d f i l t e r = f i l t e r c u s t o m e r o r d e r s l e f t by o custkey
i s n u l l ;

customer rows = fo reach c u s t o m e r t r d f i l t e r generate SUBSTRING(
c phone , 0 , 2) as cntrycode , c a c c t b a l ;

cu s tomer r e su l t g roup = group customer rows by cntrycode ;
c u s t o m e r r e s u l t = fo r each cus tomer r e su l t g roup generate group ,

COUNT( customer rows ) as numcust , SUM( customer rows . c a c c t b a l )
as t o t a c c t b a l ;
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c u s t o m e r r e s u l t i n o r d e r = order c u s t o m e r r e s u l t by group ;

DUMP c u s t o m e r r e s u l t i n o r d e r ;

10.2 Filter Queries

These are the queries that I used for testing the ratio of reduction after the conditions has
been applied.

10.2.1 filter1

f i l s u p p = FILTER s u p p l i e r BY ( s suppkey < 25 ∗ 20) OR
( s suppkey <= 65−20∗3 AND s suppkey >= 8∗9−70) OR
( s name < ’ abc ’ ) ;
group1 = GROUP f i l s u p p a l l ;
DUMP group1 ;

10.2.2 filter2

f i l = FILTER part BY p brand == ’ Brand#23’ AND
p conta ine r == ’MED BOX’ ;
group1 = GROUP f i l a l l ;
DUMP group1 ;

10.2.3 filter3

f i l = f i l t e r partsupp by ps suppkey == 5 ;
group1 = GROUP f i l a l l ;
DUMP group1 ;

10.2.4 filter4

f i l = f i l t e r partsupp by ps suppkey >= 5 ;
group1 = GROUP f i l ALL;
DUMP group1 ;
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10.2.5 filter5

f i l = f i l t e r partsupp by ps suppkey > 100 ;
group1 = GROUP f i l a l l ;
DUMP group1 ;

10.2.6 filter6

f i l = f i l t e r partsupp by ps suppkey > 500 ;
group1 = GROUP f i l a l l ;
DUMP group1 ;

10.2.7 filterNation

f i l = f i l t e r nat ion by n name == ’CANADA’ ;
group1 = GROUP f i l a l l ;
DUMP group1 ;
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