IMPERIAL COLLEGE LONDON

MASTER’S THESIS

MAJOR KEY &
Supervisor:
Author: Dr. Emil Luru
Preeya JOSHI Second Marker:
Anandha Gopalan

A thesis submitted in fulfillment of the requirements
for a Master’s in Computing

in the

Department of Computing

June 13, 2016

http://www.imperial.ic.ac.uk
http://doc.ic.ac.uk

ii

Abstract

When presented with a new application or internet connected device, in order to build
an accurate threat model you first need to understand the protocol it uses. However, as
encryption becomes more ubiquitous in the modern world, the protocols that
applications use to communicate are often tunnelled within encrypted channels. If a
security researcher wishes to analyse messages that an application receives, they must
tirst bypass this layer of encryption.

There are existing tools that are capable of assisting a security researcher in obtaining
cryptographic data from a running binary but whilst these tools are able to recover both
the input and key they are unable to automatically differentiate between the two.
Furthermore, the performance of these tools are far from optimal with large
instrumentation and analysis overheads.

This thesis presents MajorKey , a cross platform suite of tools that automates the
recovery of plaintext, key and ciphertext materials from applications using encrypted
protocols. We utilise a novel method of distinguishing between input, output and key
materials of cryptographic functions. This is achieved through performing statistical
analysis on multiple run time traces of the same program with different inputs.
Additionally, we present multiple performance enhancing techniques to produce
significant speedups in the processing of application traces.

MajorKey is evaluated against seven different encryption algorithms including the AES
competition finalist, RC6. The RC6 algorithm has been used in multiple real world
contexts including malware distributed by the NSA and has not been analysed before in
this context. Finally, we analyse MajorKey with a data communication application that
receives encrypted data from the network via sockets. The results of this thesis show
that it is possible to retrieve plaintexts and encryption keys in several use cases taken
from real applications, in addition to demonstrating performance improvement of upto
6.5x over existing state of the art tools.

Acknowledgements

I'would like to thank Dr. Emil Lupu, who came on board as my supervisor and saw
potential in my project. Furthermore, thank you to Daniele Sgandurra and Federico
Morini. The countless hours spent by them helping, proofing, critiquing and
encouraging me to perform to my best ability has been truly appreciated.

Lastly, thank you to DJ Khaled for being D] Khaled and motivation throughout.

Bless up &

1ii

Contents

Abstract

Acknowledgements

1 Introduction

1.1 Motivation e e e e e
1.1.1 Other applications for MajorKey
Botnets

Internetof Things
Ransomware

1.2 Main Contributions
1.3 ProjectOutline.

2 Background

2.1 Instrumentation
2.1.1 Dynamic vs Static Instrumentation

212 TaintAnalysis o

2.2 Common Cryptographic Algorithms
221 Symmetric Key Cryptography
OneTimePad

DES . . e e

AES . . e

RCO . . . e e

2.2.2 Public Private Key Cryptography

RSA . . e e

Elliptic Curve Cryptography

2.3 Related Work e
2.3.1 Recovering Decrypted Ciphertexts
Automatically Decrypting Network Traffic

ReFormat

Dispatcher
CipherXRay

2.3.2 C(lassifying an Encryption Algorithm
CipherXRay
Identification of Cryptographic Primitives in Binaries

Aligot

233 RecoveringtheKey
Playing Hide and Seek with Stored Keys
CipherXRay

234 Summary ...

e
=2y

(=0
i o
[=%3

B W WDNDNN P -

vi

3

Design and Architecture

3.1 Approachand Assumptions
32 DesignOverview e
3.3 Generating Instrumentation Trace
331 PIN ... e
332 Reducing TraceSize
3.4 Instruction Trace Format
3.5 Detecting LoopsinTrace
3.5.1 DetectingBasicBlocks
352 ControlFlowGraph
353 LoopDetection
Choosing a Loop Detection Algorithm
Tubella’s Loop Detection Algorithm
3.6 Detecting Cryptographic Loops and Recovering Data
3.6.1 Cryptographic Loop Detection
Bitwise and Arithmetic Operations
Entropy
3.6.2 Recovering CryptographicData
Memory Reconstruction 0 0L
Statistical Trace Analysis
Implementation
41 Overview e
42 MajorKey’sPinTool
4.3 MajorKey Python Framework
43.1 Python: Language of Choice
44 Loopfiltering
441 UserControllableKnobs
442 LiveDebuggingMode
443 MajorKey’s Keyfinder Tool
45 Optimization. e
45.1 Binary Instrumentation
45.2 Parallelising Parsing
453 Splitting Strategy L o o
454 MultiprocessingModule oo 0oL
455 PyPyUsage
Evaluation
5.1 Evaluation Environment 0 L.
52 Walk Through Example: RC6
5.3 Functionality and Performance
53.1 Speed Performance
54 Comparison withOtherTools
541 Results e
542 Speed Performance L.,
5.5 Case Study: RC6 Chat Application
551 Chat Application Overview
55.2 Generating an Instrumentation Trace
5.5.3 Running MajorKey 's AnalysisTool

554 ConcluSion i e e e

Conclusion
6.1 Contributions e e
6.2 Future Work e e

A DES Objdump output

=~

C
D

E

RC6 Control flow graph
Intermediate RC6 rounds
Case Study: RC6 Chat Application Setups

Case Study: RC6 Chat Application Outputs

Bibliography

vii

61
61
62

65

69

71

75

77

79

ix

List of Figures

1.1
2.1

3.1
3.2
3.3
34
3.5
3.6

4.1
4.2
4.3

5.1
52

B.1
B.2

D.1
D.2
D.3

MajorKey : Solution Approach 4
The Avalanche Effect [15] 14
MajorKey : Approach o L 20
Trace Analysis Breakdown 24
BasicBlocks Example o oo oo L 25
Relationship between Code and its CFG 27
Detecting Loops 28
Memory Address Sliding Windows 32
MajorKey Pipeline L. 36
Keyfinder Pipeline 40
MajorKey : Splitting Strategy o L. 43
Speed Performance of our AnalysisTool 54
RC6 Chat ApplicationSetup 57
Overview of entire CEG e 69
Closeupof CFGnodes 70
RC6 Chat ApplicationClient1. 75
RC6 Chat ApplicationClient2. 75
RC6 Chat Application Server 76

xi

List of Tables

21 XORTruthTable. 10
3.1 Size Comparison between Instructions and Basic Blocks 26
3.2 Instructions Identified as Bitwise Arithmetic Pperations 30
41 Instruction Analysis From Traces 42
42 PyPySpeedUps. e 44
51 Overview of Testing Applications 49
5.2 Parameter Size Overview for Testing Applications 50
5.3 Filter Performance Results for Testing Applications 50
5.4 Cryptographic Material Detection Results for Testing Applications 52
5.5 False Positives in Cryptographic Data for Testing Applications 52
5.6 Speed Performance of our Instrumentation Tool 53
5.7 Speed Performance of our AnalysisTool 54
5.8 OpenSSL DES-CBC Comparison 55
59 OpenSSL RC4-CBC Comparison 55
510 XOR Comparison i 55

5.11 Speed Performance Comparison 56

xiii

Listings

2.1
3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
4.1
4.2
4.3
5.1
52
53
54
55
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
E.1
E2

TaintExample L 8
Example Instructions with Addresses 21
PmapOutput 22
Objdump Outputfor DES 22
Example TraceOutput 23
Basic Block Detection Algorithm 25
RC5Decryption e 27
Sample Memory Accesses during an XOR ApplicationRun 31
MajorKey XOR Output Trace1 32
MajorKey XOR Output Trace2 33
MajorKey Usage 38
MajorKey Interactive DebugMode 38
MajorKey Keyfinder Output 39
RC6 Input Parameters 46
RC6 Instrumentation Command 46
How To Call MajorKey With the RC6 Trace 47
RC6 CryptographicOutput 47
RC6 Round Keys and Intermediate Ciphertext 47
RC6 Cryptographic Output Continued 48
RC6 Input Parameters 48
Keyfinder Directory: Iscommand 49
Keyfinder ToolOutput 49
RC6 Chat Application Inputsand Key 57
RC6 Chat Application Instrumentation Trace Command 58
RC6 Chat Application Initial Instrumentation Trace Line Count 58
RC6 Chat Application MajorKey Command 58
OutputforMessage1 59
Keyfinder Outputs 59
Output forMessageTwo 77
Output for Message Three 77

Chapter 1

Introduction

This thesis aims to automate recovering information from binaries handling data encod-
ing through binary instrumentation and trace analysis. It aims to recover the inputs,
including the cryptographic key and plaintext messages, and the outputs of the said pro-
gram.

1.1 Motivation

Over the past two decades, technology has increasingly shaped our daily lives. Accord-
ing to the International Telecommunication Union, over 40% of the world now have ac-
cess to Internet enabled devices [28]. A fact which is represented by a shift of human
communication to media such as Facebook, Snapchat and Whatsapp.

For these applications to talk to each other across the Internet they need to agree to send
information in a specified format and order, known as a protocol. Protocols are used
to transmit data across networks, and between machines. Some are well-defined and
open source: for these we are able to check that the protocols work as intended, and it
easier for security researchers to discover vulnerabilities. Others may have incomplete or
out of date documentation or are closed source making their assessment from a security
standpoint harder.

Security researchers apply protocol reverse engineering techniques to both open and closed
sourced protocols to gain a better understanding of how they work, and to ensure they
are secure. They work by analysing the message structure that define how applications
‘talk’ to each other.

However, encrypting data is now more important than ever, as every information packet
sent over the Internet can be read by any party that receives it whilst it’s in transit. As a
result, protocol encryption is becoming increasingly more common and due to it, inter-
cepted network traffic is rendered as ‘garbage’ to prying eyes.

In order to continue analysing these protocols and applications to detect vulnerabilities,
even when data is encrypted, we need the ability to read the plaintext messages being
sent. The target application also requires the same information, and in order for it to
correctly process the data it first must decrypt the ciphertext it receives. As we know the
application will be able to decrypt the ciphertext it receives, a method for us to bypass
encryption and recover the plaintext is to monitor the application as it runs. Then we
can obtain the plaintext from the applications” memory when it has been decrypted and

2 Chapter 1. Introduction

reverse engineering methods can be applied as before on the plaintext. Furthermore, by
monitoring the application as it runs means we can also recover the cryptographic key
as it will be stored in a memory buffer that belongs to the application that will be read
from during the run of the application. With knowledge of this not only will we able to
decrypt data to understand the protocol being used or what messages are being sent, but
be able to write messages using the key recovered.

Current methods of reverse engineering protocols are divided into two categories; network-
based and host-based. Network-based methods sniff the traffic on the wire as it is in
transit between two computers. However, as encrypted messages will appear as random
data on the wire, it is not possible to use networked based methods to reverse engineer
protocols with encryption. On the other hand, host-based protocol reverse engineering
methods analyse application messages on a target machine. This allows for the mem-
ory holding the program data and the instructions run by the program to be accessed,
something that is not possible with network-based reverse engineering. With encrypted
data, however, they run in to a similar problem to that of network-based methods, as the
incoming data to the application will appear as random.

This thesis monitors running applications to achieve its objectives and thus falls in to the
category of host-based methods. It can be thought of a precursor step to protocol reverse
engineering as it recovers the decrypted message that protocol reverse engineering meth-
ods work with. Once those plaintexts have been acquired, protocol reverse engineering
can continue as before.

1.1.1 Other applications for MajorKey
Botnets

Botnets are an example of malicious software that use encrypted protocols that we want
to analyse. Attackers have been known to infect computers with malware giving them
remote control of a users machine without the user’s knowledge. A networked group of
these machines is known as a botnet.

Modern botnets have been seen communicating using undocumented encrypted proto-
cols to communicate to their botnet masters [5]. This is a problem because an attacker
can use these machines to illegally profit, cause harm to individuals and damage to com-
panies. If we could break the encryption on the protocol, it would enable us to carry out
protocol reverse engineering and communicate with the botnet. This will allow for better
understanding of the protocol including how infected machines within the botnet com-
municate and how they exchange messages with the botnet master. With this one can
disrupt their operations leading to taking down the botnet, re-purposing it or catching
the owner.

Internet of Things

Today it is common for devices such as fridges, home central heating systems and televi-
sions to be connect to the Internet. These devices reveal personal details about us, such

1.2. Main Contributions 3

as when we wake up, watch TV or the kinds of foods we stock in our fridge. Ideally this
information should remain private to us even though we have our devices connected to
the Internet of Things, IoT, so we can turn up the heating as we head home from work.

With many of these Internet enabled IoT devices communicating over HTTPS, an en-
crypted protocol that sits on top of HTTP, using closed source protocols, it is harder for
researchers to assess how secure they are, conversely how easy it is for an attacker to
hijack the protocol and take ownership of a target’s house.

Just like Botnets, these IoT devices will be running applications that receive encrypted
data we send, such as a message to turn up the heating, and then they will decrypt the
data so they can act accordingly. By monitoring the application as it decrypts the mes-
sage we can recover the plain text and then apply standard protocol reverse engineering
techniques to assess its security [13].

Ransomware

A further motivation arises from malware: most current malware implements advanced
crypto-operations. Ransomware, for example, encrypts user files rendering them inac-
cessible until the owner pays a ransom for the decryption key. TorrentLocker [21] is a
current iteration, first appearing in December 2014. It attacks a Windows user’s files and
demands a sum of one Bitcoin, currently £317, to decrypt them. The files are encrypted
with the symmetric block cipher AES. The AES keys for the files are then encrypted with
the asymmetric block cipher RSA making the files unrecoverable until the ransom has
been paid. After that, the attackers provide the corresponding RSA private key to enable
decryption of the AES symmetric key. If one had the ability to recover the AES key from
the binary, one could bypass the need to pay the ransom as we would know the AES key
and not need it to be decrypted.

To help address the aforementioned problems, this thesis aims to analyse programs en-
crypting/decrypting data and recover the inputs and outputs of the encoding operation.

1.2 Main Contributions

This thesis explores a novel method of recovering cryptographic materials from a target
application, and it is evaluated against existing solutions.

Figure 1.1 gives a breakdown of the proposed approach. The figure is broken up to into
5 main steps.

To achieve step one, binary instrumentation, we first develop a tool to instrument a
binary. Binary instrumentation allows us to analyse the behavior of the target binary
through the injection of instrumentation code which allows us to monitor and record
what the binary is doing. This provides us with the ability to generate a trace containing
memory access details and the instructions called as shown in step two.

4 Chapter 1. Introduction

Instrument w Filter and parse Tr
- mov 0x41, r12 ace
binary write 0x66704 = 3 trace ' Analysis
izr3 read Ox4.

Stack trace

Stack trace

FIGURE 1.1: MajorKey : Solution Approach

The trace is then parsed, step three, by a tool that handles recovering cryptographic ma-
terials. Here we implement a parallelised parsing method to speed up the overall time
required for analysis relative to current tool analysis times.

Then our method analyses the trace output to detect loops, step five. As cryptographic
operations are known to occur in tight loops we employ loop filtration techniques such
as detecting loops with a high number of bitwise arithmetic operations, common to cryp-
tographic code instructions and not prevalent in general application instructions.

Furthermore, we also take a novel approach to recovering cryptographic material by sta-
tistically correlating multiple execution traces for the same the application to increase the
result’s confidence. This approach allows for increased confidence in the key being used
as it will be the same across runs, and for inputs and outputs as one can verify relation-
ships between the input, keys and output.

Overall, this thesis makes the following contributions:

e An architecture to recover cryptographic material from executable binaries.
¢ A Pintool to generate traces for target binaries.
e A Python tool that analyses said traces to recover cryptographic material.

e A new technique that aids in narrowing down potentially relevant cryptographic
material.

e A parallelised approach speed up in trace parse and analysis time.

e The recovery of cryptographic material from applications carrying out XOR, DES,
RC4 and RC6 operations.

e Recovery of cryptographic material for the RC6 encrpytion algorithm, which has
not been done before.

1.3 Project Outline

This thesis presents its solution in 6 chapters.

The next chapter, Chapter 2, details related work in relative surrounding areas, alongside
papers that have directly looked at the problem. Furthermore the background looks into

1.3. Project Outline 5

areas of interest that directly related to the goal of this thesis, such as instrumentation
analysis and cryptographic algorithms.

Chapter 3 gives an outline of our proposed methods and it explains how key design
details function.

In Chapter 4 the implementation of MajorKey is presented, and choice of tooling is anal-
ysed and discussed.

Chapter 5 provides an evaluation of our tool. The results of analysis with different pro-
grams are presented alongside an evaluation of our tool against other tools.

Finally in Chapter 6 we conclude the goals achieved and discuss future work.

Chapter 2

Background

As this thesis will produce a host-based tool, we begin by looking at strategies that enable
instrumentation of the target application in Chapter 2.1. Within that chapter we cover
the trace filtering method and taint analysis. To aid in key recovery, an understanding of
how different cryptographic algorithms work is needed. Cryptographic algorithms fall
into two main types, symmetric key and public-private, discussed in Sections 2.2.1 and
2.2.2 respectively. These are used to guide our loop filtering techniques in Section 3.6 to
find cryptographic inputs and plaintexts. Finally, Section 2.3 looks at related works to
this thesis, here we assess what they deliver, their strengths and where they have room
for development.

2.1 Instrumentation

In order to recover cryptographic material used in a target application, we first must un-
derstand what the application is doing when it is executed. One method of achieving this
is to monitor the running binary: this is done through a process known as instrumentation.

Instrumentation allows us to create a trace from the running binary. Most importantly,
the trace it generates will contain the memory locations the application read from and
wrote to, along with the values it read and wrote, and a list of every instruction called.

In our context, instrumentation is needed to recover cryptographic information as the
application contains the necessary keys to decrypt the encrypted information being sent
to the application. At some point whilst the application is running, the application will
need to decrypt the data to process it. When it does, we can read the key in from program
memory where the application will have stored it after decrypting it and use it to decrypt
the input message and write the plaintext back to memory. All of this will be logged in
the trace generated from instrumentation.

2.1.1 Dynamic vs Static Instrumentation

There are two different approaches to instrumenting a binary program, static instrumen-
tation, and dynamic instrumentation. Static instrumentation happens before a program
is run on the binary. An advantage of this is analysis is not dependent on the input and

8 Chapter 2. Background

all paths of the code can be checked, this provides full coverage. Static instrumentation
rewrites a binary before it is executed and does not require another process at runtime to
instrument the binary being executed. This means that the code can run faster as the only
overhead will be from injected code. However the same level of detail dynamic analysis
provides due to a lack of run time information that is provided in dynamic instrumenta-
tion.

During dynamic instrumentation, instrumentation occurs as the binary is being executed.
This normally happens in a just in time compilation environment which achieves the goal
by providing the developer with API methods to notify of when methods are being exe-
cuted. These methods can then be probed at runtime during execution. However as the
trace generated is now dependent on the run of an application and the inputs provided,
full coverage of an application is not achieved. Furthermore, the need for an external pro-
cess to be attached for run time instrumentation makes the original application slower.
In order to determine what the cryptographic data during an applications run we need
to see what data was read, written and instructions executed during the run of an ap-
plication. To do this we need to use dynamic instrumentation. The rest of this thesis
when talking about instrumentation will refer to dynamic instrumentation unless explic-
itly stated.

2.1.2 Taint Analysis

Instrumenting a binary usually generates large traces. As an example, some of the GPG
encryption traces generated for the experimental evaluation were in the order of 1.8GB.
Taint analysis is a method of reducing the trace file size, whilst ensuring that the trace
will contain relevant information. It reduces the size of the trace, by instrumenting a
program with respect to given input arguments, taint sources. Instead of outputting every
instruction called, memory reads and writes, it only logs instructions, reads and writes
that are related to those input arguments.

Initial taint sources can be user input, network traffic or user file. When instrumentation
starts, the locations of the taint sources are marked. If an instruction is made using one
of those marked locations, then taint will spread to the output of that instruction, and any
further instructions that use those outputs. Similarly, if a tainted location is read from, the
register that value is written to is further marked as tainted. On the other hand, when a
tainted memory address or register is written to, then that location is removed from the
set of tainted data.

READ rl [0x0000fejlkd] //read memory content into Rl
ADD r2 rl //add R1 to the value in R2
3 MOV rl 0x05 //move the value 0x05 to Rl

LISTING 2.1: Taint Example

Listing 2.1 aids in the demonstration of the concept. In this example assuming memory
address 0x0000fejlkd was a taint source, the READ on line 1 will mark register R1 as
tainted. Then the ADD operation, line 2, will propagate the taint to R2. Finally, the MOV
operation, line 3, will remove R1 as a taint source and overwrite its value with 0x05. At
the end only R2 will remain tainted.

2.2. Common Cryptographic Algorithms 9

A benefit of using taint analysis with instrumentation is a reduction in the size of the
trace generated [25]. Through a reduction in trace size, parsing and analysing become
faster. Furthermore, fewer false positives will be found when searching for potential
cryptographic data as the trace will only contain reads and writes affected by the taint
sources.

2.2 Common Cryptographic Algorithms

Cryptographic algorithms involve taking in a plaintext and a key, applying an encoding
function using the key to the plaintext, and returning an encrypted message. Decrypting,
is the opposite, involving an encrypted message, a key, and returning a plaintext.

The encoding and decoding function can often be the same, or one is easy to obtain if
the other is held. Such ciphers are referred to as symmetric ciphers, discussed in Section
2.2.1. Asymmetric ciphers involve two different keys. The idea is to allow one key to be
publically broadcasted so parties can encrypt messages using it, which only the holder
of the corresponding private key can decrypt. With these ciphers one key can be used for
encoding or signing and the other for decoding or verifying a message as discussed in
Section 2.2.2.

This thesis will be looking at programs that receive encrypted data which they subse-
quently have to decrypt in order to process the messages they have just received. As
this work aims to recover the key used by the cipher this section lightly touches upon
common cryptographic algorithms that are used today. A better understanding of how
different algorithms use keys will allow us to recover them more efficiently.

2.2.1 Symmetric Key Cryptography

Symmetric key algorithms use the same cryptographic keys for both encryption of plain-
text and decryption of ciphertext. The keys may be identical or there may be a simple
transformation to go between the two keys.

An advantage of that is only one key needs to be remembered; however anyone who
manages to obtain this key will have the ability to encrypt and decrypt data. The ability
to encrypt data allows a third party to impersonate the person on the other end of com-
munication. As a holder of the key can also decrypt data, they will be able to read any
message sent, that was encrypted with that key.

One Time Pad

The simplest example of a symmetric key algorithm in the One Time Pad. The One Time
Pad is the bitwise exclusive disjunction of a plaintext and a key. XOR works as shown in
Table 2.1. If the two input bits are the same the output is a 1, otherwise the outputis a 0.

10 Chapter 2. Background

TABLE 2.1: XOR Truth Table

AXORB
0

A B
0 O
0 1 1
1 0 1
1 1 0

When XOR is used in cryptographic operations, the key size is often the same as the
plaintext, this is known as a One Time Pad. Detecting the key used in a one time pad is
impossible, as it’s an example of perfect encryption. However creating a true one time
pad is hard because new key material for each message is required, and it has to be as
long as each message. Therefore most algorithms ‘cheat’ and use a smaller input key to
generate a pseudo random key of message length. These can be detect and is what is
used in most encryption algorithms today.

DES

DES, the Data Encryption Standard, is a block cipher that was used in a wide variety of
programs; today it is more of a legacy algorithm but still used [9].

Key facts about DES include:

¢ Fixed key size of 56 bits.
e Block size of 64 bits.

e 16 rounds per encryption.

These facts can be used to help narrow down our search space when searching for key
material within an application using DES.

AES

DES was succeed by AES, the Advanced Encryption Standard [8]. It is also a block cipher
that uses the same key for encryption and decryption. It supports three key sizes, 128,
192, and 256 bits, and uses a block size of 128 bits and usually involves applying 10, 12
or 14 rounds of the encryption function, depending on the key size used.

RCe6

RC6 was one of five finalist for AES, the Advanced Encryption Standard and now is a
proprietary algorithm patended by RSA Security [22]. RC6 supports three key sizes, 128,

2.3. Related Work 11

192, and 256 bits, alongside that it used a block size of 128 bits. 10, 12 or 14 rounds of the
encryption function are usually applied and this is dependant on the key size used with
more rounds being used, in general, for smaller key sizes.

2.2.2 Public Private Key Cryptography

Public-key cryptography is a type of asymmetric cryptography. It involves two keys, a
public key and a private key. The public key is usually widely disseminated and used
to encrypt data that can only be read by the holder of the private key. Or, to verify a
message that has been signed by the holder of the private key.

RSA

RSA is a widely use public-key algorithm used today [23]. Key sizes for the RSA private
key and the public key modulus are usually of length 1024, 2048, or 4096. However today
1024 bit keys are not recommended as they are considered too short and easy to find with
enough computing power.

Elliptic Curve Cryptography

Due to large RSA key sizes needed to keep RSA encryption secure, a current alternative
is Elliptic Curve Cryptography.

ECC has the advantage of providing similar levels of security with smaller key sizes. An
ECC algorithm such as ECDSA, Elliptic Curve Digital Signature Algorithm, with a key
size of 256 bits should provide comparable security to a 3072 bit RSA public key [10].

The security of ECDSA, and ECC algorithms, comes from the algebraic structure of ellip-
tic curves over finite fields. The the intractability of the problem makes it extremely hard
for an attacker to recover an input without knowledge of the encryption key.

However, this same fact makes it easier to detect during instrumentation as an applica-
tion using an ECC algorithm will have a high proportion of bitwise arithmetic operations
when encryption/decryption is occurring. A feature that will be detectable in the trace.

2.3 Related Work

The related work has been split up into three main areas of interest. Section 2.3.1 looks at
key works that attempt to recover decrypted ciphertexts. This is important as this thesis
aims to do the same, the recovery of the plain text is the data that the application will act
on. Section 2.3.2 touches on different approaches to classifying the encryption algorithm
being used, and their strengths and weaknesses. Through knowledge of the algorithm
being used, we can target our filtering methods accordingly to aid in recovery of the

12 Chapter 2. Background

cryptographic materials. Finally, Section 2.3.3 looks at current cutting edge techniques
used to recover the encryption key being used.

2.3.1 Recovering Decrypted Ciphertexts

This section will look at various current works that look into decrypting cipher texts.
All the approaches build on top of host-based automatic protocol reverse engineering
techniques.

Automatically Decrypting Network Traffic

To the best of our knowledge, this is the first tool for recovering plain texts from an
application that received encrypted input was proposed by Noe Lutz [18]. His thesis,
"Towards Revealing Attackers Intent by Automatically Decrypting Network Traffic", pro-
posed generic methods to locate when the input get decrypted and where in memory it
is being stored. Lutz’s solution parses the trace to extract details such as memory access
patterns and the control flow, which show loops within the execution and function calls.

Then the extracted data is searched for features indicative of decryption. The thesis’s pro-
posed solution is to search for information entropy decreasing loops that use a relatively
high number of integer arithmetic operations. As encryption functions are known to use
tight arithmetic loops to increase security, a feature uncommon to normal program code,
we can use that to enable plaintext recovery.

Lastly it uses taint analysis to follow instructions affected by the initial input e.g. en-
crypted messages to the application. An advantage of using taint analysis in his tool is it
generates a smaller search space; however, if under tainting occurs, not all data related to
the initial input will be caught, and vital buffers may not be marked as tainted causing
his program to ignore it.

The tool was created using the instrumentation tool, Valgrind, making it native to Unix.
Consequently, testing Windows malware is harder, as Wine is required and the malware
may not run correctly. This thesis acknowledges this limitation and has taken it into
account, see Section 3.3.2.

ReFormat

ReFormat [31] expands on a previous tool by the same group called AutoFormat [16], to
allow for automatic reverse engineering of encrypted messages. Their approach follows
assumptions made by Lutz and this thesis in that an encrypted message will go through a
decryption phase and then normal protocol processing. Furthermore, that the two phases
will be differentiable as the decryption phase will use a significantly larger number of
arithmetic and bitwise operations.

2.3. Related Work 13

ReFormat first identifies the decryption phase, and the transition point between it and
normal protocol processing. This is achieved through analysing with respect to a set
threshold, the cumulative percentage of arithmetic and bitwise instructions. The transi-
tion point is declared as the point between the instruction with the maximum cumulative
percentage and the one with the minimum.

Similar to Lutzs” work, taint analysis is used to reduce the search space of potential
buffers. They use taint analysis differently though with Reformat marking all buffers at
the beginning of the decryption phase as tainted while Lutz only considers those directly
affected by encrypted inputs. As the two tools have been tested on different protocols it
is hard to directly compare the advantages of the different approaches. Lutz successfully
recovers plaintexts for OpenSSL AES, Blowfish and Twofish whilst ReFormat focuses its
evaluation on protocols and recover data for HTTPS, IRC, MIME and an unknown pro-
tocol used by the malware Agobot.

Lutz’s work and ReFormat report that the decryption phase and the normal protocol
processing phase will be differentiable and use it as a foundation for building their tools.

Dispatcher

Bitblaze released Dispatcher, a tool that differs from the aforementioned as it is not lim-
ited to protocols where there is a boundary between decryption and protocol processing

[6].

Dispatcher is interesting to this thesis as it does not rely on taint analysis. Instead, it runs
over the execution trace and calculates the ratio between arithmetic and bitwise opera-
tions for each function in the trace. It identifies any function above a certain threshold as
an encoding function. Then it calculates the buffers holding unencrypted data by com-
puting the write set for the decryption routine.

Dispatcher combines Bitblaze’s method of identifying cryptographic thresholds with Re-
Format’s notion of a phase difference between decryption and normal protocol process-
ing to locate the outputs of decryption and, in turn cryptographic loops.

CipherXRay

CipherXRay is the most recent work that looks into decrypting messages [15]. The main
aims of CipherXRay is to recover encrypted data, identify the cryptographic operations
used and recover all transient secrets such as keys: the latter parts are discussed in Sec-
tions 2.3.2 and 2.3.3 respectively.

Unlike previous works, CipherXRay takes a novel approach and instead of instruction
profiling the execution trace it searches for evidence of the avalanche effect [32]. The
avalanche effect of cryptographic functions states that a one bit change in the input results
should result in an over 50% change in the output ciphertext.

14 Chapter 2. Background

O) [A® O) (O
o e O __—-|®
o Cryptographic Cryptographic |
O <@ O_/},’f' | ‘@
O ~@ o O
O _J « O o _ @
Input Buffer Output Buffer Input Buffer Output Buffer
(a) One bit change in the input (b) Another bit change in the input

FIGURE 2.1: The Avalanche Effect [15]

CipherXRay first uses taint analysis to narrow down candidate buffers and then searches
for the avalanche effects between two sets of contiguous buffers. It encodes the avalanche
effect as shown in (a) and (b) in Figure 2.1. The one bit input change goes on to cause 50%
of the output bits to change. Using this they show that if a byte were in the encrypted
input it’s effect would be seen in nearly all the output. Once the avalanche effect has
been detected, the decrypted data can be retrieved from the buffers at the other end of
the avalanche effect.

CipherXRay has the advantage of working on applications with multiple rounds of en-
cryption like the previous tool, Dispatcher. Furthermore, it has the potential to work on
obfuscated binaries and was successfully tested on a packed version of Stuxnet [14].

CipherXRay successfully recovers cryptographic data for Blowfish, AES and SHA-1 us-
ing the avalanche effect. This thesis differs from CipherXRay as it does not use the
avalanche effect to locate inputs and outputs as the avalanche effect has weaknesses
when analysing stream ciphers. Each input data bit to a stream cipher only affects one
output data bit, therefore does not produce the avalanche effect. As a result we build
upon aforementioned tools and uses a novel technique involving multiple execution
traces from the same program, discussed further in Chapter 3.6.2.

2.3.2 Classifying an Encryption Algorithm

The classification of encryption algorithms has importance in the field of security, as
knowledge of the type of algorithm being used allows one to find exploits for said al-
gorithm. Through this, an adversary can either listen in to communication or go further
and impersonate a party involved in communication or forge a document.

We will look at various signature-based methods that currently exist and analyse the
weaknesses and strengths of the approaches. It is useful to this work as different cryp-
tographic operations use keys in different ways, and knowledge of which operation is
being used will help us locate the key being used.

2.3. Related Work 15

CipherXRay

As mentioned above, CipherXRay uses the avalanche effect to find plaintexts. Simi-
larly to classify different types of encryptions, it looks at the signature exhibited by the
avalanche effect, as it is manifested differently by different algorithms.

An example of one of heuristics it uses to detect encryption methods is its hash detection.
If the output of an encoding operation is smaller than the input then it knows operation
is not a cipher but in fact a hash. Furthermore, if the encoding operation output is of a
fixed size for inputs of different sizes then it’s probably a hash. It then confirms this using
the avalanche effect, as any input byte will affect all output bytes.

A fallback of the tool is its inability to detect stream ciphers. This is as stream ciphers
will not show an avalanche effect because any byte of the stream will only affect one
corresponding byte in the output. This thesis has taken this in to account and opted for a
strategy that will not prevent stream ciphers from being detected. This is demonstrated
in our Chapter 5.3 where we evaluate our tool on an XOR cipher.

Identification of Cryptographic Primitives in Binaries

Grobert et al’s approach also identifies cryptographic primitives using dynamic analysis
[12]. This means that they analyse the application in question by generating a trace of the
application executing actual data, in this case the encrypted text being passed into the
program. In their paper they present several techniques which we will evaluate.

Their work builds on top of observations detected by Lutz on unique attributes of cryp-
tographic functions, mentioned in Section 2.3.1. Using that as foundation they propose
the following heuristic based identification methods:

e Chains heuristic which instruction sequences are compared against a set of existing
patterns. This involves using a data set containing known signatures and patterns
from encryption algorithms, and then looking for those patterns in the trace being
analysed.

e Mnemonic-Const heuristic which extends Chains and pattern matches on instruc-
tions and static constants. As different cryptographic methods use unique con-
stants, e.g. every MD5 implementation they tested contained ROL 0x7 and ROL
0xC, testing for these signature instructions is a good indicator of the instruction
being part of an encryption function, if they are found.

e Verifier heuristic which identifies relationships between the input and output of a
cryptographic loop. With knowledge of the plaintext, key and candidate cipher-
texts, the inputs are run through a reference implementation of the algorithm to see
if they match. This provides the assertion that the correct data has been selected,
and allows for selection of the correct data if multiple potential inputs and outputs
have been detected.

16 Chapter 2. Background

We note the main limitation of pattern-based methods, including the ones from Grobert
et al.’s paper is if the cryptographic algorithm is not public, and in the pattern database
then it will not be identifiable. Furthermore unlike CipherXRay, it is unable to recognize
algorithms that used multiple different encryption operations.

Aligot

Aligot looks at identifying cryptographic operations in obfuscated programs [7]. Al-
though this work will not look at obfuscated programs the approaches taken are novel
and of interest to this thesis. Simply Aligot compares the I/O parameters of operations to
known cryptographic functions to determine what algorithm is being used. The authors
observe that a single I/O pair is enough to identify most cryptographic operations.

It then uses dynamic analysis with control flow analysis to identify cryptographic loops
and its input and outputs. It then attempts to find a loop in the original program that
returns the same output as a reference algorithm, in their database, for some input. If
they find a match, then they can successfully classify the algorithm. The authors noticed
that the longest task in their analysis was loop detection, and it was not relative to the
execution trace size. Recognising this as a disadvantage, our work has taken advantage
of spacial locality of instructions and has parallelised the loop detection process as dis-
cussed in Section 4.5.2.

2.3.3 Recovering the Key

The task of recovering the key used in cryptographic operations has been mainly looked
at a static analysis problem. These tools require keys to be stored in plaintext form in a

binary, and are less effective against applications that encrypt keys or generate them on
the fly.

In this section, we will discuss exsisting static analysis methods, and evaluate their strengths
and weaknesses. We will also look at how CipherXRay retrieves keys, as it approaches
the problem with dynamic analysis and can recover encrypted and transient keys.

Our research has shown that CipherXRay is the most versatile at recovering the keys.
This is due to it being a generic algorithm as opposed to being tied to specific crypto-
graphic implementations. However it cannot identify keys that are not stored in contigu-
ous buffers.

Playing Hide and Seek with Stored Keys

Static approaches to finding keys have been looked at in various contexts. Shamir and
Someran try to identify cryptographic keys in large amounts of other data [26]. Although
this is not directly related to this work, as they look at static binaries, we also play hide
and seek for the key under mounds of other accessed data.

2.3. Related Work 17

One method relevant to this work is identification of high entropy region. Their paper
does this through visual analysis, whereas if we were to adopt this approach we would
encode the definition of a high entropy region look for that. Looking for a high entropy
region works as cryptographic keys are random strings that often contain more infor-
mation than the average plaintext. This method only works in the context of a binary
not being obfuscated, as obfuscation will increase entropy. With an increase in average
entropy, keys are less likely to stand out and will be harder to recognise.

CipherXRay

Once the input, output buffers and the cryptographic operation have been identified, the
first task involves identifying if a key was used. It identifies keys as they will exhibit the
avalanche effect, discussed in Section 2.3.1, on the output of the function. However the
main task faced is isolating the key from other sources that also exhibit the avalanche
effect on the data.

Other sources include initialisation vectors for the cryptographic operations, static data
used by operations, e.g. S-Box in AES and intermediate results that are not the output
data. To find the key used, and isolate it from potential noise sources, it combines the
avalanche effect pattern with data liveliness analysis. As the key, or a derivative of the
key, is needed during every round of encryption, data liveliness analysis will detect the
key or round key’s usage. This will allow us to differentiate between it from other sources
such as the initialisation vector which will only exhibit the avalanche effect on the data
in the first round of encryption.

Using data liveliness it can distinguish the key from initialisation vector, or other data
inputs to cryptographic operations as the data will differ every block, whereas the key
will be used on every block.

It differentiates the key from Staticc data used in cryptographic operations using the
knowledge that a key would affect the whole output, whereas static data usually im-
pacts a small amount. This approach is different to other methods which identify similar
sources using signature detection. As they often involve constants that are key to the
cryptographic functions as is the case with S-Boxes.

Overall CipherXRay’s approach to key finding provides a smart insight in that the same

key will be used in multiple rounds of a cryptographic operation making it easier to
identify.

2.3.4 Summary

To summarise, our main related tools work as follow:

e CipherXRay: Uses the avalanche affect to detect the difference between the input
and the output of a loop.

e Lutz: Identifies cryptopgraphic loops those with decreasing entropy.

18 Chapter 2. Background

e ReFormat: Uses cumulative bitwise and arithmetic operations to detect the bound-
ary between encryption and normal protocol processing.

e Dispatcher: Identifies encoding functions as those containing more than a thresh-
old number of bitwise and arithmetic operations

All of the above tools are able to recover cryptographic keys, inputs and outputs. The
advantage of CipherXRay is it’s highly accurate for block ciphers but does not work with
stream ciphers as the avalanche effect cannot be detected. Lutz method does not work
with obfuscated binaries and is not cross-platform which means detecting cryptographic
data on Windows binaries is harder as a Windows emulator is required. An advantage
of ReFormat is that it has been tested and proven to work with encrypted protocols,
E.G. HTTPS whereas the others have been mainly tested with encryption algorithms in
simplistic applications and one larger case study.

These works lack in failing to identify the difference between the key and the input
passed into the encryption algorithm. When a key is used multiple times, being able
to differentiate between the two can aid in reovering futher pairs of inputs and outputs
as the key will exhibit the same effect on different pairs. As previous works do not anal-
yse more than one input to an application they cannot use multiple traces to increase the
confidence of their results, or distinguish the key from the input.

19

Chapter 3

Design and Architecture

3.1 Approach and Assumptions

Our goal is to recover information not just for a specific application or encryption al-
gorithm, but for a wide range of applications implementing cryptographic algorithms.
More specifically, we want to recover plaintexts for any encrypted message sent to an ap-
plication using XOR, DES, AES, RC4 and RC6 encryption. Furthermore, we would like
to recover the decryption key used by the application to recover the information.

In doing so we make certain assumptions about the target binaries so we can direct our
filtering and analysis according]ly.

The first, as observed by Lutz, is that decryption operations are likely to occur in tight
loops [18]. An example of this is block ciphers, discussed in Section 2.2.1, where there is
a loop that runs over the input buffer to decrypt the input block by block.

Secondly, in order to recover the keys and inputs, this thesis looks for the high ratio
of arithmetic loops and as such we assume there is a quantitative difference between
the decryption phase and the normal protocol processing phase. This holds for crypto-
graphically secure algorithms as their security is derived through number theory which
involves a combination of repeated applications of bitwise and arithmetic operations.

Finally, we assume that we can run the application in question and that it has not been
obfuscated or packed. A key assumption made is that any inputs and the output of the
cryptographic function each reside in continuous memory buffers.

A summary of key assumptions and observations made:

e Cryptographic operations are highly likely to occur in loops.

e The decryption process contains considerably more arithmetic and bitwise opera-
tions than normal protocol processing.

e The application being monitored has not been obfuscated to avoid dynamic analy-
sis.

20 Chapter 3. Design and Architecture

3.2 Design Overview

MajorKey is an end-to-end suite of tools to provide the ability to recover cryptographic
data from programs that encrypt messages. The problem can be broken up into the fol-
lowing flow as shown in Figure 3.1.

1 2 3 4 5

Instrument \/\ Filter and parse Detect
; Detect loops i
"

Stack trace

FIGURE 3.1: MajorKey : Approach

As shown at point one in Figure 3.1 the binary is first instrumented. Instrumenting the
binary will allow us to monitor the item being instrumented as it runs and generate an
instruction trace. The binary passed into the instrumentation tool will be the application
of interest that carries out the encryption we are trying to detect.

The analysis part of our tool can accept traces generated by multiple software. We choose
to use Pin [3] to instrument binaries as it is a cross platform framework. We discuss this
further in Section 3.3. Once the target binary has been instrumented, an instruction trace
is produced to produce containing information about memory reads and writes, and
instructions called by the program. This is depicted at point two in the figure and is
explained further in Section 3.4.

The trace is then filtered and parsed, point three, into an observable, analysable format.
This involves reading the trace into memory and structuring the data so it can be anal-
ysed. The trace is then processed in step four to detect potential loops containing cryp-
tographic operations, this is expanded upon in Section 3.5. Finally in step five the loops
are analysed and filtered, to detect and recover the cryptographic material. Such filtering
processes include looking for loops with a high number of bitwise arithmetic operations,
e.g xor usually found in cryptographic functions. Our methods are further explained in
Section 3.6.

3.3 Generating Instrumentation Trace

There are already many existing binary instrumentation frameworks to analyse applica-
tion results. Our tool is capable of working with any of them, as long as the trace gen-
erated by that framework follows the format described in 3.4. MajorKey has been tested
with applications instrumented using the dynamic binary instrumentation framework,
Pin [3].

3.3. Generating Instrumentation Trace 21

3.3.1 PIN

Pin is a dynamic binary instrumentation framework. It instruments code in a just-in-time
fashion as it runs without the need to recompile it. We chose to use Pin due to it being
multi-platform: it is able to run on Windows, Linux and Mac OS. Furthermore it can be
used to instrument all the user level code of an application.

Using the Pin AP, one can create Pintools that allow a greater understanding of the ap-
plication being instrumented. Some of its relevant capabilities to MajorKey are:

e Replace application functions: this is advantageous because if the program makes
a call to a malicious function, which may cause harm to the machine running the
Pintool, one can skip over it.

e Examine every application instruction executed by the program

¢ Insert your own functions that can be called each time an instruction is executed or
a specific type of instruction is called.

e Track function calls made by the application, and examine arguments, such as val-
ues being written to memory addresses.

3.3.2 Reducing Trace Size

Instrumenting an application can often produce very large output traces. As traces grow
in size, the time required to parse and analyse them increases and as such our tool takes
longer to run overall. An example would be traces generated by GnuPG applications,
whose traces are over 1.8 GB. This section explains the methods used to reduce the trace
size generated by our tool without compromising the quality of our results.

We apply a preprocessing method that identifies regions of memory that contain relevant
instructions and creates a reduced trace by only including instructions from that region.
In the traces we generate, each instruction is located at a point in memory. On a 32 bit
computer architecture instructions are usually 32 bits apart. This is important to our
thesis as, if we can analyse a binary beforehand and detect memory regions of interest,
we can filter out just those instructions thus reducing the size of the trace.

0x00007f83468cd1f8 ret
0x00007£83468cd1fb lea rdx, ptr [rip+0xf24f]

3 0x00007f83468cd1fe mov rsp, rl3

Sl

0x00007£83468cd22c¢ jmp r12

A instruction call was made here, but not logged by our trace
0x0000000000400e3a xor ebp, ebp

0x0000000000400e3c mov r9, rdx

LISTING 3.1: Example Instructions with Addresses

Listing 3.1 shows a typical example of what we can expect to see when running a pro-
gram. The first argument in each line, e.g. 0x00007£83468cd1£8, is the address of the
instruction being executed. The arguments that follow are instruction and its arguments.

5
3

4

6

8

22 Chapter 3. Design and Architecture

Each address is given in hexadecimal, and as can be seen each instruction is 4 bytes after
the next, or 32 bits.

By looking at the last two instructions after the comment, we can see that they reside
in a different area of memory. To understand memory addresses used in a program,
we can analyse the memory used by our program further by using a tool called pmap
on our running application. pmap provides a memory map of the process running our
application and allows us to see what areas of memory different parts of our application
use.

$: ./home/derp/examples/a.out & pmap $!

0000000000400000 4K r—x— /home/derp/examples/a.out
0000000000600000 4K r /home/derp/examples/a. out
0000000000601000 4K rw—— /home/derp/examples/a. out
00007 £f2a570£f2000 1772K r—x— libc —2.19.s0

00007 f2a572ad 000 2044K libc —2.19.s0

00007 f2a574ac000 16K r libc —2.19.s0

00007 £2a574b0000 8K rw—— libc —2.19.s0

00007 f2a574b2000 20K rw—— [anon]

00007 f2a574b7000 140K r—x— 1d —2.19.s0

00007 f2a576c¢3000 12K r'w— [anon]

00007 f2a576d6000 12K rw—— [anon]

00007 £2a576d9000 4K r 1d —2.19.s0

LISTING 3.2: Pmap Output

As can be seen in Listing 3.2 output all code from our application, a.out, is generated
in the memory region 0000000000400000 - 0000000000605000. This knowledge
can be obtained by running the command *APPLICATION' & pmap $! from the com-
mand prompt for the application in question. With this knowledge we can then instruct
our instrumentation tool to only look at instructions from certain memory regions, or
conversely to ignore specific regions we know are not important for our analysis. This
greatly reduces the time spent in analysing the trace.

Furthermore access to the binary means we can analyse it to build up prior knowledge
of what libraries and functions are called. We can use the knowledge we build up of
libraries called to exclude instructions that are called from system libraries that do not
execute cryptographic code. This method is not used to whitelist functions we analyse as
we cannot guarantee that all of the functions necessary for encryption will be included,
whereas blacklisting common libraries such as those that handle I/O will produce no
false positives.

Depending on the binary in question, this can be obtained through using a simple pro-
gram such as st rings which prints all consecutive printable character sequences greater
than four characters long, or using with a more complex tool such as ob jdump which dis-
plays information about object files.

vagrant@derp:~/examples$ objdump —t DES/run_des.o

DES/run_des.o: file format elf64—x86—64

5 SYMBOL TABLE:
0000000000400238 1 d .interp .interp

7 % 0000000000603c40 g O .data initial_message_permutation
* 0000000000603b20 g O .data sub_key_permutation
0000000000000000 F «UNDx fwrite@@GLIBC_2.2.5

9

10

0000000000603e20 g O .data .hidden __ TMC_END__

1

N

3.4. Instruction Trace Format 23

0000000000000000 w *UNDx _ITM_registerTMCloneTable
LISTING 3.3: Objdump Output for DES

Listing 3.3 is a snippet of the output from running ob jdump on our DES program. The
full output can be found in Appendixa, it shows a few entries from the symbol ta-
ble of the program. From reasoning about the output, we can conclude that instruc-
tions relating to the two lines starred will probably be of interest due to the names as-
sociated with the memory addresses, mainly initial_message_permutation and
sub_key_permutation, both of which are related to cryptographic functions. The
above technique is useful in reducing the trace time and file size. Furthermore, it can
allow us to detect functions we may want to skip in the code such as an unpacker. How-
ever, although out of the scope of this thesis, it is worth noting that a program may be
obfuscated to prevent such analysis by scrambling the symbol names.

3.4 Instruction Trace Format

As mentioned previously, regardless of the instrumentation tool used to generate the
trace for a given application, our analysis tool will be able to detect the cryptographic
data within the input. To do this we have a standardized format that we expect the
trace passed into our analysis tool to follow. Each line in the output trace can be one of
three types, a memory read, a memory write or an instruction. They have the respective
formats:

e A memory read:
r | size_of_memory_to_be_read | value_read =
memory_address_read_from

e A memory write:
w | size_of _memory_to_be_written_to | address = value

e An instruction:
address | img | routine | offset | disasm | extra_data

A r, w are tokens we use to distinguish between memory reads and writes respectively
and the size_of_memory_~ field signifies whether it’s a 8 bit, 32 bit or 64 bit addresses
accessed. For the instruction format, the img and routine fields signify the module
and function the instruction comes from and the of fset is the offset of that instruction
from the starting instruction for the given function. The disasm is the machine level
instruction that will be executed and extra_data contains any necessary data needed
for the machine level instruction to execute.

0x00007fe6284a3a96 | /1ib64 /ld—linux—x86 —64.s0.2 | . text |0x000000003fb6 |
mov qword ptr [rip+0x2lelfb], rdx

3w 64 0x7fe6286¢c1c98 = 0x52802720515

4

0x00007fe6284a3a9d 1 /1ib64 /1d—linux—x86 —64.50.2 | . text 10x000000003fbd |
lea rdx, ptr [rip+0x21e3cc] | rdx = 0x7fe6286cle70

0x00007fe6284a3aa4 | /1ib64/ld—linux—x86 —64.s0.2 | . text |0x000000003fc4 |
mov rl13, rdx | rl13 = 0x7fe6286c1e70

r 64 0x222e70 = 0x7fe6286c2000

10
11

24 Chapter 3. Design and Architecture

0x00007fe6284a3aa7!/1ib64 /ld—linux—x86 —64.s0.2 | . text |10x000000003fc7 |
sub r13, qword ptr [rip+0x21e552] | r13 = 0x7fe62849f000,
rflags = 0x206

LISTING 3.4: Example Trace Output

Listing 3.4 gives an example of a trace output containing all three types. The token " | "
has been used as a delimiter as it will never naturally occur in any value in the trace
output and our program can therefore reliably split using it. As can be seen above there
is one write, one read and four instructions in the trace output. The instructions are
all from the /1ib64/1d-1inux-x86-64 shared object library and from the function
.text.

The disasm field is further broken up to mnemonic | opl | op2, and for different
architectures this work also expects a mapping from mnemonic to instruction_type
to be passed. This provides semantic information about the instruction being executed
such as if it’s an arithmetic operation, a branch or a logical instruction. Such information
can be found in the instruction manual for the given architecture in question. This work
looked at the X8 6 instruction set manual to generate the above types [17].

3.5 Detecting Loops in Trace

1. Generate basic 2. Generate 3. Loop detection 4, Loop Analysis 5. Memory

Reconstruction

blocks CFG

FIGURE 3.2: Trace Analysis Breakdown

Detecting loops from an input trace involves the following steps, and has been illustrated
in Figure 3.2:

1. Detect basic blocks in instruction trace.
2. Generate a control flow graph from basic blocks.
3. Detect loops from basic blocks and control flow graph.

4. Cryptographic loop analysis.

From past works [7], discussed in Chapter 2, it has been established that cryptographic
operations normally take place in tight loops, containing few instructions and a large
number of iterations. Therefore the first three stages prepare the data for the fourth.
These loops can then be passed to our filters as discussed in Section 3.6.

3.5. Detecting Loops in Trace 25

3.5.1 Detecting Basic Blocks

Basic blocks are generated from the output instrumentation trace to reduce the number of
objects we have to work with. A basic block is a group of instructions that form a straight-
line sequence with no branches except the entry point and the exit point. It reduces the
size of the trace by grouping instructions together thus making further analysis and loop
detection easier.

def (): s1 = word1.sort()
s1 = word1.sort() s2 = word2.sort()
s2 = word2.sort()
if s1 s2:
elsg:nt() print(print(
print()))

FIGURE 3.3: Basic Blocks Example

Figure 3.3 shows a simple Python function that can detect if two words are anagrams of
each other. The right side of the diagram shows the basic blocks it would be broken up to.
As can be seen for each basic block there is one entry point, the start, if the first instruction
is executed then we can guarantee they all are. We use this fact to reason about programs
at a higher level, that of the basic blocks, and in turn it make our program faster and more
efficient.

We generate basic blocks directly from the instrumentation trace: this means we can
guarantee that the basic blocks are an exact representation of the application run as every
instruction within the trace will appear in a basic block. We use the algorithm shown in
Listing 3.5 to detect them.

1 def generate_bbs(instructions):
2 bbs = []
3 prev_branch = True
block = False
5 for i in instructions:
6 if prev_branch:
7 if block:
8 bbs .append (block)
9 block = BB(i)
10 else:
11 block .append (i)

13 if i.is_branch():

14 prev_branch = True
15 else:

16 prev_branch = False
17

18 return bbs

LISTING 3.5: Basic Block Detection Algorithm

In the first part of the algorithm, the instructions are run through in the order they are ex-
ecuted and appended to a basic block. If the instruction is a branch instruction, causing

26 Chapter 3. Design and Architecture

a different instruction sequence to execute and it to deviate from the next chronological
instruction, then the variable prev_branch is set. On the next execution, if the previous
instruction was a branch instruction then the current basic block is finished, appended to
the list of basic blocks and a new one is started.

We use the method is_branch defined onan Instruction object to determine whether
an instruction is a branch or not. This is done by first getting the instruction mnemonic
of the instruction being executed from the disassembly of the instruction object. The
mnemonic is then looked up in a type table generated from the X86 Opcode and Instruc-
tion Reference [17] to see if the given type is a branch instruction.

TABLE 3.1: Size Comparison between Instructions and Basic Blocks

Target program Instruction Count Basic Block Count Percentage Reduction

XOR 154532 21788 85%
AES 19695088 195009 99%
DES 660759 48610 92%
GnuPG 20887537 442326 97%

Table 3.1 gives an example of size reductions seen by various inputs after generating basic
blocks from trace instructions. As can be seen using basic blocks provides on average
over a 90% reduction in number of objects we have to analyse, with slightly less for the
XOR application but that is likely due to the application being very small to start with.

To summarise, we build up basic blocks from the instrumentation trace in order to reduce
the number of unique objects our analysis tool has to handle. We then use the basic block
representation of the application to generate a control flow graph, this is discussed in the
next section.

3.5.2 Control Flow Graph

To understand where decryption is occurring we need an accurate representation of the
target application so we can detect loops. This work uses a control flow graph, CFG, to
represent the path taken by the target application during its run. Basic blocks already
reduce each individual instruction in our trace to blocks of instruction, and a CFG allows
us to understand how these blocks interact.

Our CFG is a directed graph where the vertices represent basic blocks, and the edges
show the control flow between them. The edges are representatives of jumps and calls
within the program. An advantage of using basic blocks rather than individual instruc-
tions at our vertices is that the overall CFG will be considerably smaller whilst providing
the same detail.

Figure 3.4 shows a snippet of code that carries out XOR encryption on the input plaintext.
As can be seen, the CFG that represents it not only shows jumps within the program but
also enables loop detection. This is discussed below in Section 3.5.3, but simply a directed
edge back to a already traversed basic block represents a loop.

Gl W N e

3.5. Detecting Loops in Trace 27

¢ plaintext = raw_input('Enter your message: ')
key="THIS IS A SECURE KEY'
output="

plaintext = raw_input('Enter your message: ')

key = 'THIS IS A SECURE KEY'

output ="

for i, letter in enumerate(plaintext):
encrypted_letter = plaintext " key[i%len(key)]
output.append(encrypted_letter)

print output

encrypted_letter =plaintext"key[i%len(key)]
output.append(encrypted_letter)

i, letter in enumerate(plaintext) ?

print output

FIGURE 3.4: Relationship between Code and its CFG

Furthermore, we use the CFG to aid with finding cryptographic keys across multiple
execution traces: this application is discussed in Section 3.6.2.

3.5.3 Loop Detection

A loop in an application’s code is defined as a sequence of instructions that repeats until
a condition has been reached. The condition usually marks the completion of a process,
such as checking whether a counter has reached a given number or getting an item of
data and changing it.

for i = r down to 1 do:
B=((B—-S[2 i+ 1]) >> A) " A
A= ((A—-S[2 x i]) >> B) B

B =B — S[1]

A=A—- S[0]

return A, B
LISTING 3.6: RC5 Decryption

In cryptographic operations, loops are often used for the latter case. A loop will take in
a piece of data, in our case encrypted data, and it will be decrypted during the loops
execution. Listing 3.6 demonstrates the importance of loops to recovering data from
cryptographic functions. It shows the main body of how input is decrypted with RC5, a
symmetric-key block cipher. The decrypting of the data mainly happens in the for-1loop
body, and then a final linear transformation is applied afterwards.

Choosing a Loop Detection Algorithm

Loop detection is an active area of research problem and as a result there are many al-
gorithms we can use for the task. We considered two known algorithms for this the-
sis, namely Tarjan’s algorithm for finding dominators in a flow-graph [27] and Tubella’s
method for dynamic loop detection [30].

28 Chapter 3. Design and Architecture

Tarjan’s method has the advantage of being faster and the ability to locate dominant rela-
tionships with a flow graph. As speed is a motivation for this thesis, we prefer choosing
algorithms that are faster. Furthermore, knowledge of dominant relationships is useful
as it allows us to determine loop hierarchy which in turn lets us find nested loops and
loop relationships.

However, Tubella’s method, although slower, also allows us to infer loop hierarchy. Fur-
thermore, we can learn how many iterations a loop body goes through, and how many
times the loop is called. For example, this information is useful as if we know we have a
cipher that operates on 512 bit blocks, then we can assume loops with 512 iterations may
be of interest.

Tubella’s Loop Detection Algorithm

Tubella’s loop detection algorithm works by finding repeated executions of the same code
address. If a piece of code follows a variety of different addresses, and then hits the same
one twice, we can safely identify it as a loop iteration. The algorithm identifies a full loop
execution when there is no jump back to that address, i.e execution continues to the next
instruction, when the code jumps to a location outside of the loop or if a return statement
is hit within the loop body. Figure 3.5 shows an example of this; the loop body, B, C, D
and E, is first detected by the backwards jump from E to B. The end of the loop execution
is detected after the second iteration with the jump to F.

-
<)

FIGURE 3.5: Detecting Loops

To track nested loops and loop statistics, a current loop stack is used. This allows us to track
all the loops currently running, with the top of the stack being the current innermost loop.
For each instruction the algorithm checks if its a jump or call and, if that address is not
on the loop stack, it is pushed on so we can record the new loop execution. If the address
is on the stack, we check to see if the jump or call instruction is actually taken, and if so a
new iteration for that loop is recorded.

3.6. Detecting Cryptographic Loops and Recovering Data 29

3.6 Detecting Cryptographic Loops and Recovering Data

Once loops have been detected, the next step is to differentiate between cryptographic
loops and normal application loops. Applications in general contain a lot of loops, e.g.
a loop in the main function body which continuously takes in and processes input from
a user, and if our tool accepted all of them as cryptographic then a lot of false positives
would be produced.

3.6.1 Cryptographic Loop Detection

In order to correctly identify the buffers containing cryptographic data we must be able
to define characteristics of a cryptographic loop. Once we understand those characteris-
tics, we can select the loops that fit the given criteria from the loops we detected in the
program being analysed. This section covers methods we use and build upon to detect
cryptographic operations.

Our approach is split into two halves: the first looks at the proportion of bitwise arith-
metic operations within a loop as cryptographic loops are known to contain a greater
than average ratio of bitwise arithmetic. The second then looks at how we can filter loops
based on entropy. Encryption tends to increase the information entropy of loop inputs
by a higher than average amount each iteration than no cryptographic loop bodies. By
detecting this increase we are again able to select candidate loops.

Bitwise and Arithmetic Operations

Instruction profiling provides us with information about the run of a program which
helps build up a picture of what the program does on a higher level. We know that
a proportionally higher number of bitwise and arithmetic instructions are indicative of
cryptographic instructions, and therefore we use this as a method of recognising candi-
date cryptographic loops.

To detect high arithmetic loops we go through each iteration of a loops execution and
have a count for the total number of instructions, and a count for the number of bitwise
and arithmetic instructions seen. Then we select loops with over 35% bitwise and arith-
metic instructions. This value was chosen empirically after trial and error with different
thresholds as it was found to always include the cryptographic loops with the minimum
amount of extra noise.

In order to determine if a loop contains a bitwise or arithmetic operations we select those
with the following types: logical, shftrot, bit, binary and arith. These
types are select types from those provided for each instruction in the X86 Instruction
Reference [17]. Table 3.2 consolidate this with an example showing instructions along
with a classification of whether they are bitwise arithmetic or not.

Furthermore, to increase the speed of our analysis tool, we only analyse the first execu-
tion of the loop and not subsequent loop executions. This is as each loop execution will

30 Chapter 3. Design and Architecture

TABLE 3.2: Instructions Identified as Bitwise Arithmetic Pperations

Bitwise Instruction Classification Instruction Type
sub rsp, 0x68 Arithmetic arith

push rbp None NA

mov rbp, rsp Ignored NA

shl rdx, 0x20 Arithmetic shftrot

mov rbx, rdi Ignored NA

or rdx, rax Bitwise logical

sub r13, qword ptr [rip+0x21e2] Arithmetic arith

push r15 None NA

execute the same instructions and therefore will have the same count of arithmetic and
bitwise instructions as the first execution. If the first execution is identified as potentially
cryptographic by our tool, then we treat all executions as potential cryptographic.

Entropy

Entropy measures the unpredictability of information content. A trivial example is the out-
come of a Taekwondo match, for when two equally matched fighters fight the entropy
of the outcome of the match is at its highest as both are equally likely to win. If on the
other hand, the fighters were unequal, and one had a greater chance of winning the out-
come would have lower entropy as there would not be that much unpredictability in the
outcome.

The English language in general has low entropy: this is as the subsequent letters in a
word and words in a sentence are to a large extent predictable. In an English sentence, if
one came across the word in, it is highly probable that the next word will be either the
or a meaning there is low unpredictability. Similarly in a word the combination of letters
th is more likely than qu, and a word is more likely to contain an e or an a rather than
anxora z [19].

We use this fact to detect cryptographic loops decrypting ciphertext into plain English.
The ciphertext before decryption will have a higher entropy and contain more random
data than the plaintext after decryption. Detecting this drop in entropy is what we use to
select potential cryptographic loops.

Entropy is defined as shown in equation 3.1, where P is the probability mass function.

n

H(X) = =Y Pla:)logP(x;) (3.1)
=1

Our work uses a form of b-ary entropy. b-ary entropy is defined to be of a source §= (S, P)
where § is a source alphabet S=a; ... a, with discrete probability distribution P over
the source [11]. The source alphabet we use is of size 512, representative of the 512 byte
values possible in our alphabet. Equation 3.2 is used to calculate entropy in our work.

N

3.6. Detecting Cryptographic Loops and Recovering Data 31

512

() = — 3 Miroq, 1 62)

i=1 n n

A final processing step is needed after calculative entropy because the length of our in-
puts and outputs may be different, and we need to compare entropy values. As a result
after calculating entropy, we follow Lutzs approach and scale our entropy values to fall
between 0 and 1 [18] and select loops with over a 20% entry decrease.

3.6.2 Recovering Cryptographic Data

Once potential loops have been narrowed down, memory reconstruction techniques are
applied to potential inputs, cryptographic keys and outputs. This allows for the data to
be recovered from the execution trace and to be presented in a human readable format.
Then our last filter can be applied which allows our tool to correctly identify the key
and the plaintext. Our novel approach to recovering the encryption key by statistically
correlating multiple execution traces for the same application increases the confidence
we have in our results.

Memory Reconstruction

Once we have identified potential cryptographic inputs, keys and outputs we need to
verify them. The traces we generate, as discussed in 3.4, already contain information
about memory reads and writes. For memory reads we store the memory address read
from and the hexadecimal value it read, and similarly for writes we store the memory
address written to and the hexadecimal value it wrote.

The first task is to convert the hexadecimal output back into printable ASCII that we can
understand. This will mean any plaintexts we are trying to read will be understandable,
and if we have a known plaintext to compare to we can verify that we are looking at
the right memory locations. Secondly, as a program only has a set amount of memory
assigned to it, it is common to see multiple writes to the same memory location. An
example of when this can occur is when a variable is overwritten in the program and its
value is updated. The variable is stored at the same location in memory: therefore, the
value stored there is overwritten with the new value and the old value is lost.

Ox7ffe7e2l1c4ab: ['r 0x41’, 'w 0x23’, 'r 0x23’, 'r 0x23"]
Ox7ffe7e2lcd4a6: ['r 0x41’, 'w 0x22’, 'r 0x22’, 'r 0x22']

LISTING 3.7: Sample Memory Accesses during an XOR Application Run

Listing 3.7 shows an example of read and writes seen in a XOR application used for
evaluation generated by our tool to analyse the access patterns to a specific memory
address. The value to the left of the : is the memory address, and the list afterwards
show the reads, r, and writes, w, in the order they were made along with the value.

The encryption input to this example is the string AAAAAAAAAAARAA. The letter A in hex-
adecimal is represented by the value 0x41. Lines 1 and 2 in Listing 3.7 show that this

1
4
5

6

16

17

8

9

32 Chapter 3. Design and Architecture

value is read from the respective addresses and then subsequently overwritten with 0x22
and 0x23 respectively. These two values correspond to B and C, which are the letters
those characters were encrypted to by the application.

‘ Ox7ffe7el ’ { Ox7ffe7e2 } { 0x7ffe7e3 } { Ox7ffe7e4 } ‘ 0x7ffe7e5 ’ [0x7ffe7e6 ’
e e \
1 ‘ Ox7ffe7e1 ’ '[0x7ffe7e2 } [0x7ffe7e3 } [Ox7ffe7e4 } [0x7ffe7e5 } [0x7ffe7e6] 1
1 1
N mm omm o o o EE E EE EE e e N EE EE EE EE e R EE EE EE EE EE EE MmN EE EE Ee Em Em e T d
el i T Tt e \
2'[ox7ffe7e1 } [Ox7ffe7e2 } [0Ox7ffe7e3 } [ox7ffe7e4 } [Ox7ffe7e5 }' [0x7ffe7e6 ’
1 1
W o e o EE e EE EE R EE N EE EE N EE N N R N RN EE N EE EE N EE e e EE Ee e E Ee . -
o e e e e e e e e e e e e \
3'[0x7ffe7e0 } [ox7ffe7ed } [0Ox7ffe7e2 J [0x7ffe7e3 } [Ox7ffe7e4 J' ‘ Ox7ffe7e5 ’
1 1
W e Em o E EE e EE EE R EE N EE EE N EE N RN EE N N D N EE EE N EE e e EE Ee e E Ee . -

FIGURE 3.6: Memory Address Sliding Windows

The memory addresses are consecutive and when searching for keys which maybe of
fixed length sizes such as 512 bits we can search for sliding windows of that size around
values that are known to be in the key. Figure 3.6 demonstrates this idea. Here we are
searching for a key of length 5 and we know that the three consecutive memory addresses
Ox7ffe7e2, Ox7ffe7e3and 0x7ffe7e4 are part of the key. We can then assume that
the key will be one of the numbered cases depicted. This works as we assume in this
thesis that cryptographic data will be stored at consecutive memory addresses.

Statistical Trace Analysis

The previously discussed entropy measures provide us with sound tools to recover the
cryptographic inputs and outputs. However cryptographic functions often have more
than one relevant input, the key as well as the plaintext to be encrypted. This section
discusses our motivation for analysing multiple traces and Chapter 4.4.3 discusses the
approach taken.

$ pypy majorkey trace.out

> *x logging output omitted xx

potential inputs

0x41 0x62 0x63 0x64 0x61 0x62 0x63 0x64 0x61 0x62
0x63 0x69 0x61 0x62 0x63 0x64 0x61 0x62 0x63 0x64

7 Abcdabcdabciabcdabed

0x54 0x68 0x65 0x79 0x20 0x64 0x6f Ox6e 0x27 0x74
0x20 0x77 0x61 Ox6e 0x74 0x20 0x75 0x73 0x20 0x74
0x6f 0x20 0x67 0x65 0x74 0x20 0x61 0x20 0x66 0x69
0x72 0x73 0x74 0x2e 0x2e 0Ox2e

They don’t want us to get a first...

potential outputs

0x15 Oxa 0x6 0x1d 0x41 0x6 Oxc Oxa 0x46 0x16 0x43
Oxle 0 Oxc 0x17 0x44 0x14 O0x11 0x43 0x10 0Ox2e
0x42 0x4 0x1 0x15 0x42 0x2 0x44 0x7 Oxb 0x11

3.6. Detecting Cryptographic Loops and Recovering Data 33

20 Oxla 0x15 Ox4c Ox4d Ox4a
LISTING 3.8: MajorKey XOR Output Trace 1

To illustrate this point Listing 3.8 shows the output produced by MajorKey for an XOR
application. The potential inputs have been correctly identified as Abcdabcdabciab-
cdabcd and They don’t want us to get a first..., however we are unable
to determine which is the key and which is the plaintext.

vagrant@Derp3: pypy majorkey trace.out

** logging output omitted *x
potential inputs

S

0x41 0x62 0x63 0x64 0x61 0x62 0x63 0x64 0x61 0x62
6 0x63 0x69 0x61 0x62 0x63 0x64 0x61 0x62 0x63 0x64
7 Abcdabcdabciabcdabed

9 0x53 0x6f 0x20 0x77 0x68 0x61 0x74 0x20 0x77 0x65
10 0x20 0x67 0x6f Oxbe 0x20 0x64 0x6f 0x2c 0x20 0x67
11 0x65 0x74 0x20 0x61 0x20 0x66 0x69 0x72 0x73 0x74
12 0x20 0x3b 0x29

13 So what we gon do, get a first ;)

15 potential outputs

16 0x12 Oxd 0x43 0x13 0x9 0x3 0x17 0x44 0x16 0x7 0x43
17 Oxe Oxe Oxc 0x43 0 Oxe Ox4e 0x43 0x3 0x24 0x16 0x43
18 0x5 0x41 0x4 Oxa 0x16 0x12 0x16 0x43 0x52 0x48

LISTING 3.9: MajorKey XOR Output Trace 2

Similarly from looking at listing 3.9 we are able to determine that the two potential inputs
are Abcdabcdabciabcecdabed and So what we gon do, get a first ;). Look-
ing at just this listing in isolation still provides no clue as to which of the two inputs is the
plaintext, and which the key; however by analysing commonalities between the traces
we can learn which is which.

In the case above, we learn that the key is Abcdabcdabciabcedabed and the plaintexts
are They don’t want us to get a first... and So what we gon do, get
a first ;) for listings 3.8 and 3.9 respectively.

This approach works trivially for an easy encryption algorithm such as XOR but for more
complicated forms of encryption such as DES it is a little less clearer. DES uses substi-
tution boxes, S-Boxes, to conceal relationships between the key and the ciphertext. As
such we have to ensure that we do not mistake cryptographic constants, such as S Boxes,
as the key. We do this by whitelisting against known constants that appear in common
implementations. Furthermore, we can rule out all inputs that are of incorrect key size
for the given encryption method, if it is known.

35

Chapter 4

Implementation

4.1 Overview

This chapter will cover relevant implementation details of MajorKey. MajorKey is split
into three main tools:

e Instrmentation tool.
e Analysis tool.

e Keyfinder tool.

We discuss MajorKey’s Pintool in Section 4.2 and how it is built on top of the Pin frame-
work. Then an overview of MajorKey’s analysis tool is provided in Section 4.3. Section
4.4 explains the loop selection and filtration methods, and how we made them interactive
to users. It also explains our Keyfinder tool which is how we compare multiple traces to
narrow down the encrpytion key. Finally, Section 4.5 highlights some of the interesting
optimisations we made to increase the accuracy and speed of our tool.

4.2 MajorKey’s PinTool

The implementation of our Pintool is based on processing Instructions and Memory
at a instruction level granularity. The next sections explain further how we do this.

There are two ways to modify a program with a Pintool: through instrumentation or anal-
ysis. Adding an instrumentation routine to a Pintool will define where instrumentation
is inserted to an application. It occurs once per object and does the heavy lifting of the
Pintool. Analysis routines define what the Pintool should do once instrumentation has
started and are run every time an object is accessed. MajorKey’s Pintool uses both, in-
strumentation routines to define what to instrument, and analysis routines defining what
happens once instrumentation occurs.

36 Chapter 4. Implementation

Instrumentation

Pin instruments in a just-in-time manner. This means a copy of the application is created
on the fly and run the original application code is never executed. We take advantage
of this and our Pintool can skip sections of the application run and start instrumenting
from a set point speeding up the time taken to run as less code is being instrumented.
Similarly our tool can start instrumentation from a given memory address or function
name that can be passed in as a command line argument.

Analysis

Instrumentation is performed at an instruction level granularity, and for each instruction
we call two analysis routines, InstructionTrace and MemoryTrace. Instruction-
Trace is run on every instruction, and the memory address of the instruction, routine
and image information, and disassembly information is written to file as specified in
Chapter 3.4. MemoryTrace is called on every instruction that reads or writes to memory.
Again as described in Chapter 3.4 it logs information about the value read /written and
the memory location accessed.

4.3 MajorKey Python Framework

Our tool is written in Python and split up into four main modules as shown in Figure 4.1.
This section covers our language and design choices.

2.
trace file
Parser
parser.py
1.
MajorKey Main instructions
__main__.py
3. 5 loops 4.
instructions
Analyser Filters
analysis.py filter.py
candidate plaintexts, keys and \ cryptographic
outputs loops

FIGURE 4.1: MajorKey Pipeline

The MajorKey pipeline is shown in Figure 4.1. Everything starts at 1 and the initial input,
the trace file, is passed to 2. The Parser parses the trace file into a format that the rest of

4.4. Loop filtering 37

the tool understands, and passes back a list of Instruction objects to the Main. At 3
the instructions are passed to the Analyser which detects basic blocks, the control flow of
the program and loops. The loops are then passed into 4 where the filters are run over
the loops independently. Potential cryptographic loops are detected and passed back to
the Analyser at 5. The Analyser then combines the results and generates weightings for
potential plaintexts, keys and outputs for loops identified as cryptographic. The potential
plaintexts and keys are converted back into ASCII, a human readable form, and displayed
to the user.

We chose to split up the tool in such a form to make it easy to use and extend. It is simple
to add new filters to the Filter module, and similarly easy to switch out any of the above
modules to change or add to the functionality of the tool. An example of where this may
be useful is replacing the current Python Analysis module with a C module to for speed
ups.

4.3.1 Python: Language of Choice

Python is an easy to use language that provided us with the ability to start developing
fast, and has simple, explicit syntax. It is easy to run on Linux, Windows and OS X
therefore allows us to develop a cross-platform tool. Furthermore the language has a
strong community built around it with lots of public libraries. argparse is an example
of one and it allowed us to easily handle command line options as covered in Chapter
44.1.

4.4 Loop filtering

Each filter method used to whittle down the cryptographic loops from the application
loop set is applied independently, and in parallel, and then the results are combined in a
map reduce fashion. The filters are applied separately to avoid losing potential inputs or
outputs due to one filter not recognising the data as important but others do. Afterwards,
a higher weighting is applied to inputs and outputs that appear in the output of more
than one filter.

4.4.1 User Controllable Knobs

MajorKey is an automated tool that can take in a trace and output potential inputs and
outputs without requiring any user assistance. However it aims to be flexible and as such
for each filter we provide the ability to adjust it when the program is run.

Filters can be adjusted at run-time by passing in alternative values for the filter thresh-
olds. Each filter has given defaults for the filters that have been empirically chosen but
there is an option to override them. Listing 4.1 shows the thresholds that a user can ad-
just at run-time, along with an explanation of what they do. Having this ability means a
user can adjust the given thresholds without the need to modify the source code of our
tool.

N

20

26
-
28

26

1

38 Chapter 4. Implementation

usage: majorkey [—h] [-—debug DEBUG] [-—active_threshold ACTIVE THRESHOLD]
[-—iteration_threshold ITERATION_THRESHOLD]
[-—arithmetic_threshold ARITHMETIC_THRESHOLD]
[-—entropy_threshold ENTROPY_THRESHOLD]
filename

MajorKey :raised_hands:

positional arguments:
filename Trace file to be loaded in

> optional arguments:

—h, —help show this help message and exit
—debug DEBUG If true, will open an interactive IPython
session after loop detection
—active_threshold ACTIVE_THRESHOLD
Set’s active_threshold for active_loops.
Default value is 20
—iteration_threshold ITERATION_THRESHOLD
Set’s iteration_threshold for
high_arithmetic_loops. Default value is 20
—arithmetic_threshold ARITHMETIC_THRESHOLD
Set’s arithmetic_threshold for
high_arithmetic_loops. Default value is 0.1
—entropy_threshold ENTROPY THRESHOLD
Set’s entropy_threshold for
high_entropy_loops. Default value is 4

Bless up
LISTING 4.1: MajorKey Usage

We evaluated our tool against a variety of applications, including an obfuscated XOR pro-
gram !. The knobs proved useful during the evaluation of the obfuscated XOR program,
by lowering the threshold from 20 to 8 for the iteration_threshold filter meant the
encryption loop was not skipped. Had we not been able to lower the threshold, the loop
would have evaded detection as the obfuscations applied to the program resulted in a
decreased number of reduced loop iterations.

4.4.2 Live Debugging Mode

Another feature we chose to implement is a live debugging mode. It provides a simple
interface to view and manipulate the loops detected by our work. It can be activated by
setting the command line option, ~debug=True.

Listing 4.2 shows the interactive Python session that gets started if the program is called
with —debug=True.

vagrant@Derp3:~$ pypy majorkey ../ trace.out —debug=True

> %% output omitted #xx
3 time taken: 25.1617631912

4

5

6

7

Python 2.7.3 (2.2.1+dfsg—lubuntu0.3, Sep 30 2015, 15:18:40)
Type "copyright", "credits" or "license" for more information.

'Our tool is not specifically designed to work with obfuscated programs

4.4. Loop filtering 39

8 IPython 4.2.0 — An enhanced Interactive Python.

9 ? —> Introduction and overview of IPython’s features.

10 %quickref —> Quick reference.

11 help —> Python’s own help system.

12 object? —> Details about "object’, use ’“object??’ for extra details.

4 In [1]: outs[0].executions

15 Out [1]: <{[[’0x00007f51832e3c6b’: [[<<class ’instructions.BB’> at
16 0x7£f44489¢608 >,

17 <<class ’instructions.BB’> at 0x7ff44493c8a8 >],

18 [<<class ’instructions.BB’> at 0x7ff444923440 >,

19 <<class ’instructions.BB’> at 0x7ff444922c98 >,

20 <<class ’instructions.BB’> at 0x7ff444932410 >,

21 <<class ’instructions.BB’> at 0x7ff444933da8 >,

2 <<class ’instructions.BB’> at 0x7ff4449479b8 >]

LISTING 4.2: MajorKey Interactive Debug Mode

The loops detected are stored in the variable outs, and this provides access to informa-
tion about loop executions, as shown on line 15 where the beginning of the representation
of the loop executions is printed. Once a debugging session has been started further mod-
ules such as the filters module can be loaded into to run functions within them or new
functions can be written and tested over live input data. We have chosen to provide this
feature as it enables a user to interact with the data we process instead of just receiving
output from the tool. It provides a clean easy to user interface without the need for the
user to understand the source code or touch any files.

4.4.3 MajorKey’s Keyfinder Tool

As discussed in Section 3.6.2 it can be hard to differentiate between the key and the input
message so we analyse multiple traces to increase our confidence. If the same key has
been used then it will be constant across runs, so we can assure that its value will stay
constant and therefore be distinguishable from the varying plaintexts. Note: The key is
not usually stored within a program therefore will not be the same for every message
sent and recevied, however it is common for the key to be the same across a session in
which multiple messages can be sent and received.

Figure 4.2 shows how input traces are passed through our tool and then combined. First,
each trace is analysed individually to generate a list of potential input texts and keys.
This is represented by the trace_x.out files being passed into the MajorKey tool and
producing a respective t race_x . json file.

The output to the JSON files by our tool is the same as the results printed out to the user
after MajorKey has run. However, the results are not dumped straight to a file but instead
have been parsed into JSON.

1 a)

2> vagrant@Derp3:$ pypy majorkey ../ xor.out —

3 —keyfinder="keyfinder_dumps/xor.out’
1+ * output omitted

5 Confidence: 0.88

7 potential inputs

40 Chapter 4. Implementation
trace_1.out trace_1.json
_ _
trace_2.out trace_2.json
i s
h J rhinat -
e — MajorKey Cn"ﬂ_bnnatu:un combination
filter analysis results
he _ b
trace_3.out trace_3.json
S S
trace_4.out frace_4.)json
R S

FIGURE 4.2: Keyfinder Pipeline

s 0x41 0x62 0x63 0x64 0x61 0x62 0x63 0x64 0x61 0x62 0x63 0x69
0x61 0x62 0x63 0x64 0x61 0x62 0x63 0x64
Abcdabcdabciabedabed

0x41 0x41 0x41 0x41 0x41 0x41 0x41 O0x41 0x41 0x41 0x41 0x41
0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41
AAAAAAAAAAAAAAAAAAAAAAAAA

9
10
11

5
2

13
14
-

15

16

26

potential outputs

0 0x23 0x22 0x25 0x20 0x23 0x22 0x25 0x20 0x23 0x22 0x28 0x20

0x23 0x22 0x25

0x20 0x23 0x22 0x25 0 0x23 0x22 0x25 0x20

— T
~

"confidence": 0.88,

"data": ["O0x41", "0x62", "0x63", "0x64", "0Ox61", "0x62",
"0x63", "0x64", "Ox61", "0x62", "O0x63", "0x69",
"Ox61", "0x62", "0x63", "0Ox64", "Ox61", "0x62",

"confidence":
["Ox41", "Ox41","0x41", "0x41","0x41", "O0x41","0x41",
"0x41","0x41","0x41","0x41",

"data":

—

"Ox41",

"0x63", "0x64"]

0.88,

"Ox41" 041"
.

LISTING 4.3: MajorKey Keyfinder Output

Listing 5.9 shows an example of the JSON that would be generated for the output de-
picted at a) . We use JSON because it supports key-value pairs and has fast, easy to use
Python modules readily available.

Once all the traces that are being compared have been joined together, we pass them to
our final filter, Keyfinder, which reads in all the JSON files in the directory passed to
it and looks for overlap between potential inputs. We applied the longest consecutive
subsequence problem to each pair of inputs to find a match for the key, but if less than
eight characters matched we stop looking as it is less likely to be a key match and more

4.5. Optimization 41

an overlap in plaintext messages. Weightings between 0 and 1 are then applied, with a 1
being a complete match.

After this analysis, we re-calculate the confidence for the inputs being the key using the
original confidence passed in, and the weightings generated during analysis. The results
are then sorted, and the top choices displayed accordingly.

We chose to take this approach as it provided flexibility. All the traces for an applica-
tion can be passed into keyfinder or a specific combinations to detect further patterns.
However a downside is when applying the longest consecutive substring problem to the
texts if the plaintexts have long matching substrings, we are more likely to incorrectly
identify them as the key. Currently we do not avoid this, but we could by blacklisting
certain strings and ignoring them if they appear.

4.5 Optimization

We chose to make speed one of our goals as current tools that exist are fairly slow. In
Grobert’s evaluation he noted for example that runtimes for analysing RC4 were in the
order of 15 minutes [12]. Although malware analysis can be done offline and time isn’t
a huge constraint, we recognised that large speed ups were possible. Some factors we
considered to reduce our time are documented below.

4.5.1 Binary Instrumentation

Binary instrumentation can be timely, especially when the tool is applying memory taint-
ing techniques. Initially, MajorKey worked with traces generated by an existing Pintool
framework that provided dynamic binary instrumentation [24]. However, it was too slow
and some traces were taking over an hour to generate. For example, a GPG encrypt oper-
ation which takes less than a minute when running without instrumentation was taking
nearly an hour with instrumentation. If instrumentation takes excessively long with re-
spect to the original runtime of the program, there is a chance that the program may react
differently. Balzarotti, for example, noted that there have been cases where sophisticated
malware can detect its environment and if it’s aware it is being instrumented or run in an
emulator it can change its execution path on the fly [2].

As such we chose to write our own Pintool as discussed in Chapter 4.2. The advantage
of writing our own tool instead of using an existing heavy duty one out there was the
ability to keep instrumentation times on par with the original application runtimes. Fur-
thermore, our tool is specific to its function therefore has a relatively simplistic codebase
which is easy to maintain and modify.

4.5.2 Parallelising Parsing

After binary instrumentation we end up with a large trace which can be over a gigabyte
in size. Processing the entire file and searching through the trace for basic blocks and

42 Chapter 4. Implementation

TABLE 4.1: Instruction Analysis From Traces

Application Max BB size Max loop size

XOR 165 1342
DES 204 6611
RC4 293 2209
RC6 243 5337
Obfuscated XOR 135 1345

loops, became extremely tedious and slow. This was due to our application requiring so
much memory it eventually started to use swap memory. Using swap means instead of
accessing RAM memory which has access times of roughly 50 nanoseconds, the program
was accessing memory on the machine’s hard drive which is roughly 10000 times slower

[1].

One method of avoiding this would be to read in a chunk of the file, process it, store the
results, then read in the next chunk, process that and continue until we reached the end
of the file. Processing data in a linear fashion like so takes a long time for the size of traces
we generate, as such we recognised the opportunity to parallelise the process.

4.5.3 Splitting Strategy

The trace generated by the binary instrumentation tool contains the instructions executed
by our program in a chronological order. We take advantage of the spatial and temporal
relationship: this helps decide where to separate the trace into chunks so we can paral-
lelise our tool.

Table 4.1 shows relevant information about the programs we evaluated pertaining to
the size of basic blocks, BBs, and loops. As can be seen, the largest size of a BB is 293
instructions, and the largest loop size across applications tested is 6611 instructions.

When splitting our trace into multiple chunks, we have to ensure that we do not miss any
of those by splitting the trace up such that a basic block or a loop ends up with half its
body in one chunk and the other half in another chunk. If this happened we could end
up missing a cryptographic loop itself or a basic block. As basic blocks are used to build
the CFG, which in turns guides our loop detection algorithm, a mistake here could cause
our results to be incorrect.

Using the information from the table we chose to parse our file in chunks of 750,000
instructions with a 100,000 size overlap. The overlap means that those instructions at
a chunk boundary will appear in both chunks to either side of it, so a loop cannot be
missed. Figure 4.3 shows how this works in practice with the trace on the left being split
into three chunks. In chunk two in the diagram contains the end of chunk one and the
beginning of chunk three.

4.5. Optimization 43

(instructions N @(instructions \

instructions instructions

instructions instructions

instructions instructions

instructions instructions

instructions instructions

instru instru @f instru)
instru instru instru

—>
Bl) ctions
ctions ctions ctions
ctions ctions
instructions instructions k)
instructions instructions
instructions instructions
instructions instructions
instructions instructions
instructions instructions

\. J . J

FIGURE 4.3: MajorKey : Splitting Strategy
4.5.4 Multiprocessing Module

The traces generated by the binary instrumentation tools are a chronological list of the
instructions executed by the target application. As such we can take advantage of the
spacial and temporal locality of instructions and process the trace file in chunks. Further-
more, if we parallelise this operation we can see large time speed ups.

There are two main Python modules used for parallelisation, threading and multipro-
cessing. The Threading module is designed to keep an application responsive whilst
background tasks are going on, such as a handling connection to a database whilst ac-
cepting user input. The database connection task is moved into a different thread whilst
the main thread is kept free so the application remains fast. Due to the Python global in-
terpreter lock, GIL, these two operations don’t actually happen in parallel but CPU time
is split between the two threads.

The other is the Multiprocessing module, which is for when executing more than one
action at a time is actually required. Instead of placing tasks in their own thread that has
access to the CPU when another thread is idle, a Multiprocessing process can run on its
own CPU and therefore more efficiently. A disadvantage of spawning extra processing
however is the I/O overhead it introduces as data is being moved between the different
processors consequentially which may increase the total runtime.

MajorKey uses the Multiprocessing module as real parallelism is actually required for
loop detection and filtering of the different trace chunks. As no data is shared between
processes, our application receives significant speedups for applications that generate

44 Chapter 4. Implementation

TABLE 4.2: PyPy Speed Ups

Application Python runtime PyPy runtime

XOR 2m 59s 49s
DES 24m 48s 7m 10s
RC4 4m 33s 1m 32s
RC6 6m 02s 1m 50s
Obfuscated XOR 2m 12s 30s

large trace files: this is discussed further in Section 5.3.1 in our evaluation.

4.5.5 PyPy Usage

We chose to write MajorKey in Python due to its ease of use as discussed in Section 4.3.1.
However, running our tool with Python was not the fastest option as such we looked at
PyPy as an alternative [4]. Note: MajorKey is not limited to PyPy and can be run with
Python, Cython or any other variant, but choose to run our tool with PyPy due to the
speed-ups it provides.

PyPy works the same as Python does outwardly, but has a different internal implementa-
tion. These features provide various advantages that made PyPy appealing to this work
including:

e Speed: PyPy uses a Just-in-Time compiler, and therefore Python programs often
run faster on PyPy.

e Memory Usage: PyPy has better memory management and therefore uses several
hundred MBs less memory than would be required if we ran our tool with Python.

e Compatibility: Most popular Python libraries work with PyPy and therefore we are
able to use standard libraries without having to worry about any potential break-
ages.

As our tool relies entirely on Python code, as opposed on underlying C code, PyPy is
able to optimize it and provide sizable speedups. Table 4.2 shows the running time of
our tool against different applications in Python and in PyPy. For each application we
tested, PyPy provided over a 50% time speedup.

45

Chapter 5

Evaluation

MajorKey is a cross-platform suite of tools, as it runs on Pin and Python it will work on
Linux, Windows and OSX. It successfully works will all 3 major operating systems, how-
ever for the purpose of evaluation we focus on Linux only. The evaluation environment
is outlined in Section 5.1.

In Chapter 1.2 we state our tool makes the following contributions:

1. An architecture to recover cryptographic material from executable binaries.
2. A Pintool to generate traces for target binaries.

3. A Python framework, and tool, that analyses said traces to recover cryptographic
material.

4. A new technique that aids in narrowing down potentially relevant cryptographic
material.

5. A parallelised approach speed up in trace parse and analysis time.

6. The recovery of cryptographic material from applications carrying out XOR, DES,
RC4 and RC6 operations.

7. Recovery of cryptographic material for the RC6 encryption algorithm, which has
not been done before.

We begin by assessing claim 1 and 7, and provide an example of how our tool works in
Section 5.2. This allows the reader to understand how results are delivered by the tool
and shows we have successfully created a tool capable of achieving the remaining goals
of this thesis.

In order to evaluate our claim that we can recover cryptographic material, claim 2, 3, 4
and 6, Section 5.3 shows the results of testing MajorKey against multiple applications to
recover the keys, plaintexts and outputs. This section also provides analysis results for
Obfuscated XOR, even though we did not directly target our tool to work with obfus-
cated programs, an advantage of our method is it’s ability to work with simple obfusca-
tion. Furthermore, we evaluate the confidence scores of MajorKey’s results alongside the
ratio of false positives.

S I N

46 Chapter 5. Evaluation

Section 5.3.1 then looks at claim 5 and analyses the times taken for our instrumentation
tool to run the application, and compares the added instrumentation time to the original
running time of the application. We are able to keep our instrumented running time
within 5% of the initial time taken by the application.

MajorKey is then evaluated against existing tools in Section 5.4. Here we provide a quan-
titative comparison between the results our tool achieved and results achieved by other
tools.

Finally, in Section 5.5, we present a case study of MajorKey with an chat application that
carries sends encrypted messages using RC6. This further evaluates claim 7 and shows
that MajorKey is capable of working with complex applications.

5.1 Evaluation Environment

For this evaluation the tracing and the MajorKey tool have both been run on a 64 bit
Ubuntu VirtualBox, more precisely Ubuntu 14.04.3 LTS (GNU/Linux 3.13.079-
generic x86_64). This virtual machine is being run on a laptop running Mac OS X
10.11.5. The virtual machine has 1024 MB of RAM and runs on one core of the host
machine. The version of Pin being used is Pin 2.14-71313 with GCC version 4.4.7. To run
our tool we use Python 2.7.3 and PyPy 2.2.1 with GCC 4.8.4. This environment remains
consistent for the entirety of the evaluation.

5.2 Walk Through Example: RC6

We begin by walking through the analysis of a RC6 decryption. RC6 was an AES finalist.
RC6 has not been tested before for recovery of cryptographic data therefore this thesis
presents it as a novel result. We test our tool with three different implementations of RC6,
in the walk through example we use the t inycrypt implementation with 20 rounds of
encryption and a 256 bit key [20]. Only one 128 bit block of input is encrypted to make
analysis easier to follow.

char xtest_keys[] =
{ "0123456789abcdef0112233445566778899aabbccddeeff01032547698badcfe" };

char xtest_plaintexts[] =

5 { "02132435465768798a9bacbdcedfe0f1l" };

char «test_ciphertexts[] =
{ "c8241816f0d7e48920ad16al674e5d48" };

LISTING 5.1: RC6 Input Parameters

./../../../pin.sh —t obj—intel64/MyPinTool.so — ~/examples/tinycrypt/block/rc6
/./a.out

LISTING 5.2: RC6 Instrumentation Command

Our RC6 application is run with the key and plaintext shown in Listing 5.1. The test key
is 256 bits, and the plaintext and expected ciphertext are 128 bits. First the application

5.2. Walk Through Example: RC6 47

is run through our instrumentation tool using the command shown in Listing 5.2. The
first parameter is the path to our Pintool, then the path to our Pintool followed by the
program we want to execute, in our case the program carrying out the RC6 encryption.
The trace results are saved to a file t race . out in the directory the command was called
from.

I pypy majorkey trace.out —keyfinder="majorkey/keyfinder_dumps’
LISTING 5.3: How To Call MajorKey With the RC6 Trace

The trace generated is then passed to MajorKey using the command shown in Listing
5.3, where we pass in the parameter keyfinder with a location so we can store the
results and later run the keyfinder tool. The first analysis step is to parse the trace
into Instruction objects: for our example, 160152 Instruction objects were cre-
ated. From these instructions, the basic blocks are detected and a control flow graph is
generated to show the flow of the application: for our application, there were 30062 basic
blocks. AppendixB shows the control flow graph generated for our example application.
It contains 1944 vertices that represent the unique basic blocks detected in the previous
stage, and the edges show which basic blocks call each other.

1 Confidence: 1.0

5

5 potential inputs

1 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x61 0x62 0x63 0x64 0x65 0x66 0x30
0x31 0x31 0x32 0x32 0x33 0x33 0x34 0x34 0x35 0x35 0x36 0x36 0x37 0x37 0x38
0x38 0x39 0x39 0x61 0x61 0x62 0x62 0x63 0x63 0x64 0x64 0x65 0x65 0x66 0x66
0x30 0x31 0x30 0x33 0x32 0x35 0x34 0x37 0x36 0x39 0x38 0x62 0x61 0x64 0x63
0x66 0x65

5 123456789 abcdef0112233445566778899aabbccddeeff01032547698badcfe

6 0x30 0x32 0x31 0x33 0x32 0x34 0x33 0x35 0x34 0x36 0x35 0x37 0x36 0x38 0x37 0x39
0x38 0x61 0x39 0x62 0x61 0x63 0x62 0x64 0x63 0x65 0x64 0x66 0x65 0x30 0x66
0x31

7 02132435465768798 a9bacbdcedfe0f1

s potential outputs

9 0x63 0x38 0x32 0x34 0x31 0x38 0x31 0x36 0x66 0x30 0x64 0x37 0x65 0x34 0x38 0x39
0x32 0x30 0x61 0x64 0x31 0x36 0x61 0x31 0x36 0x37 0x34 0x65 0x35 0x64 0x34
0x38

10 ¢8241816f0d7e48920ad16al1674e5d48

11

LISTING 5.4: RC6 Cryptographic Output

Listing 5.4 shows the results detected by our tool. Comparing lines 5 and 7, and line 8
and 10 from Listings 5.1 and 5.4 respectively we can see that it has correctly identified
the input, and the output. It has correctly identified the key but has missed the leading
0 in the key, this can be seen by comparing lines 2 and 5 of Listings 5.1 and 5.4. Our
tool detected the key but only a partial as it missed the first character. Furthermore as
shown on line 1 of Listing 5.4, a confidence score of one was assigned as all of our filters
recognised the loop as cryptographic. As discussed in Section 4.4.3, confidence scores
are assigned by combining the weighting given from each of our filters. If all the filters
recognise that loop to contain cryptographic data, then a high confidence is given to all
data in that loop.

1 5e84356b, a8a83848

> 6002659b, 1e729f9a

5 8dda4fbf, 1c924934

1 99765bd9, fe4244d8
5 dfdlal27, 73f747eb

S}

w N

'S

&

~

®

48 Chapter 5. Evaluation

v 37482596, 57dffb86

dabf139f, 3023742c
39612c4, 3276050e
f6b36779 , e11395bd
220a8b86, ea48ed81
2322¢9f9, b7dbb70a
a215b2ca, d944f68

5 5£934c5f, b50191d6

2da353ec, 9134331

5 f7e8c0c, 7321e9al

6£f2458c , 3311b59%e

7 dd355af7, 5b05e64a

430caa83, d526156¢
afbcdbd3, a58d40b6
fef4d10b , fa90dled

LISTING 5.5: RC6 Round Keys and Intermediate Ciphertext

[’0xaB8a83848 ", ’‘0x6002659b’, ’0x1e729f9a’, ’'0x8dda4fbf’, ’'0x1c924934’, 0
x99765bd9 ", ’‘0xfe4244d8’, ’0Oxdfdlal27’, ’'0x73f747eb’, ’'0x37482596’, ’0
x57dffb86 ', ’'0xdabfl139f’, ’'0x3023742c’, ’'0x39612c4’, ’'0x3276050e’, ‘0
xf6b36779 7, ’‘0xell395bd’, ’0x220a8b86’, ’'Oxead48ed81’, ’'0x2322c9f9’, 0
xb7dbb70a’, ’‘0Oxa215b2ca’, ’‘0xd944f68’, ’'0x5f934c5f’, ’'0xb50191d6’, 0
x2da353ec’, ’‘0x9134331’, ’'0xf7e8c0c’, ’'0x7321e9a0’, ’'0x6ff2458c’, 0
x3311b59e ", ’‘0xdd355af7’, ’'0x5b05e64a’, '0x430caa83’, ’'0xd526156¢c’, ‘0
xafbcdbd3 ', ’‘0xa58d40b6’, ’'Oxfef4d10b’, ’‘Oxfa90dled’, ’0x485d4e67 ']

LISTING 5.6: RC6 Cryptographic Output Continued

As well as detecting the master key, plaintext and ciphertext, MajorKey is able to pick
up intermediate round keys and ciphertexts. AppendixC shows the full extra output
generated by our tool, with Listing 5.6 and 5.5 showing the important output and 20
round keys, and intermediate ciphertexts for our RC6 application, respectively.

So far, for our example trace we have recovered the plaintext, master key, ciphertext,
intermediate round keys and intermediate ciphertexts. Yet, as shown in Listing 5.4, we
are still unable to differentiate between the plaintext and the key. To achieve this we
rerun the trace with a different plaintext and ciphertext. Two traces will provide us with
enough information to run the keyfinder tool to successfully determine which of the
inputs is the key and which are the plaintext. This assumes that the key being used is
the same: in practice this is normally the case and therefore will work. However, when
it is not, our tool fails to differentiate between the plaintext and key with a reasonable
amount of certainty.

char xtest_keys[] =
{ "0123456789abcdef0112233445566778899aabbccddeeff01032547698badcfe" };

char xtest_plaintexts|[] =
{ "00000000000000000000000000000000" };

char xtest_ciphertexts[] =
{ "0ba6350d974a4a20eff199ec09f8376d"};

LISTING 5.7: RC6 Input Parameters

Listing 5.7 shows the second input provided to the RC6 application being tested. The
key remains constant but the plaintext and ciphertext has changed. MajorKey is then run
again with same command, as shown in Listing 5.3 and the results are saved to a JSON
tile which will be used by the keyfinder tool.

5.3. Functionality and Performance

49

TABLE 5.1: Overview of Testing Applications

Algorithm Implementation Version

XOR Custom 1.0
Obfuscated XOR Custom 1.0

RC4-CBC OpenSSL 1.0.1f

DES-CBC OpenSSL 1.0.1f
DES-CBC Tareque Hossain 1.0
DES-CBC Tinycrypt 1.0
RCé6 Tinycrypt 1.0
RCo6 Pravin-Nagare 1.0
RC6 shashankrao 1.0
Anagrams Custom 1.0
Hexprint Custom 1.0

I vagrant@Derp3:~/pin—2.14—71313—gcc.4.4.7 — linux/source/tools /MyPinTool/majorkey /

5

1

W N

5 123456789 abcdef0112233445566778899aabbccddeeff01032547698badcfe

keyfinder_dumps$ Is
tracel .json trace2.json

LISTING 5.8: Keyfinder Directory: 1s command

vagrant@Derp3:~/pin—2.14-71313—gcc.4.4.7 — linux/source/tools /MyPinTool/majorkey/

keyfinder$ pypy __main__.py ../ keyfinder_dumps/
../ keyfinder_dumps/tracel .json
../ keyfinder_dumps/trace2.json

Key is 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x61 0x62 0x63 0x64 0x65 0
x66 0x30 0x31 0x31 0x32 0x32 0x33 0x33 0x34 0x34 0x35 0x35 0x36 0x36 0x37 0
x37 0x38 0x38 0x39 0x39 0x61 0x61 0x62 0x62 0x63 0x63 0x64 0x64 0x65 0x65 0
x66 0x66 0x30 0x31 0x30 0x33 0x32 0x35 0x34 0x37 0x36 0x39 0x38 0x62 0x61 0

x64 0x63 0x66 0x65

LISTING 5.9: Keyfinder Tool Output

The directory ma jorkey/keyfinder_dumps now contain two files, one for each run, as
depicted in Listing 5.8. We can then run the keyfinder tool and as we can see in Listing
5.9, the tool is correctly able to differentiate between the key and plaintexts. Although
the use case of keyfinder is fairly trivial here as we could have carried out the analysis
by inspection from looking at MajorKey’s outputs for both traces. The keyfinder tool
increases the reliability when more than one pair of potential keys and plaintexts are out-
putted by the tool. The run through of RC6 shows that MajorKey is able to successfully
recover the plaintext, key and ciphertext from an application encrypting data. Further-

more it shows that our tool can differentiate between the key and different plaintexts.

5.3 Functionality and Performance

To evaluate our tool’s ability to recover cryptographic data we analyse eleven different
applications from seven libraries. Table 5.1 gives an overview of the applications tested
in the following section, and Table 5.2 shows the parameters passed into the applications.
We include analysis on an applications that do not carry out any cryptographic functions,

50 Chapter 5. Evaluation

TABLE 5.2: Parameter Size Overview for Testing Applications

Algorithm Implementation Keysize Inputsize Outputsize Rounds
XOR Custom 128 byte 4096 byte 4096 byte NA
Obfuscated XOR Custom 128 byte 4096 byte 4096 byte NA
RC4-CBC OpenSSL 128 bit 64 bit 64 bit 12
DES-CBC OpenSSL 56 bits 64 bits 64 bits 16
DES-CBC Tareque Hossain 56 bits 64 bits 64 bits 16
DES-CBC Tinycrypt 56 bits 64 bits 64 bits 16
RC6 Tinycrypt 256 bits 128 bits 128 bits 20
RC6 Pravin-Nagare 256 bits 128 bits 128 bits 20
RC6 shashankrao 256 bits 128 bits 128 bits 20
Anagrams Custom NA NA NA NA
Hexprint Custom NA NA NA NA

TABLE 5.3: Filter Performance Results for Testing Applications

Algorithm Implementation Bitwise Entropy Read/Writes Keyfinder

XOR Custom Yes Yes Yes Yes
Obfuscated XOR Custom Yes Yes Yes Yes
RC4-CBC OpenSSL Yes Yes Yes Yes
DES-CBC OpenSSL Yes Yes No Yes
DES-CBC Tareque Hossain Yes Yes No Yes
DES-CBC Tinycypt Yes Yes No Yes
RC6 Tinycrypt Yes No Yes Yes
RC6 Pravin-Nagare Yes Yes Yes Yes
RC6 shashankrao Yes Yes Yes Yes
Anagrams Custom No No No No
Hexprint Custom No No No No

mainly Anagrams that detects if two words are anagram of each other and Hexprint
which takes in user input and prints the hexadecimal representation of it. We provide
analysis of these two non cryptographic functions to show that we correctly identifying
cryptographic loops and do not accept any program loop. For the rest of the applications
tested, all of the inputs parameters are of standard size that would be expected for the re-
spective cryptographic algorithm. Note that we tested XOR with two different input sizes
128 bytes and 4096 bytes as it allowed us to ensure we could detect the XOR operation
regardless of size. Some of the algorithms with multiple different implementations to
ensure that our tool can successfully detect cryptographic data across implementations.
It allows us to evaluate how flexible our tool is and ensures it is not just able to provide
results for specific library implementations of cryptographic functions. Furthermore, we
have kept the inputs to each implementation constant so we do not have different input
data affecting the run times or analysis.

For each of the applications tested, Table 5.3 shows which of our filters are able to detect
the cryptographic data relevant to the application. Here we analyse each of the four filters
we implemented against detection of the cryptographic data. The filters are, as discussed

5.3. Functionality and Performance 51

in Section 3.6, the following;:

1. Bitwise: Loops that contain a high percentage of bitwise and arithmetic instruc-
tions.

2. Entropy: Loops that have sufficient decreasing entropy between inputs and out-
puts.

3. Read/Writes: Loops that read from consecutive memory addresses in the first iter-
ation, and write to consecutive memory addresses in the last iteration.

4. Keyfinder: Our key detection tool, which takes in multiple findings from different
application runs and tries to reports back the encryption key being used.

We note that this table reports whether the filter detected the target data. During the run
of our application, some false positives were generated by our filters, these are discussed
further below and the results here do not show if a filter detected a false positive.

For all of the algorithms, the bitwise filter was able to detect the cryptographic loops.
Furthermore, the key finder filter also successfully recovered full or partial keys for ev-
ery application. The ent ropy filter was similarly effective, but less precise as it detected
cryptographic data for all the tools except for Tinycrypt RC6. In order to remedy
this, we tested various entropy threshold to see if a reduced decreased entropy threshold
would allow us to detect the cryptographic data. We found that by lowering the thresh-
old by 15% the ent ropy filter was able to detect the cryptographic data for Tinycrypt
RC6 but it had the side effect of increasing the number of false positives we saw in other
algorithms, therefore we chose not to alter our threshold.

The Read/Write filter was effective with all applications except for DES—-CBC as regard-
less of the library being used it detected a large number of false positives. We believe this
could be due to a DES-CBC algorithm specific in how data is read and written during the
encryption process as the problem is common to both implementations but more investi-
gation is required. Most of the filters detect the cryptographic data in all the experiments.
These results show that our tool achieves a high confidence of over 75%. As we see fur-
ther in the evaluation potential cryptographic data that is only detected by one or two
filters will have a lower confidence score and is usually indicative of a false positive.

We were able to recover the input text, key and output for all of the test applications
except for the cryptographic output for OpenSSL DES-CBC and shashankrao RC6.
Table 5.4 provides a breakdown of which cryptographic data our tool recovered for each
testing application. Furthermore, for RC6 across all three libraries we were able to recover
round keys and intermediate cryptographic.

As mentioned above, our tool is correctly able to detect cryptographic data, but also gen-
erates false positives. Table 5.5 shows the number of false positives we saw for each
application for each filter and the total represents the number of unique false positives,
as some false positives were generated by more than one filter. Overall, there are very
few false positives but there is a large number for OpenSSL implementations of func-
tions and this appears across all four filters. The Read/Writes filter fared the worst
with more than 10 false positives for both RC4-CBC and DES-CBC, and responsible for

Chapter 5. Evaluation

TABLE 5.4: Cryptographic Material Detection Results for Testing Applica-

tions
Algorithm Implementation Input Key Output Other
XOR Custom Yes Yes Yes NA
Obfuscated XOR Custom Yes Yes Yes NA
RC4-CBC OpenSSL Yes Yes Yes Recovered round keys
DES-CBC OpenSSL Yes Yes No NA
DES-CBC Tareque Hossain ~ Yes Yes Yes NA
DES-CBC Tinycrypt Yes Yes Yes NA
RC6 Tinycrypt Yes Yes Yes Recovered round keys
RC6 Pravin-Nagare Yes Yes Yes Recovered round keys
RCé6 shashankrao Yes Yes No Recovered 4 round keys
Anagrams Custom No No No NA
Hexprint Custom No No No NA

TABLE 5.5: False Positives in Cryptographic Data for Testing Applications

Algorithm Implementation Bitwise Entropy Read/Writes Keyfinder Total
XOR Custom 0 0 0 0 0
Obf. XOR Custom 0 0 0 0 0
RC4-CBC OpenSSL 4 3 14 2 16
DES-CBC OpenSSL 0 3 19 0 21
DES-CBC Tareque Hossain 1 2 4 0 6
DES-CBC Tinycrypt 1 2 3 0 6
RCé6 Tinycrypt 0 0 0 0 0
RC6 Pravin-Nagare 0 1 0 0 1
RC6 shashankrao 0 2 7 5 11
Anagrams Custom 0 0 0 0 0
Hexprint Custom 0 0 0 0 0

5.3. Functionality and Performance 53

TABLE 5.6: Speed Performance of our Instrumentation Tool

Algorithm Implementation Instrumentation time Original time Factor
XOR Custom 855ms 3ms 285
Obfuscated XOR Custom 825ms 2ms 412
RC4-CBC OpenSSL 920ms 4ms 230
DES-CBC OpenSSL 820ms 8ms 102
DES-CBC Tareque Hossain 769ms 4ms 192
DES-CBC Tinycrypt 800ms 5ms 160
RC6 Tinycrypt 1100ms 7ms 157
RC6 Pravin-Nagare 760ms 7ms 108
RC6 shashankrao 4830ms 47ms 102
Anagrams Custom 791ms 3ms 263
Hexprint Custom 922ms 5ms 198

over 70% of the false positives detected by our tool. We believe this is due to OpensSSL
implementations having large overheads in its cryptographic functions resulting in more
reads and writes from memory that our tool was went on to detect. However, as the false
positives were normally only detected by one filter, they were displayed to the user with
a lower confidence score which already suggests to the user they may not be accurate.
Furthermore there was also a large number of false positives generated when evaluating
RC6 shashankrao, this could also be explained by a large overhead, as it’s a Python im-
plementation therefore we have to instrument Python running the program, not a binary
executable.

Overall our tool functions well across a range of different encryption algorithms imple-
mented in different libraries. Furthermore, it correctly does not give back any results for
the programs that contain no encryption functions.

5.3.1 Speed Performance

To evaluate the speed of our tool we analyse the times taken for our instrumentation tool
to run the application, we then compare the added instrumentation time to the original
running time of the application. Alongside that, as we deem speed to be an important
goal of this project, we evaluate our tool’s analysis time for each application with par-
allelisation and PyPy, and without. This allows us to test our parallelised parsing and
analysis infrastructure as discussed in Chapter 4.5.3.

Table 5.6 shows the running time for each application with and without instrumentation
along with the factor increase the testing applications took with instrumentation. It is im-
portant to keep application instrumentation times as close to original application running
times because an application may change what it does if it takes longer than expected to
run certain functions so we need instrumentation to be fast. On average we are able to
keep the instrumentation time at roughly a factor of 150. The slowest factors were 412
and 285 for XOR and Obfuscated XOR respectively. We believe this is due to those pro-
grams being the simplest, as such they have fast initial running times the overhead of the

54 Chapter 5. Evaluation

TABLE 5.7: Speed Performance of our Analysis Tool

Algorithm Impl. Instructions Parallelised time Original time Speedup
XOR Custom 154426 30s 2m 59s 6.0
Obf. XOR Custom 159013 28s 2m 12s 5.1
RC4-CBC OpenSSL 312476 2m 21s 4m 22s 1.9
DES-CBC OpenSSL 441034 2m 34s 6m 42s 2.2
DES-CBC Hossain 1180443 7m 21s 28m 34s 3.9
DES-CBC Tinycrypt 401466 3m 24s 8m 54s 2.6
RC6 Tinycrypt 264141 36s 3m 21s 6.1
RCo6 Nagare 354351 1m 50s 6m 02s 3.2
RC6 shashankrao 38179066 35m 50s 2hrs 4m 29s 3.5
Anagrams Custom 129013 21s 2m 34s 7.5
Hexprint Custom 141792 24s 2m 54s 7.3

instrumentation tool had a greater effect. This is further visible in the 263 factor increase
for Anagrams.

2000
® Parallelised Time @ Original Time
]
1500
g
<
[}
O
\%__ 1000
[y
S
=
{]
500 o °
o0
N % ® ®e
0 | ®
0 300000 600000 900000 1200000

Instruction Count

FIGURE 5.1: Speed Performance of our Analysis Tool

As the aapplications passed into MajorKey increase in size, the time taken to process them
increases. Without the implementation of our parallelisation and speedup techniques the
rate of increase with size is four times faster than without 2. Overall our tool provided
speedups between a factor of 1.9 and 6.1 %, which shows that our switch to PyPy, and our
use of Multiprocessing provided large speed ups. This can be seen in Table 5.7 and

*RC6 shashankrao has not been added to Figure 5.1 due to its size.
*This excludes Anagrams and Hexprint as they are not cryptographic programs.

5.4. Comparison with Other Tools 55

TABLE 5.8: OpenSSL DES-CBC Comparison

OpenSSL DES-CBC MajorKey Grobert Lutz

Plaintext Recovered Recovered NA
Ciphertext Recovered Recovered NA
Key Recovered Recovered NA

TABLE 5.9: OpenSSL RC4-CBC Comparison

OpenSSL RC4-CBC MajorKey Grobert Lutz
Plaintext Recovered Recovered Recovered
Ciphertext Recovered Recovered No
Key Recovered Partial No

Figure 5.1 show the analysis time taken by MajorKey before we added parallelisation and
PyPy to our tool, and afterwards.

5.4 Comparison with Other Tools

In Section 2.3, we discussed related works. There are four main related works that tackle
the same or a similar problem to our work, recovering cryptographic data from binaries. 1t
is hard to directly compare our results against the other tools as we do not have access
to the source code and therefore have to rely on what they say in their papers however
we cannot guarantee results as they are not reproducable. Furthermore, as we test our
application against different encryption algorithms, a direct comparison is not possible.

In the rest of this section our work is evaluated against works by Grobert [12] and Lutz

[18]. Note that comparison with Lutz’s work is hard as the instrumentation traces gener-
ated by his tool has been created using taint analysis, whereas ours has not.

TABLE 5.10: XOR Comparison

XOR MajorKey Grobert Lutz

Plaintext =~ Recovered Recovered NA
Ciphertext Recovered Recovered NA
Key Recovered Recovered NA

56 Chapter 5. Evaluation

TABLE 5.11: Speed Performance Comparison

Algorithm MajorKey time Grobert time Lutz time

XOR 30s 1m 42s NA
DES 2m 34s 3m 3s 46s
RC4 2m 21s 13m 44s NA

5.4.1 Results

Tables 5.8, 5.9 and 5.10 above show how our tool compared to the respective other works.
Where an NA is present it mean that we could not test against it because the report pro-
vided insufficient evaluation against the given test application. Our tool, and Grobert’s
tool have the advantage of being able to recover ciphertexts and well as plaintexts, Lutzs
does not. If the application being analysed by our respective tools receives a large stream
of encrypted text, ours are more likely to recover the cryptographic data as it can be de-
tected without any prior knowledge, whereas Lutz taints the ciphertext being passed into
the tool.

Our tool succesfully recovers data for DES, RC4 and XOR. Lutz’s tool was only able to
recover the plaintext for RC4 which means our tool is stronger due to it’s ability to detect
the key and ciphertext. Furthermore, as can be seen in Table 5.9 our tool is able to recover
the full key for RC4 whereas Grobert’s was only able to recover a partial key. Overall a
direct comparison is hard as the intersecting test beds are limited but from the results our
tool has fared the same if not better than the two compared works.

5.4.2 Speed Performance

We compare speed performance for the same algorithms as above, DES, RC4 and XOR.
Table 5.11 shows the times taken for instrumentation and analysis of each application
where NA indicates insufficient data to carry out the evaluation. Our tool is on average
twice as fast as Grobert’s which is a success. This is a positive result as our tool is also
most similar to Grobert’s as we instrument traces in the same manner. However, Lutz’s
tool appears to be roughly three times faster than ours for the DES result, this may be
due to Lutz’s trace tool using taint analysis causing it to produce a much smaller trace,
further analysis is needed though.

5.5 Case Study: RC6 Chat Application

We now demonstrate MajorKey with a larger, more complex application. The previous
testing applications have been library implementations that took in an input, encrypted
or decrypted it with respect to the cryptographic algorithm in question and outputted
the results. Here we present our tool how our tool works when given a chat application
to analyse.

5.5. Case Study: RC6 Chat Application 57

5.5.1 Chat Application Overview

relays encrypted
messages

~

Server
RC6(message) RC6(message)

FIGURE 5.2: RC6 Chat Application Setup

The set up of our application can be seen in Figure 5.2. Client A can send messages to
Client B via the server. An example message flow would be the following:

1. User sends message using Client A.

Client A then encrypts the message using RC6.

The message is then sent by Client A to the server.

The server forwards the encrypted message to Client B.

Client B decrypts the message.

AL

User can now read the original message sent.

Our chat application is a command line program written in Python using Sockets and
shashankrao’s implementation of RC6. For testing, as shown in AppendixD, we run
a server locally on port 5000, and open two clients in different consoles which can pass
messages using the local server.

We test our application with three plaintext messages sent from Client A to Client
B, being instrumented, using the same key for all three messages as shown in Listing 5.10.

Message 1:

"Hii how are you?’

Message 2:

"I am very sleepy’

Message 3:

"Pls respond, why you no respond to me?!’

Key:
‘A WORD IS A WORD’

LISTING 5.10: RC6 Chat Application Inputs and Key

1

58 Chapter 5. Evaluation

5.5.2 Generating an Instrumentation Trace

As mentioned above, there are three main parts to our chat application, the two clients
and the server. Before we can generate a trace, we must decide what we will instrument.
We instrument one of the two clients as we are interested in recovering the cryptographic
data. The server just relays the data, whereas the applications have the ability to encrypt
and decrypt messages, therefore through instrumenting clients we will be able to recover
the inputs, and output to the encryption.

vagrant@Derp3:~/majorkey$./../../../pin.sh —t obj—intel64/MyPinTool.so —istart
15000 — python ~/examples/pyrc6/client.py localhost 5000

LISTING 5.11: RC6 Chat Application Instrumentation Trace Command

vagrant@Derp3:~/ majorkey$ wc —1 trace.out
4143136

LISTING 5.12: RC6 Chat Application Initial Instrumentation Trace Line
Count

To generate our trace, werun Client B inside of our Pintool using the command shown
in Listing 5.11 which starts a chat application client listing on port 5000. As can been seen
in Listing 5.12, running word count to report the number of lines in the output trace file
shows if we begin instrumentation straight away will contain over 4,000,000 instructions
by the time one message has been received. Not only does it take time to generate this
trace as each of the 4,000,000 instructions have to be instrumented but it will take over 3
hours to analyse.

Consequentially we pass a starting instruction count, as described in 4.2, to skip over the
unnecessary instructions at the start. This not only increases the speed of instrumentation
but reduces the trace size. Unnecessary instructions were determined to be ones that were
ran before the application had received it’s first message. To assess where this boundary
was, we ran the application five times and before Client A senta message we retrieved
the number of lines in the trace file. Then we took the lowest number * reported by the
five runs as the number of instructions to skip at the beginning of instrumentation. As
the application will not have received any messages at that point, we can assume all the
instructions called before are not relevant to the recovery of cryptographic material as
no encrypted data has been sent to the tool yet, and therefore nothing no functions of
interest to our tool will have been called.

5.5.3 Running MajorKey ’s Analysis Tool

Using the above method to reduce trace size, instead of generating a trace with over four

million instructions we were able to reduce that number to just over a million, a 75% trace

size reduction.

vagrant@Derp3:~/ majorkey$ pypy majorkey ../ trace.out —keyfinder="’
keyfinder_dumps’

LISTING 5.13: RC6 Chat Application MajorKey Command

“The lowest number was chosen as we did not want to miss any instructions after trace.

5.5. Case Study: RC6 Chat Application 59

This instruction trace is then passed to our analysis tool using the instruction in Listing
5.13. The keyfinder argument is passed in to ensure our results are saved in a JSON
file for further analysis with other messages.

1 vagrant@Derp3:~/majorkey$ pypy majorkey ../ trace_one.out —keyfinder=’
keyfinder_dumps’

5

5 Confidence: 1.0
4
5 potential inputs

6 0x41 0x20 0x57 0x4f 0x52 0x44 0x20 0x49 0x53 0x20 0x41 0x20 0x57 0x4f 0x52 0x44

0x44

7 A WORD IS A WORDD

s 0x48 0x69 0x69 0x20 0x68 0x6f 0x77 0x20 0x61 0x72 0x65 0x20 0x79 0x6f 0x75 0x3f
9 Hii how are you?

10 potential outputs

11 Oxda Ox6d Oxca Oxa6 Oxdf 0x43 0x0e 0x2b 0x27 0xd6 0x26 0x94 Oxe4 0x56 0x96 0x49

13 Confidence: 0.5

15 potential inputs

16 0x41 0x20 0x57 0x4f 0x52 0x44 0x20 0x49 0x53 0x20 0x41 0x20 0x57 0x4f 0x52 0x44
0x44

17 A WORD IS A WORDD

s 0x20 0x63 0x42 0x12 0x42 0x42 0x42 0x12 0x61 0x49 0x65 0x80 Ox6a 0x71 0x33 0x33

9 potential outputs

20 Oxda 0x6d Oxca Oxa6 Oxdf 0x43 0x0e 0x2b 0x27 0xd6 0x26 0x94 Oxed 0x56 0x96 0x49

21

22

LISTING 5.14: Output for Message 1

The output of our tool for the trace generated by the first message, line 2 in Listing 5.10 is
shown in Listing 5.14 and the subsequent outputs for messages two and three, lines 4 and
6 of the listing respectively are shown in AppendixE. As can be seen, all three inputs,
key and respectively outputs are recovered by MajorKey along with false positives for
Message 1 and Message 2. To increase our confidence, and consequentially reduce the
number of false positives, and distinguish between the key and plaintexts we pass our
results into keyfinder.

1 vagrant@Derp3:~/majorkey$ pypy keyfinder keyfinder_dumps
> Key is 0x41 0x20 0x57 0x4f 0x52 0x44 0x20 0x49 0x53 0x20 0x41 0x20 0x57 Ox4f 0
x52 0x44 0x44

5 A WORD IS A WORDD

1 Messages with a confidence of 1 are:

5 0x48 0x69 0x69 0x20 0x68 0x6f 0x77 0x20 0x61 0x72 0x65 0x20 0x79 0x6f 0x75 0x3f

6 Hii how are you?

7 0x49 0x20 0x61 0x6d 0x20 0x76 0x65 0x72 0x79 0x20 0x73 Ox6¢c 0x65 0x65 0x70 0x79

s I am very sleepy

9 0x50 Ox6c 0x73 0x20 0x72 0x65 0x73 0x70 0x6f Ox6e 0x64 0x2c 0x20 0x77 0x68 0x20
0x79 0x20 0x79 0x6f 0x75 0x20 Ox6e 0x6f 0x20 0x72 0x65 0x73 0x70 Ox6f Ox6e
0x20 0x64 0x20 0x74 0x6f 0x20 Ox6d 0x65 0x3f 0x21 0x20 0x20 0x20 0x20 0x20
0x20 0x20

10 Pls respond, wh y you no respon d to me?!

11 Messages with a confidence of 0.5 are:

12 0x20 0x63 0x42 0x12 0x42 0x42 0x42 0x12 0x61 0x49 0x65 0x80 Ox6a 0x71 0x33 0x33

13 0x73 0x68 0x63 0x68 Ox6e 0x61 Ox6¢c Oxb6a 0x53 0x68 0x68 0x41 0x73 0x21 0x52 0x44

142 shchnaljShhAs !RD

LISTING 5.15: Keyfinder Outputs

60 Chapter 5. Evaluation

Keyfinder is run with the path to the directory containing the JSON dumps our tool
generated when analysing the traces for the encrypted messages received by Client B.
Analysis of key finder is shown in Listing 5.15, here we can see on line 3 it has correctly
recovered the key, and the three plaintexts with a confidence of one as shown on lines
6, 8 and 10 respectively. Furthermore it outputs two potential messages with half the
confidence on lines 12 and 13 respectively. These two messages are not false positives but
have been identified as they were found in cryptographic loops that use the some of the
key. E.G. The input message shchnal jShhAs ! RD as shown in Listing E.1 is found with
in a potentially cryptographic loop along with the partial key A WORD IS.Nevertheless,
as you can see all data was found.

5.5.4 Conclusion

MajorKey successfully recovered both the inputs, key and outputs passed to our chat
application. We consider this a success as it was able to do so despite a variety of other
application processing for receiving and sending messages to the server happening at the
same time.

The set up described in this section is typical of applications that exist today that are
connected to the Internet of Things. A real word scenario representative of our case study
could be a user sending a message between an application on their phone, Client Ain
5.2, and the heating system in their house Client B, via a server owned by the company
that designed their smart heating system, the server. The successful analysis of this case
study shows the strength of MajorKey and it’s ability to help security researchers analyse
and secure existing applications and technologies used by people every day.

61

Chapter 6

Conclusion

MajorKey is an end-to-end suite of tools to enable recovery of cryptographic data from
applications using encryption. To achieve this goal we have developed a cross plat-
form instrumentation tool which is able to generate traces from the run of an executable.
Alongside that, we produced a command line tool that automatically detect cryptographic
operations within the trace generated for the run of an application. Once cryptographic
operations have been detected, we are then able to recover the input and the key to that
function as well as the output. Furthermore, we detect intermediate round keys and
ciphertexts when block ciphers are used.

6.1 Contributions

The following section summarises our key achievements.

MajorKey Instrumentation Tool

Our tool can take in any binary, analyse it and generate traces with a reasonable slow-
down. As application size increases, the efficiency of our tool does as the initial instru-
mentation setup overhead is spread across a longer run. Our instrumentation tool out-
puts results in a specific message format designed for our command line analysis tool.
Furthermore, to help reduce the trace size outputted by the tool, it accepts a start mem-
ory address, end memory address and function name as arguments to control what parts
of the executable is instrumented - this also has the added benefit of decreasing the run-
time of the tool.

MajorKey Python Tool

We developed a Python framework that allows for detection of cryptographic loops and
recover cryptographic data, and a command line tool that implement the said framework.
Our framework has been designed with speed in mind, and is on average twice as fast as
the most similar existing tool. It can be easily extended to work with new filters and be
built on top of. Moreover it is flexible and able to accept traces created using a range of
different instrumentation tools.

62 Chapter 6. Conclusion

Recovery of Cryptographic Material

MajorKey is able to recover cryptographic materials, including inputs, outputs, keys and
intermediate results from XOR, RC4, DES and RC6. Furthermore, although our tool is not
designed to work with obfuscated binaries, we are able to successfully analyse a simple
obfuscated XOR application.

RC6 Evaluation

Our evaluation against RC6 represents a novel contribution as it has not been success-
fully evaluated before. We tested against two different library implementations and got
successful results for recovering the input, key, output and intermediate round keys and
ciphertexts for both. RC6 is a secure encryption algorithm that has wide usage today,
including being used in malware distributed by the NSA [29].

RC6 Chat Application Case Study

We successfully evaluated gainst a complex application receiving messages via sockets
from another client. The key, inputs and outputs were recovered from messages sent
using the RC6 encryption algorithm. The data communication application tested in this
thesis is in line with real world applications proving our tool is capable of handling pro-
grams of such scale.

MajorKey Keyfinder Filter

A new filtering technique that is able to analyse multiple traces to make inferences about
the key and plaintext. This method works when the key used is the same across the
traces being compared, and this is normally the case with symmetric ciphers as they are
designed to be long term. Keyfinder increases our confidence in the key and plaintext
pair, and can help us determine the correct key plaintext pair if our main tool outputs
multiple potential key and plaintext pairs. This method worked successfully for all of
the applications we tested.

6.2 Future Work

This section discusses various improvements that could be made to MajorKey in the fu-
ture. A majority of the items mentioned we would like to have implemented or tried had
more time been available.

6.2. Future Work 63

Obfuscated Binaries

Extending our tool to work with obfuscated binaries is a future work that can be under-
taken. This is a large task due to the different methods that are employed to obfuscate
binaries. One of which would be embedding unnecessary arithmetic and bitwise loops
in the normal application processing code to throw off MajorKey’s filters. How to pre-
vent an application evading our analysis through those means still remains a technical
challenge.

Multiple Encryption Applications

MajorKey has only been tested on applications that implement one cryptographic func-
tion e.g. a DES encryption or a RC6 encryption. It has not been tested against applica-
tions which wrap data in multiple layers of encryption. Although one can argue this is
unlikely to occur in every day applications, if we were to analyse botnets or other forms
of malware it may appear and would be an interesting next step.

Reevaluating OpenSSL

As shown in the evaluation, our tool struggles in recovering data from OpenSSL imple-
mentations of algorithms. We would like to investigate into this issue further to establish
why this occurs. Due to a large number of false positives being detected we believe that
the problem could be due to the thresholds set for our cryptographic loop detection fil-
ters. If this is the case then one solution would be to manually override them at runtime.

Ransomware Testing

Currently most of our analysis has been carried out on simple applications implementing
cryptographic functions, with more time we would like to investigate how MajorKey
performs when given a larger application such as randsomware. As ransomware traces
tend to be large, often 5GB upwards, and more complex program they will truly test
MajorKey’s ability.

N

Appendix A

DES Objdump output

vagrant@Derp3:~/examples$ objdump —t DES/run_des.o

3 DES/run_des.o:

4

5 SYMBOL TABLE:

®

w

[
¥

33 0000000000603 e50

[
SIS

)
%

; 00000000004007 a8

5 0000000000602€10

» 0000000000000000

0000000000400238 1
0000000000400254 1
—tag
0000000000400274 1
.ghu.build—id
0000000000400298
00000000004002b8
0000000000400498
000000000040055¢
version

—

3 0000000000400588 1

version_r
00000000004005c8
00000000004005€0

00000000004007d0
0000000000400910
0000000000401b54
0000000000401b60
0000000000401e18

eh_frame_hdr
0000000000401e78

bt b et e et

0000000000602€18
0000000000602e20
0000000000602e28
0000000000602 ££8
0000000000603000
00000000006030c0
0000000000603 e20
0000000000000000
0000000000000000

0000000000603 e40
0000000000603e30

0000000000602e20
0000000000400e80

bt et b et et et et et et e et e et et e et et

file format elf64—x86—64

0000000000000000
0000000000000000

d .interp
d .note.ABl-tag

d .note.gnu.build—id 0000000000000000

.gnu.hash 0000000000000000
.dynsym 0000000000000000
.dynstr 0000000000000000
.gnu.version 0000000000000000

Q0 a0 a

(oW

.gnu.version_r 0000000000000000

.rela.dyn 0000000000000000
.rela.plt 0000000000000000
.init 0000000000000000

.plt 0000000000000000

.text 0000000000000000

.fini 0000000000000000

.rodata 0000000000000000
.eh_frame_hdr 0000000000000000

Q0 000900

0000000000000000
.init_array 0000000000000000
.fini_array 0000000000000000
.jcr 0000000000000000
.dynamic 0000000000000000
.got 0000000000000000
.got.plt 0000000000000000
.data 0000000000000000

.bss 0000000000000000
.comment 0000000000000000

df xABSx 0000000000000000

O .bss 0000000000000008

O .bss 0000000000000008

O .bss 0000000000000008

.eh_frame

Q000000000

deregister_tm_clones

0000000000400eb0 1

register_tm_clones

df xABSx 0000000000000000
O .jcr 0000000000000000

F .text 0000000000000000
F .text 0000000000000000

65

.interp
.note . ABI

.note

.gnu. hash
.dynsym
.dynstr

.gnu.

.gnu.

.rela.dyn
.rela.plt
.init
.plt
. text
.fini
.rodata

.eh_frame
.init_array
.fini_array

.jer
.dynamic
.got
.got. plt
.data
.bss
.comment
run_des.c
key_file
input_file
output_file
crtstuff.c
__JCR_LIST__

B

53 0000000000603000 1

®

66

Appendix A. DES Objdump output

> 0000000000602e18 1

0000000000400ef0 1 F .text
__do_global_dtors_aux
0000000000603e20 1

__init_array_end
0000000000602e28 1
0000000000602e10 1

__init_array_start

_GLOBAL_OFFSET_TABLE_

.init_array

0000000000000000

O .bss 0000000000000001
O .fini_array
_do_global_dtors_aux_fini_array_entry

3 0000000000400£f10 1 F .text 0000000000000000

0000000000602e10 1 O .init_array 0000000000000000
__frame_dummy_init_array_entry

5 0000000000000000 1 df *ABSx 0000000000000000

, 0000000000000000 1 df *ABSx 0000000000000000

7 00000000004020d0 1 O .eh_frame 0000000000000000
0000000000602e20 1 O .jcr 0000000000000000
0000000000000000 1 df *ABSx 0000000000000000
0000000000602e18 1 .init_array 0000000000000000

O .dynamic 0000000000000000
0000000000000000

O .got.plt 0000000000000000

0000000000401b50 g F .text 0000000000000002
0000000000000000 F sUND« 0000000000000000
0000000000000000 F «UND« 0000000000000000
.2.5
0000000000603860 g O .data 0000000000000100
0000000000603260 g O .data 0000000000000100
0000000000603460 g O .data 0000000000000100
0000000000603660 g O .data 0000000000000100
0000000000000000 w «UNDx 0000000000000000
_ITM_deregisterTMCloneTable
> 00000000006030c0 w .data 0000000000000000
0000000000000000 F «UND« 0000000000000000
0000000000000000 F «UND« 0000000000000000
.2.5
00000000004014a0 g F .text 000000000000063c
» 0000000000603e20 g .data 0000000000000000
0000000000000000 F «sUND« 0000000000000000
.2.5
0000000000000000 F «UND« 0000000000000000
.2.5
0000000000401b54 g F .fini 0000000000000000
0000000000000000 F «UND« 0000000000000000
__stack_chk_fail@e@GLIBC_2 .4
0000000000603a60 g O .data 00000000000000c0O
0000000000000000 F «UND« 0000000000000000
.2.5
5 0000000000000000 F «UND« 0000000000000000
__libc_start_main@@GLIBC_2.2.5
0000000000000000 F «sUND« 0000000000000000
.2.5
5 00000000006030c0 g .data 0000000000000000
0000000000603d40 g O .data 00000000000000e0
initial_key_permutaion
0000000000000000 F sUND«+ 0000000000000000
.2.5
0000000000000000 w «UNDx 0000000000000000
00000000006030c8 g O .data 0000000000000000
__dso_handle
0000000000400fe0 g F .text 00000000000001ba
0000000000401b60 g O .rodata 0000000000000004
> 0000000000000000 F «sUND« 0000000000000000
3 0000000000603960 g O .data 0000000000000100

0000000000000000

completed.6973

frame_dummy

des.c
crtstuff.c
_ FRAME_END__

__JCR_END__

_DYNAMIC

__libc_csu_fini
free@@GLIBC_2.2.5
putchar@@GLIBC_2

52
S8
S6
S4

data_start
puts@@GLIBC_2.2.5
fread@@GLIBC_2

process_message
_edata
clock@@GLIBC_2
fclose@@GLIBC_2
_fini

message_expansion
memset@@GLIBC_2

srand@@GLIBC_2

_data_start

ftelle@GLIBC_2

__gmon_start__
.hidden

print_key_set

_IO_stdin_used
time@@GLIBC_2.2.5
S1

84

89

102

106

107

108
109

Appendix A. DES Objdump output

67

00000000006031e0 g O .data 0000000000000080
right_sub_message_permutation

5 0000000000603e20 g

final_message_permutation

5 0000000000400f90 g F .text 000000000000004d
» 0000000000603360 g O .data 0000000000000100
0000000000603560 g O .data 0000000000000100
0000000000401ae0 g F .text 0000000000000065
0000000000603760 g O .data 0000000000000100
0000000000000000 F «UND«+ 0000000000000000
.2.5
0000000000603e58 g .bss 0000000000000000
0000000000400e4c g F .text 0000000000000000
0000000000000000 F «UND« 0000000000000000
.2.5
00000000006030e0 g O .data 0000000000000100

.bss 0000000000000000

0000000000400910 g F .text 000000000000053c¢
7 0000000000000000 F «UND+ 0000000000000000
__printf_chk@@GLIBC_2.3.4
00000000004011a0 g F .text 00000000000002f9
0000000000000000 F «UND+ 0000000000000000
.2.5
) 0000000000000000 w *UNDx 0000000000000000
_Jv_RegisterClasses
0000000000603c40 g O .data 0000000000000100
initial_message_permutation
0000000000603b20 g O .data 00000000000000c0
sub_key_permutation
5 0000000000000000 F «UNDx 0000000000000000
.2.5
0000000000603e20 g O .data 0000000000000000
_TMC_END__
5 0000000000000000 w *UNDx 0000000000000000
_ITM_registerTMCloneTable
0000000000603be0 g O .data 0000000000000044
0000000000400f40 g F .text 000000000000004c
print_char_as_binary
00000000004007a8 g F .init 0000000000000000
0000000000000000 F «UND+ 0000000000000000

generate_key

S7

S5
__libc_csu_init
S3
malloc@@GLIBC_2

_end

_start
fseek@@GLIBC_2

__bss_start

main

generate_sub_keys
fopen@@GLIBC_2

fwrite@@GLIBC_2

.hidden

key_shift_sizes

_init
rand@@GLIBC_2.2.5

69

Appendix B

RC6 Control flow graph

FIGURE B.1: Overview of entire CFG

70

Appendix B. RCé6 Control flow graph

T
or eax, eax :0x00007fd773eb9ae0
< or eax, e o -
J— <~ cmpxchg dword pir [
mov qword ptr [rdil, rhx —_—
___ 0x0000704773ebYaB0

R r——— < mov rbp, qword ptr [rbx]
(:xm' esi, esi :0x00007Fd773eh9b20 kj

@‘ ptr [rsp+0x20] :0x00007[d7739®
i i - —
" < mov rdx, qword ptr [r8] :0x00007fd773ebE397

& tost by, tbx .UxUUUU?[d?Tae@

- —
» 7Fa7 55 s learsi, pir [rax+0x10] :0x00007Fd7T3ebl14
(:_“w1p+0x39c004] 0x00007d7T0nde55 lea rsi, ptr [rax 1 7 a_j:)
. A

@’, 0x8 :0x0000000000400a96 movqwnrd ptr [rsil, Ox1
:0x00007[d7 3ebl3d

<_add rhx, Ox1 :0x0000000000100a8d___ >

. S < dec dword plr [rip-0x383:91] :0x00007[4773:bBH >
7IT73ebE0

o R
< poprbp :umuuuuuuouum@ Z
P & add rap, Oxfl -0x00007FA7T3ebFA05
ok 05
, 0x601240 :0x0000000000400620
< mov eax, O _Z::)

<mﬂv 8, rbp -0x00007fd773eb

test rax, :0x00007(d773ebl4d9
jmp 0x1006¢0 \\ Qmm . ’:_,’T/\/'
:0x0000000000400768 ./

" I
/ " mov rdi, rbx :0x00007(d773ebfde

— —_—
cmp gword ptr [rip+ OxZUUEdBI, Ox0 :0x0000000000400740 >

< mov rdx, qword ptr [rip+0x39c036] :0x00007d773eade2d >
— movrdx, qwon TMd7T3eade23

op dword pic [m T I— A
0x0000000000100a78 <__test rbp, rbp :0x00007fd773eadedb >

I x.qword ptr [rip+0x39c061] :0x00007fd 7 73eaded0
< test rbp, rbp :0x0000000T064
—__test thp, rhp. = SA—

FIGURE B.2: Close up of CFG nodes

71

Appendix C

Intermediate RC6 rounds

1 ['0x7ffe0b8cb020’, '0x7ffe0b8cb01c’, "0x7ffe0b8cb018’, "0x7ffe0b8cb014’, 0
x7ffe0b8cb010’, "0x7ffe0b8cb00c’, ’'0x7ffe0b8cb008’, '0x7ffe0b8cb004’, 'O
x7ffe0b8cb000’, "0x7ffe0Ob8caffc’, '0x7ffe0b8caff8’, 'Ox7ffe0Ob8caff4’, ’0
x7ffe0b8caff0’, 'Ox7ffe0Ob8cafec’, 'Ox7ffe0b8cafe8’, "0x7ffe0Ob8cafed4’, ’0
x7ffe0b8cafe0’, '0x7ffe0Ob8cafdc’, '0x7ffeOb8cafd8’, ’'0x7ffeOb8cafd4’, ’0
x7ffe0b8cafd0’, "0x7ffeOb8cafcc’, '0x7ffeOb8cafc8’, '0Ox7ffeOb8cafc4’, 'O
x7ffe0b8cafc0’, 'Ox7ffeOb8cafbc’, '0Ox7ffe0b8cafb8’, "0x7ffe0b8cafb4’, ’0
x7ffe0Ob8cafb0’, "0x7ffeOb8cafac’, '0x7ffe0b8cafa8’, '0x7ffe0Ob8cafad’, ’0
x7ffe0b8cafal0’, '0x7ffe0Ob8caf9c’, '0x7ffe0b8caf98’, '0x7ffe0b8caf94’, 'O
x7ffe0b8caf90’, 'Ox7ffe0b8caf8c’, 'Ox7ffe0b8caf88’, "0x7ffe0b8caf84 "]

> [’0xfa90dled’, ’"0xad452bb3’, ’'0xa58d40b6’, '0x7e657009’, ’'0xd526156¢c’, 0
x97cb7f6a’, '0x5b05e64a’, ’'0x44e6348c’, ’'0x3311b59e’, "0x9f83bf9b’, 0
x7321e9a0’, ’'0xed47ba777’, '0x9134331’, ’'0x343dd646’, ’'0xb50191d6’, '0
xb10e0f99 ", "0xd944f68°’, "0xc8346538’, ’'0xb7dbb70a’, ’'Ox1fd53adc’, ’0
xea48ed81’, ’'0xfa93fe7b’, ’0xell395bd’, ’'0x3482f3a8’, ’'0x3276050e’, 0
xf125a41f’, ’'0x3023742c¢’, ’'0x51849bbc’, ’'0x57dffb86’, '0x3f6096d’, ‘0
x73f747eb’, ’'Oxedeba3le’, ’'0xfe4244d8’, ’'0xe9ba8b67’, '0x1c924934’, ’0
x9cabadc’, ‘0x1e729f9a’, ’'0x6b7457a’, ’'0xa8a83848’, ’'0x35241302"]

3 ["Oxafbecdbd3’, '0x59005c¢7d’, '0x430caa83’, ’‘Oxad452bb3’, ’'0xdd355af7’, ‘0
x7e657009 ", '0x6ff2458c’, '0x97cb7f6a’, '0Oxf7e8cO0c’, ’'0x44e6348c’, 0
x2da353ec’, '0x9f83bf9b’, ’"0x5f934c5f’, ’'Oxed47ba777’, ’'0xa2l5b2ca’, 0
x343dd646 ', '0x2322¢9f97, "0xb10e0f99’, ’'0x220a8b86’, ’'0xc8346538’, 0
xf6b36779 7, ’'0x1fd53ad4c’, '0x39612c4’, ’'0xfa93fe7b’, '0Oxdabfl39f’, 0
x3482f3a8’, '0x37482596’, ’'0xfl25a41f’, ’'Oxdfdlal27’, ’'0x51849bbc’, 0
x99765bd9 ', '0x3f6096d’, '0x8dda4fbf’, ’‘Oxedeba3le’, "0x6002659b’, 0
xe9ba8b67’, "0x5e84356b’, ’'0x9cabadc’, ’'Oxbdac9b8a’, '0Ox6b7457a’]

1 [’0xad452bb3’, ’'0xfef4d10b’, '0x7e657009’, ’'Oxafbcdbd3’, '0x97cb7f6a’, 0
x430caa83’, ’'0x44e6348c’, ’'0xdd355af7’, '0x9f83bf9b’, '0x6ff2458c’, 0
xed7ba777’, '0xf7e8c0c’, ’'0x343dd646’, ’'0x2da353ec’, '0xb10e0f99’, 0
x5f934c5f’, "0xc8346538’, ’'Oxa2l5b2ca’, ’'0x1fd53a4c’, '0x2322c9f9’, '0
xfa93fe7b’, ’'0x220a8b86’, ’'0x3482f3a8’, ’'0xf6b36779’, ’'0xfl25a41f’, ’0
x39612c4’, '0x51849bbc’, '0Oxdabfl139f’, ’"0x3f6096d’, '0x37482596’, ’'0
xedeba3le’, ’'0Oxdfdlal27’, ’‘0xe9ba8b67’, "0x99765bd9’, ’'0x9cabadc’, ‘0
x8dda4fbf’, "0x6b7457a’, '0x6002659b’, ’'0x35241302’, ’'0x5e84356b "]

5 [70x6002659b ", "0x6b7457a’, ’'0x8dda4fbf’, "0x9cabadc’, ’0x99765bd9’, ‘0
xe9ba8b67’, ’'Oxdfdlal27’, ’‘Oxedebaldle’, ’'0x37482596’, ’'0x3f6096d’, 'O
xdabf139f’, "0x51849bbc’, '0x39612c4’, ’'0xfl25a41f’, '0xf6b36779°, ’0
x3482f3a8’, ’'0x220a8b86’, ’'0xfa93fe7b’, '0x2322c9f9’, ’'0Ox1fd53a4c’, ’0
xa215b2ca’, '0xc8346538", ’'0x5f934c5f’, 'Oxb10e0f99’, ’‘0x2da353ec’, 0
x343dd646’, '0xf7e8c0c’, ’'Oxed47ba777’, '0x6ff2458c’, '0x9f83bfI9b’, 0
xdd355af7’, '0x44e6348c’, ’'0x430caa83’, '0x97cb7f6a’, ’'Oxafbcdbd3’, ’0
x7e657009 ", '0Oxfef4d10b’, ’'Oxad452bb3’, ’'0x485d4e67’, ’'0x59005c7d’]

72 Appendix C. Intermediate RC6 rounds

6 ['0x7ffe0b8caf8c’,
x7ffe0b8caf9c’,
x7ffe0b8cafac’,
x7ffe0b8cafbc’,
x7ffe0b8cafcc’,
x7ffe0b8cafdc’,
x7ffe0b8cafec’,
x7ffe0b8caffc’,

"0x7ffe0b8caf90’,
"0x7ffe0b8cafal ’,
"0x7ffe0b8cafb0’,
"O0x7ffe0b8cafc0’,
"0x7ffe0b8cafd0 ’,
"0x7ffe0b8cafel ’,
"0x7ffe0b8caffl’,
"0x7ffe0b8cb000 ’,

x7ffe0b8cb00c’, '0x7ffe0b8cb010”,

x7ffe0b8cb01c’, "0x7ffe0b8cb020’,
7 [’0xa8a83848’, '0x6002659b’, ’'0x1e729f9a’,

"0x7ffe0b8caf94’,
"Ox7ffe0b8cafad’,
"0x7ffe0b8cafb4’,
"0x7ffe0b8cafc4d’,
"0Ox7ffe0b8cafd4’,
"0Ox7ffe0b8cafed ’,
"0x7ffe0b8caff4’,
"0x7ffe0b8cb004 ’,
"0x7ffe0b8cb014 ",
"0x7ffe0b8cb024 ",
"0x8dda4fbf’,

"O0x7ffe0b8caf98’,
"0x7ffe0b8cafa8’,
"0x7ffe0b8cafb8’,
"Ox7ffe0b8cafc8’,
"0x7ffe0b8cafd8’,
"0x7ffe0b8cafe8 ’,
"0x7ffe0b8caff8’,
"0x7ffe0b8cb008 ’,
"0x7ffe0b8cb018 ",
"0x7ffe0b8cb028]
"0x1c924934", '0

0
0
0
0
0
0
0
0
0

0

x99765bd9 ’,
, 'Oxdabf139f’,
, '0xel1395bd’,
, '0Oxa215b2ca’,
, '0x9134331",
, '0xdd355af7’,
, "0xa58d40b6 ",
"0xe9ba8b67 ’,

x57dffb86 "
xf6b36779 '
xb7dbb70a ’
x2da353ec’
x3311b59%e’
xafbcdbd3”’
["0x9cabadc’,
x8dda4fbf’
xfl125a41f’
x39612c4 ",
xb10e0f99 ’
x5f934c5f”
x97cb7f6a’
x430caa83 "’
[70x5c276548 ",
["0xb74df56e ",
[70x2056782f",
["0xbdf307cb ”,
[’0x4a0044ae’,
[’0x18a30af6 ',
["0x62ce8ad5”’,
[’Oxble5c9ff”,
["0xbbf5d98a’,
[70x80eleldb ’,
[0xbc99e6b7 ",
["0xd7al12765 ",
["0xe9a4ce28 ",
[’Oxball6f2’,
["0xe092b680 ",
["Oxadd0e8c3 ",
[’Oxed4cd1bd0’,
["Oxee3fb316 ",
["0x4b4a9985 ",
[’0x9f0ab44a’,
[70xf93bb6f0 ",
["0x73bfded4d’,
[70x180b96dd ",
["0xf361deab’,
[70x79715882 ",
[70x32bd9751 ",
["0x63edc9f’,
[70x7594df90 ",
[’0xe0652e31 ",
["Oxaleb50d’,
[70xdb70333 ",
["0xef925212 ",
[’0x3de84ele”,
["0x3efc0d8d”,
[70x957231bf ",
[Oxcf6abfe6 ”,
["Oxdfae2b05 ",

"Oxfe4244d8 ",

"0x5e84356b 7,

, '0x3f6096d ",
, '0x37482596 ",

"0x1fd53a4c’,

, '0x2322c¢9f9 7,
, '0x9£83bf9b ",
, '0x6ff2458c’,
, '0x59005c7d ",

"0xf520fa94 ",
"0x5c46a9ac’,
"0x87a2e9ac’,
"0x4fb3e6f2 ",
"0x79d34bal’,
'0x47224421 7,
"0x4396508f ",
"0x5cd76e9f’,
"0x9748788b ",
"0xbb675781 ",
"0x405c¢5384 7,
"0x6d7bb7ca’,
"0x5e46512f ",
"0xa6503f61 ",
"0x85695f15 ",
"0Ox3aaab847 ",
"0x73b485e9 ",
"Oxbcdbf434 ",
'0x17e21ec3’,
"Oxb6eaeee’,
"0Oxeeb5973b2 ",
"Oxc8faddb2’,
"0xa97cdabb ’,
"0xdc239031 ",
"0x8elf2167 ",
"0Oxe07f649 ",
"Oxfedfdd9o0’,
"0xf7bdc219 ",
"0x89¢c99a69 ',
"0x272bc443 ",
"0x2ec6b2d6d’,
"0xb8bdc9fb ’,
’0x63dd1135 ",
"0xa56d9b06 ”,
"0x26d21c6b ”,
"0xdcf9832 ",
’0x23724515 ",

"0Oxdfd1al127’,
"0x3023742c¢’,
"0x220a8b86 ",
"0xd944f68 ",
"0xf7e8c0c’,
"0x5b05e64a’,
"Oxfef4d10b’,

"0x99765bd9 ’,
"0x3482f3a8 "',
"0xf6b36779 ",
"0x343dd646 7,
"0x2da353ec’,
"0x7e657009 ",
"Oxafbcdbd3’,
"0x4292£8b5]
"0x1d572b13 "]
"0x19d36d38 " |
"0xb267cfd0 "]
"0x9cc9a909 "]
"0x60cfb203 "]
"0x9c6787aa]
"Oxcae80986 "]
'0x24767984 "]
"Oxee57ded7 "]
"Oxeb5ffbcf4]
"0x270960fc "]
"0x7c74a515 "]
"0x5f034ef9 "]
"0x43c8ee38 "]
"0x6cd53e60 "]
"Ox1ac43630 "]
"0x249e9335 "]
"0x995e8fa7]
"0Oxc00a874a]
"0x9ed327da]
"0x5e043e95 "]
"0x7922e9b0 "]
"Oxalee2334 "]
"0xa8bf3362]
"0x4ce52d93]
"0xa221dcl15]
"0xc252d591 "]
"Oxdb5ad7ce2]
"0xb65035df "]
"0xbd17c¢84b ’]
"Oxef8ad17d]
"Oxcac74d45 "]
"Ox1e2b3e22 "]
"0x3e0alal3’]
"0x6ca3559d ']
"0x158£86 "]

"0x7321e9a0 ',

"0x6002659b ”,

"0x73f747eb ",

"0x39612c4 ",

"Oxead8ed81’,
"0x5f934c5f 7,

"0x430caa83 ',
"0Oxfa90dled’,

"0x51849bbc ’,
"0Oxdabf139f’,

"0xc8346538 7,
"Oxa215b2ca’,
"0x44e6348c’,
"0xdd355af7’,
"0x89e4d7f0 ",

"0x6ff2458c”,

"Oxedeba3le’,

"0x37482596 ",
"0x3276050e ",

"0x2322c¢9f9 7,
"0xb50191d6 ",

0
0
0
0
"0xd526156¢ ",
"0x485d4e67 "]

"0

0
0
0
0
"0
0
0

"0Oxdfd1al127’,
"0xfa93fe7b ”,

"0x220a8b86 ",
"Oxed47ba777’,
"0xf7e8c0c’,
"Oxad452bb3’,
"Oxfef4d10b ”]

46
7
8
49

N

50
1
52

&)

Appendix C. Intermediate RC6 rounds

73

["0xbf0a8bld ",
[’Oxdbf2c6d6 ’,
[70x8b2045d9 ",
[70xb5719c02 ",
[70xd98b251b ’,
["0x76b7a6e7 ",
["0x3e4747ac’,

"0x170b693f ",
"0xd32539e7 ",
"Oxa74ed888 ",
"Oxed414e5de’,
"0x7af7b2ec’,
"0xd08f21c5 ",
"0x80917a37 ",

"0x8d4eee34]
"Oxab9b84c5 7]
"0xf65f68ba]
"0Oxc6cd835e]
'0xf9422a66]
'0x120160d7 "]
"0x21cb2309 "]

75

Appendix D

Case Study: RC6 Chat Application
Setups

FIGURE D.1: RC6 Chat Application Client 1

FIGURE D.2: RC6 Chat Application Client 2

76

Appendix D. Case Study: RC6 Chat Application Setups

FIGURE D.3: RC6 Chat Application Server

Appendix E

Case Study: RC6 Chat Application

Outputs

1 Confidence: 1.0

5

5 potential inputs

1 0x41 0x20 0x57 Ox4f 0x52 0x44 0x20 0x49 0x53 0x20 0x41 0x20
0x44
5 A WORD IS A WORDD
6 0x49 0x20 0x61 O0x6d 0x20 0x76 0x65 0x72 0x79 0x20 0x73 O0x6¢
7 1 am very sleepy
s potential outputs
9 Oxcl 0x60 Oxcf 0x46 Oxec 0x03 O0xb9 0x01 0x29 Oxla 0x76 0x87
10
11 Confidence: 0.75
12
13 potential inputs
14 0x41 0x20 0x57 Ox4f 0x52 0x44 0x20 0x49 0x53 0x20
15 A WORD IS
16 0x73 0x68 0x63 0x68 0x6e 0x61 0x6¢c Oxb6a 0x53 0x68 0x68 0x41
17 shchnaljShhAs !RD
15 potential outputs
19 0xe3 0x01 0x29 Oxla Oxdf 0x43 0x46 Oxec 0x27 0xd6 0x26 0x73
20
21
LISTING E.1: Output for Message Two

1 Confidence: 1.0

5

5 potential inputs

4+ 0x41 0x20 0x57 0x4f 0x52 0x44 0x20

5 A WORD IS A WORD

6 0x50 0x6c 0x73 0x20 0x72 0x65 0x73

0x79 0x20 0x79 0x6f 0x75
0x20 0x64 0x20 0x74 Ox6f
0x20 0x20

0x20
0x20

0x49 0x53 0x20 0x41 0x20

0x70 Ox6f Ox6e 0x64 0x2c
Ox6e 0x6f 0x20 0x72 0x65
0x6d 0x65 0x3f 0x21 0x20

7 Pls respond, wh y you no respon d to me?!

s potential outputs

9 0x33 0x63 0x85 0xb2 Oxla 0xO0f Oxdl O0x7f O0x2f 0x8b 0x7a 0x86
0Oxe6 0x9c 0x99 0x69 0x56 0x23 OxaZ7 O0xf5 0x93 Oxe2 Oxaf
Oxed 0x2e 0x73 O0xf5 0x9a O0x 0 O0xx8 0x0b 0xb0 0xb0 O0x6¢

0x65 0x42 0xb2 0x04

LISTING E.2: Output for Message Three

0x57

0x65

0xdo0

0x73

0x6¢

0x57

0x20
0x73
0x20

0x6b
0x12
Oxcb

0x4f

0x65

0x29

0x21

0x65

0x4f

0x77
0x70
0x20

Oxed
0xb6
Oxfa

0x52

0x70

0x35

0x52

0x96

0x52

0x68
0x6f
0x20

0x67
0x3f
Oxaf

77

0x44

0x79

0x2

0x44

0x49

0x44

0x20
Ox6e
0x20

0x35
0x0f
0xdf

79

Bibliography

[1]

[2]

3]

[4]

[5]

6]

[7]

[8]

[9]

[10]

[11]
[12]

Jeft Atwood. The Infinite Space Between Words. Visited on 26/05/2016. 2014. URL:
https://blog.codinghorror.com/the—-infinite- space—-between-
words/.

Davide Balzarotti et al. “Efficient Detection of Split Personalities in Malware.” In:
Visited on 02/06/2016.

Sion Berkowits. Pin - A Dynamic Binary Instrumentation Tool. Visited on 27/05/2016.
2012. URL: https://software.intel .com/en—-us/articles/pin—-a-
dynamic-binary-instrumentation-tool.

Carl Friedrich Bolz et al. “Tracing the meta-level: PyPy’s tracing JIT compiler”.
In: Proceedings of the 4th workshop on the Implementation, Compilation, Optimization of
Object-Oriented Languages and Programming Systems. Visited on 26/05/2016. ACM.
2009, pp. 18-25.

Georges Bossert, Frédéric Guihéry, and Guillaume Hiet. “Towards automated pro-
tocol reverse engineering using semantic information”. In: Proceedings of the 9th
ACM symposium on Information, computer and communications security. Visited on
22/05/2016. ACM. 2014, pp. 51-62.

Juan Caballero et al. “Dispatcher: Enabling active botnet infiltration using auto-
matic protocol reverse-engineering”. In: Proceedings of the 16th ACM conference on
Computer and communications security. Visited on 16/05/2016. ACM. 2009, pp. 621-
634.

Joan Calvet, José M Fernandez, and Jean-Yves Marion. “Aligot: cryptographic func-
tion identification in obfuscated binary programs”. In: Proceedings of the 2012 ACM
conference on Computer and communications security. Visited on 13/05/2016. ACM.
2012, pp. 169-182.

J Daemen and V Rijmen. “AES Proposal Rijndael, the First Advanced Encryption
Standard”. In: Candidate Conference. Visited on 15/05/2016. 1998.

NIST FIPS. “46-3. Data Encryption Standard”. In: Federal Information Processing Stan-
dards, National Bureau of Standards, US Department of Commerce (1977). Visited on
15/05/2016.

NIST FIPS. “Digital Signature Standard (DSS)”. In: (2000). Visited on 16/05/2016.
Robert M Gray. Entropy and information. Visited on 25/05/2016. Springer, 1990.

Felix Grobert, Carsten Willems, and Thorsten Holz. “Automated Identification of
Cryptographic Primitives in Binary Programs.” In: RAID. Vol. 6961. Visited on
16/05/2016. Springer. 2011, pp. 41-60.

Carl Hadley. 1.5 Million Home Automation Systems Installed in the US This Year. Vis-
ited on 11/05/2016. 2012. URL: https://www.abiresearch.com/press/15-
million—-home—-automation—-systems—installed-in—-th/.

https://blog.codinghorror.com/the-infinite-space-between-words/
https://blog.codinghorror.com/the-infinite-space-between-words/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://www.abiresearch.com/press/15-million-home-automation-systems-installed-in-th/
https://www.abiresearch.com/press/15-million-home-automation-systems-installed-in-th/

80

BIBLIOGRAPHY

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Ralph Langner. “Stuxnet: Dissecting a cyberwarfare weapon”. In: Security & Pri-
vacy, IEEE 9.3 (2011). Visited on 16/05/2016, pp. 49-51.

Xin Li, Xinyuan Wang, and Wentao Chang. “CipherXRay: Exposing cryptographic
operations and transient secrets from monitored binary execution”. In: Depend-
able and Secure Computing, IEEE Transactions on 11.2 (2014). Visited on 16/05/2016,
pp. 101-114.

Zhigiang Lin et al. “Automatic Protocol Format Reverse Engineering through Context-
Aware Monitored Execution.” In: NDSS. Vol. 8. Visited on 20/05/2016. 2008, pp. 1-
15.

Christian Ludloff et al. X86 Opcode and Instruction Reference. Visited on 23/05/2016.

URL: http://ref.x86asm.net/#column_mnemonic.

Noé Lutz. “Towards revealing attacker’s intent by automatically decrypting net-
work traffic”. In: Mémoire de maitrise, ETH Ziirich, Switzerland (2008). Visited on
16/05/2016.

Mark S Mayzner and Margaret Elizabeth Tresselt. “Tables of single-letter and di-
gram frequency counts for various word-length and letter-position combinations.”
In: Psychonomic Monograph Supplements (1965). Visited on 24/05/2016.

odzhan. Tinycrypt. Visited on 06/06/2016. URL: https://github.com/odzhan/
tinycrypt/.

PB Pathak and Yeshwant Nanded. “A Dangerous Trend of Cybercrime: Ransomware
Growing Challenge”. In: (2012). Visited on 11/05/2016.

RL Rivest et al. The RC6 block cipher. v1. 1, August 20, 1998. Visited on 11/06/2016.

Ronald L Rivest, Adi Shamir, and Leonard M Adleman. Cryptographic communica-
tions system and method. US Patent 4,405,829. 1983.

Jonathan Salwan and Florent Saudel. “Triton: Framework d’exécution concolique
et d’analyses en runtime”. In: (). Visited on 02/06/2016.

Edward] Schwartz, Thanassis Avgerinos, and David Brumley. “All you ever wanted
to know about dynamic taint analysis and forward symbolic execution (but might
have been afraid to ask)”. In: Security and privacy (SP), 2010 IEEE symposium on.
Visited on 15/05/2016. IEEE. 2010, pp. 317-331.

Adi Shamir and Nicko Van Someren. “Playing ‘hide and seek’with stored keys”.
In: Financial cryptography. Visited on 01/69/2017. Springer. 1999, pp. 118-124.

Robert Endre Tarjan. “Fast algorithms for solving path problems”. In: Journal of the
ACM (JACM) 28.3 (1981). Visited on 21/05/2016, pp. 594-614.

International Telecommunication. “ITU ICT Facts and Figures — The world in 2015”.
In: Telecommunication Development Bureau 1 (2015). Visited on 11/05/2016, pp. 1-2.
URL: http://www. itu.int/en/ITU-D/Statistics/Pages/ facts/
default.aspx.

Duygu Sinanc Terzi, Ramazan Terzi, and Seref Sagiroglu. “A survey on security
and privacy issues in big data”. In: 2015 10th International Conference for Internet
Technology and Secured Transactions (ICITST). Visited on 09/06/2016. IEEE. 2015,
pp. 202-207.

Jordi Tubella and Antonio Gonzalez. “Control speculation in multithreaded proces-
sors through dynamic loop detection”. In: High-Performance Computer Architecture,
1998. Proceedings., 1998 Fourth International Symposium on. Visited on 21/05/2016.
IEEE. 1998, pp. 14-23.

http://ref.x86asm.net/#column_mnemonic
https://github.com/odzhan/tinycrypt/
https://github.com/odzhan/tinycrypt/
http://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx
http://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx

BIBLIOGRAPHY 81

[31]

[32]

Zhi Wang et al. “ReFormat: Automatic reverse engineering of encrypted messages”.
In: Computer Security—ESORICS 2009. Visited on 16/05/2016. Springer, 2009, pp. 200
215.

AF Webster and Stafford E Tavares. “On the design of S-boxes”. In: Advances in
Cryptology—CRYPTO'85 Proceedings. Visited on 16/05/2016. Springer. 1986, pp. 523
534.

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Other applications for MajorKey
	Botnets
	Internet of Things
	Ransomware

	Main Contributions
	Project Outline

	Background
	Instrumentation
	Dynamic vs Static Instrumentation
	Taint Analysis

	Common Cryptographic Algorithms
	Symmetric Key Cryptography
	One Time Pad
	DES
	AES
	RC6

	Public Private Key Cryptography
	RSA
	Elliptic Curve Cryptography

	Related Work
	Recovering Decrypted Ciphertexts
	Automatically Decrypting Network Traffic
	ReFormat
	Dispatcher
	CipherXRay

	Classifying an Encryption Algorithm
	CipherXRay
	Identification of Cryptographic Primitives in Binaries
	Aligot

	Recovering the Key
	Playing Hide and Seek with Stored Keys
	CipherXRay

	Summary

	Design and Architecture
	Approach and Assumptions
	Design Overview
	Generating Instrumentation Trace
	PIN
	Reducing Trace Size

	Instruction Trace Format
	Detecting Loops in Trace
	Detecting Basic Blocks
	Control Flow Graph
	Loop Detection
	Choosing a Loop Detection Algorithm
	Tubella's Loop Detection Algorithm

	Detecting Cryptographic Loops and Recovering Data
	Cryptographic Loop Detection
	Bitwise and Arithmetic Operations
	Entropy

	Recovering Cryptographic Data
	Memory Reconstruction
	Statistical Trace Analysis

	Implementation
	Overview
	MajorKey's PinTool
	MajorKey Python Framework
	Python: Language of Choice

	Loop filtering
	User Controllable Knobs
	Live Debugging Mode
	MajorKey's Keyfinder Tool

	Optimization
	Binary Instrumentation
	Parallelising Parsing
	Splitting Strategy
	Multiprocessing Module
	PyPy Usage

	Evaluation
	Evaluation Environment
	Walk Through Example: RC6
	Functionality and Performance
	Speed Performance

	Comparison with Other Tools
	Results
	Speed Performance

	Case Study: RC6 Chat Application
	Chat Application Overview
	Generating an Instrumentation Trace
	Running MajorKey 's Analysis Tool
	Conclusion

	Conclusion
	Contributions
	Future Work

	DES Objdump output
	RC6 Control flow graph
	Intermediate RC6 rounds
	Case Study: RC6 Chat Application Setups
	Case Study: RC6 Chat Application Outputs
	Bibliography

