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Abstract

Time travelling debuggers (TTD) allow programmers to step backwards through the
execution of their program, helping them to explore code and find the cause of bugs.
This project presents an efficient TTD for the Python[28] language. Through modify-
ing the Jython[15] Python interpreter, we implement a) tdb, a simple re-execution
based TTD, b) odb a logging based TTD and c) a design for an efficient hybrid
TTD.

Existing TTDs are either implemented by logging changes to a program’s state during
execution or by taking snapshots of the program and re-executing to a given time
point. Such debuggers run slowly and / or use large amounts of memory. A Python
TTD written in Python would be straightforward to implement, but slow as the de-
bugger itself would be interpreted in addition to the program being debugged. Our
hybrid design embeds TTD functionality in the interpreter. In order to support re-
sponsive debugging of non-trivial programs, we have implemented interpreter level
instruction counting and a copy-on-write mechanism to maintain history. This is dif-
ficult as the internal representation of objects and data structures must be modified.
Combined, we use these features to efficiently travel backwards through the execution
of a program.

Our implementation performs better or on a level with with state of the art TTDs. The
performance of tdb and odb are respectively 4 and 3 orders of magnitudes better than
epdb, an existing Python TTD, when running the bm call method, bm call simple,
bm fannkuch, bm nbody, bm raytrace CPython performance benchmarks1. The in-
struction counting method used in odb and tdb has half the overhead of epdb when
running the textitpybench benchmark. These initial findings show that our hybrid
design is viable, and could be applied to other languages.

1https://hg.python.org/benchmarks

https://hg.python.org/benchmarks
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Chapter 1

Introduction

A Bug’s cause is often disconnected from its manifestation. Identifying a bug as having
occurred is not the same as finding its cause. By the time a programmer has observed
a bug, they have likely executed beyond the statement that caused it. Any ’real’
program is too long to step through line by line from start to finish, with current
tools. The programmer commonly guesses where they think the bug originated and
sets a breakpoint. It can take a fair amount of time to reach the point in execution
where the bug emanates from. A method may be called many times, but only exhibits
the bug for a single invocation. If the programmer’s guess is after the bug occurred,
all this work needs to be repeated.

A debugger that allows a user to step backwards and forwards through a program’s ex-
ecution and inspect any value present at that time would vastly improve the efficiency
of the debugging process. If the developer happens to step over the cause of the bug,
they can simply step backwards. Such a debugger is known as a time travelling debug-
ger, or a TTD. TTDs are not a new invention. They have existed in academia since
the late 1960s, but were only commercially developed beginning in the late 2000s with
underwhelming adoption. In recent years, research in TTDs has spiked again, spurred
by an inspiring talk by Bret Victor[36] on improving the state of programming.

In theory, implementing a TTD is fairly straightforward. A program can’t be executed
in reverse, but the effect can be emulated. The simplest way to do this is to track
how far the program has executed, and re-execute to any point in the program in the
past that we would like to inspect. Conversely, all changes to the data of the program
could be logged in order to be able to replicate its state at any point in time. To be
able to provide the same information available to a regular debugger, a logging TTD
must also store an abstraction of the execution path. However, logging imposes a
large overhead on the forward execution of a program, and re-executing to an earlier
point in the program can be slow for large programs. A common solution to this is to
create a checkpointed TTD[2, 8, 19, 31] , which makes checkpoints or snapshots of the
program at various points in time. The temporal distance that must be re-executed
is then limited by the time between checkpoints. The standard implementation of
checkpoints uses the Unix fork system call, to spawn child processes, which share
memory with the original process. These child processes act as checkpoints, serializing
the execution of the program. When one of the processes modifies the shared memory,
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a unique copy is created for that process. This is known as a copy-on-write scheme,
and is efficient in terms of processing overhead and memory usage.

This project proposes a design for a performant, hybrid TTD by modifying the
Jython[15] Python interpreter. We implement the functionality required for time travel
at the level of the interpreter, to improve performance and efficiency when compared
to a TTD written in Python. The hybrid is a record and replay style TTD, which uses
a persistent data structure to create checkpoints. It re-executes instructions to reach
time points between checkpoints. In order to know how far forward to re-execute,
we track the number of instructions executed. This is implemented natively in the
interpreter, to avoid the penalty of each instruction of the debuggee program being
counted by another piece of interpreted code. Many existing solutions use Unix’s fork
system call to create checkpoints. Our solution embeds the copy-on-write behaviour
of fork into the interpreter, allowing for finer granularity and improved performance.
This is more efficient, as changes to a value only require copying the underlying object,
not the entire virtual page it is stored on. The challenge is, that we must modify the
interpreter.

Modifying the interpreter to implement TTD functionality is messy, but provides a
performance boost. If we implemented our TTD in Python code, each instruction of
the debuggee program would be wrapped in debugger code which would also be inter-
preted. This is slow, and difficult for the JVM’s JIT compiler to handle. Interpreter
level implementation avoids the overhead of being interpreted and is more likely to be
JIT’ed by the JVM.

We have chosen to implement such a debugger for the popular dynamic programming
language, Python [30]. As a dynamic language, Python users stands to benefit more
from a TTD than its statically typed counterparts. Often the best way to understand
Python code can be to run it and a powerful TTD would allow a user to explore and
understand code more quickly and easily.

1.1 Contributions

A summary of the contributions of this thesis is given below:

• Efficient instruction counting A key component of any TTD is an abso-
lute measure of time. We have implemented an efficient version in the form of
interpreter level instruction counting, which has 48% lower overhead than exist-
ing methods and imposes an overhead an order of magnitude less than existing
solutions for Python.

• A simple re-execution TTD for Python, tdb tdb can perform the basic
TTD navigation commands, but is limited in performance due to its lack of
checkpoints.

• An implementation of objects that store their own history using an
efficient copy on write approach odb uses the copy on write approach de-
scribed in chapter 4 and implemented in chapter 6. The performance described
in sections 7.2 and 7.4 make a considerable improvement over a comparable

2



CHAPTER 1. INTRODUCTION

fork based implementation, and has equivalent performance when compared to
a persistent data structure TTD.

• An implementation of built in Python data structures that track their
own history Specifically lists and dicts, however any collection that derives from
either of these inherits the history logging properties, for example sets.

• A performant logging based TTD that utilizes the above copy-on-write
objects, odb odb has an overhead 3 orders of magnitudes lower than epdb.
When compared to Lienhard’s object aliasing, odb performs with a similar (7x)
if not better (as low as 4x) overhead of , while logging more information.

• A design for implementing a hybrid Python TTD utilising interpreter
level copy-on-write Section 4 describes how to take advantage of Python’s
implementation details regarding locals and object fields to create an efficient
checkpointing method.

3





Chapter 2

Time Travelling Debuggers

There are many names for Time Travelling Debuggers (TTD), for example Omniscient
Debugger, Tracing Debugger or Reversible Debugger. We shall continue to refer to
them in general as a TTD, making no assumptions about the underlying implementa-
tion. Instead, we will define the spectrum of TTD implementations.

2.1 Tracing / Logging TTDs

On one end of the TTD continuum, we find Tracing Based TTDs. This type of TTD
logs all changes to the environment of a program in order to produce a comprehensive
database of events. This database can then be searched to answer questions such as
what are the values of variables over time. Generally, a special interface is required to
query this data. Some implementations, like Visual Studio IntelliTrace[16](Subsection
3.2.3), allow this database of events to be treated as a regular debug session, with
the additional benefit of being able to step backwards in time. This type of debugger
allows users to record a bug once and then debug it repeatedly, potentially on a
different machine. This type of TTD does not allow the user to resume execution
from a past point in time.

Tracing Based TTDs tend to have high performance overheads and high data write
rates to store the logged data. The size of the logged data can often become unreason-
ably large. However, the benefit is that all information is stored, so ’reverse execution’
is very fast.

2.2 Replay / Re-execution TTDs

On the other end of the continuum are Replay Based TTDs. Since most operations are
not reversible, reverse execution is not strictly possible. Instead, the illusion of reverse
execution is created by keeping track of the temporal distance travelled forwards in a
program, and re-executing to a desired time point from the beginning of the program.
This is achieved by logging only the non-deterministic events, such as user input or
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system calls. Then in re-execution or replay mode, the statements that caused the
non-deterministic events are replaced with the logged values.

Re-execution Based TTDs have a low runtime overhead for forward execution. How-
ever, to ’reverse execute’ they must re-run the program which is slow.

(For an example see subsection 3.2.5 on the Elm language’s TTD)

2.3 Record and Replay TTDs

Pure Replay Based approaches are not often used in practice, instead the Record
and Replay approach is used. The state of the program is periodically stored in a
snapshot or checkpoint as it executes. To ’reverse execute’, the snapshot before the
desired timepoint is restored and the remaining distance is re-executed as described
above.

Record and Replay TTDs are the middle ground between a pure logging and pure re-
execution based TTD. The overhead of forward execution depends on the frequency of
snapshots, the more frequent the larger the overhead. Similarly, the ’reverse-execution’
latency is also based on this frequency. The distance required to re-execute can be
bounded by the maximum temporal distance between checkpoints. Implementations
might employ a variable checkpoint frequency or discard old checkpoints in order to
avoid running out of space.

The bound on the distance which needs to be re-executed improves the performance
of a Record and Replay TTD over a Re-execution TTD, however this comes at the
cost of storing checkpoints.

(Examples: 3.1.1 IGOR or 3.1.12 TARDIS)

2.4 Persistent Data TTDs

A Persistent Data TTD is a type of tracing TTD. Instead of storing data in an external
database, it stores a log of events in memory. This log could be stored in the address
space of the running program, through a manipulation of the representation of objects,
or simply stored in a data structure managed by the debugger.

Persistent Data TTDs tend to allow for faster read and write times than their ex-
ternally stored counterparts. However, this comes at the cost of having a limited
storage size. As a result, many Persistent Data TTDs either impose a hard limit on
the number of events they can store or the time they can run for. Alternatively, they
may employ a type of garbage collection to remove old events, but bugs that require
a very large chain of events may not be caught by such a debugger if key events are
lost.

Persistent Data TTDs have a lower overhead than their basic logging based counter-
parts, but have a limited capacity.

6
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(Examples: subsection 3.1.6 ODB or subsection 3.1.8 Practical Object Oriented Back
In Time Debugging)

2.5 Time Travelling Debugger Commands

The semantics of a standard debugger’s commands are well known. The debugger
continues execution until it is paused, either by the user or due to hitting a break
point. Once paused, the debugger can step through single blocks of execution or
continue. For the standard Python debugger, pdb, these commands are defined in the
documentation[27] as follows:

step Execute the current line, stop at the first possible occasion (either in a function
that is called or on the next line in the current function).

next Continue execution until the next line in the current function is reached or it
returns. (The difference between next and step is that step stops inside a
called function, while next executes called functions at (nearly) full speed, only
stopping at the next line in the current function.)

return Continue execution until the current function returns.

continue Continue execution, only stop when a breakpoint is encountered.

We shall define the semantics of the reverse counterparts of the standard debugging
commands. We shall prefix the complementary reverse commands with ’r’.

rstep Reverse-execute to the previous line, stop at the first possible occasion

rnext Reverse-executes to the previous line, steps over function calls and back up and
out of function entry

rreturn Reverse-executes to the function call

rcontinue Reverse-execute until we reach a breakpoint

7





Chapter 3

Background

3.1 Related Research

The following research is academic research that relates to the implementation of a
TTD. It is presented in chronological order to give an understanding of the progress
of the field.

3.1.1 IGOR - Brown and Feldman - 1988

IGOR[9], developed in 1988 for the Dune distributed operating system, was one of
the earliest implementations of a TTD. The major goal was to “provide a practical
way to attack large and complicated problems.”[31] IGOR relies on check pointing and
re-execution to allow for reversible execution. To use IGOR is not entirely straight-
forward. A modified compiler, library, linker and loader, as well as a system with a
modified kernel are all required. In order to implement check pointing, Feldman and
Brown implemented two system calls: Pagemod, for returning a list of memory pages
since the previous call of the function and ualarm, a modified alarm system call that
counts in user CPU time as opposed to the real time at a very fine granularity. Using
these new system calls, IGOR saves a copy of every page in memory that has been
modified since the last check. Without pagemod, IGOR would need to access memory
that was modified, or in the worst case, copy all of memory for each checkpoint. Given
that IGOR is intended as a debugger, the high granularity of ualarm is required to
ensure that the debuggee has actually done some work in the elapsed time. When
comparing IGOR with other TTDs, we are only interested in runtime performance,
therefore we will not discuss the performance overhead added to the pre-execution
steps. IGOR’s execution overhead ranged from 40% to 380% for various programs
run with checkpoint intervals of 0.1 to 1 second. During these runs, IGOR wrote on
average 34 pages per checkpoint. The execution timing for the interpreter was ap-
proximately 140 times slower than actual execution. Like most TTDs after it, IGOR
is limited to single thread applications. The approach used by Feldman and Brown is
outdated and too ’low level’ for current systems. Particularly, it wouldn’t scale well
to the size of today’s memory and speed of processors, however as an inspiration for
many future implementations it was important to analyse.

9
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3.1.2 SPYDER Execution Backtracking - Agrawal, De
Millio and Spafford - 1991

Agrawal, De Millio and Spafford’s SPYDER system[1] is an advanced debugging tool
that, among other things, uses execution backtracking to perform backwards debug-
ging. The state of a running program is represented by the value of the variables in
the program and the location of the program control. The history of the program is
recoded by associating a change set with each assignment statement. SPYDER uses
so called structured backtracking. This approach stores change sets with control flow,
so that all the possibly modified variables are added. This means that if and while
statements can be stepped over, but has the drawback that they cannot be stepped
into. The authors argue that this is in line with forward execution semantics and
therefore not an issue. The bound on the space required to store these change sets in
the usual case is independent of the execution and instead based on the length of the
program. SPYDER was implemented for C, but is truly a prototype, as only simple
expressions are supported. For example pointers, function calls and arrays are not
implemented. Later approaches note that the backtracking is condensed to a coarse
set of points, which does not necessarily provide the flexibility required for backwards
movement and debugging.[5]

3.1.3 Zstep 95 - Lieberman and Fry - 1997

Zstep 95[19] is a program debugging environment with a focus on helping the pro-
grammer “understand the correspondence between static program code and dynamic
program execution”[19]. The capabilities of ZStep 95 were well ahead of its time,
realizing many of the concepts made popular in Brett Victor’s talk “Inventing on
Principle”[36] around 15 years later. Zstep 95 is a “reversible animated source code
stepper.”[19] It features an animated view of the program’s execution, updating the
source code as the program executes. Synchronized with this is a graphical display of
the source code, where all the graphical objects are linked directly to the source code
that created them (see figure 3.1). This means a user can select a visual line, and see
the source code that created it or vice versa. Along with this, it allows the user to
step backwards in the execution of the program!

Zstep 95 recognizes the work done by past implementations of reversible debugger’s,
but chose to focus on the UI, an aspect the authors believed had thus far been ne-
glected. As a result of this focus, Zstep 95 keeps a complete history of the program
and its output without any regard for performance.

As a prototype, Zstep 95 was extremely successful. It was implemented for Common
Lisp 2, and worked with a re-implementation of the graphics library. The authors
note that the approach does not guarantee to work for programs with complex side
effects, however they argue that the approach is no less successful at debugging such
programs than traditional debuggers.
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Figure 3.1: ZStep 95’s graphical debugger window [19, P.4]

3.1.4 BDB - Boothe -2000

BDB[5] is a prototype, bi-directional debugger developed by Bob Boothe at the Univer-
sity of Southern Maine in 2003. BDB is a twist on the common approach of IO logging
and re-execution. By embedding a program counter and call depth counter in the de-
buggee BDB is able to efficiently re-execute up to a desired point. By checkpointing,
the time or re-execution is bounded. Boothe identifies three issues in the re-execution
approach: “(1) locating the desired earlier point while re-executing forward, (2) the
overhead involved in re-executing, and (3) ensuring deterministic re-execution”[5] The
embedded counters address problem 1, checkpoints address 3 and the remaining issue is
addressed by “true-execution rather than emulation.”[5] A traditional debugger (such
as gdb) uses trap based debugging where traps are inserted into the code, and the
program is executed until it hits a trap statement. Boothe points out that such trap
based approaches can lead to expensive context switching if for example the command
continue 1000 was used, or next called over a recursive call. Therefore, such an ap-
proach is not ideal for reverse execution. By embedding counters, the execution only
traps once the counter variable has reached a specific value. Boothe’s paper outlines
how to implement standard debugger commands such as next, step, continue and
finish in terms of a program counter and call depth counter, and more importantly,
how to implement their temporal complements. (See figure 3.2 for an example of how
previous uses the counters to reverse-execute)

Checkpointing is performed by forking the debuggee process using the fork unix sys-
tem call. This takes advantage of the efficiency of fork due to the operating system’s
copy on write policy. To avoid the number of checkpoints becoming unreasonable,
exponential thinning is employed. This ensures the property that “no execution point
ever be in a checkpoint interval whose size is greater than the distance from the cur-
rent position back to that point” [5]. Re-execution is possible in a time proportional
to the temporal distance moved back. The number of checkpoints therefore grows
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Figure 3.2: The sequence of time points visited by BDB when continuously
executing the previous command. Function calls are stepped over (hence
jumping over the trough at 15-17)[5, Fig. 5]

logarithmically.

Boothe identifies I/O logging as the most difficult task in implementing the debugger.
Given an IO bound program they experience an overhead of 5100% and a slowdown
factor of 52. However, replaying the IO incurs only half the overhead of creating
it.

3.1.5 Reversible Debugging Using Program Instrumen-
tation - Fuchs - 2001

Fuchs’ paper[10] discusses an efficient reversible debugging scheme using automatic as-
sembly level instrumentation, without modifying the programming language or com-
piler. While the concept is relevant, it won’t be further explored in this thesis, as
all trends point towards instrumentation at higher levels being more successful over
time.

3.1.6 ODB - Lewis - 2003

ODB[18] is an omniscient debugger written for Java by Bill Lewis in 2003. ODB
deviates from the standard approach of a logging based TTD, in that it stores its
logs in memory. The history of ODB is limited to a 31 bit address space of roughly
10 million events. ODB is implemented at the bytecode level. ODB maintains a list
of timestamps. Every time an event occurs, the debugger pauses execution. A new
timestamp is created, and the trace associated with the time and event are created.
Each variable has a history list, which consists of pairs of timestamps and values.
History lists for local variables and arguments are attached to the traces as they are
generated.

The performance of ODB is not spectacular, and highly dependent on the specific
program. Lewis is aware of this, particularly as performance was not a goal for the
project, stating “the important thing to recognize here is that ODB represents a
worst case implementation - we can only do better. The ODB is completely näıve,
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it does no optimization at all.”[18] Similarly to Zstep 95, the main focus of ODB is
its presentation of debugging state rather than the implementation of an extremely
efficient TTD. The principles are, that the interface should update values as time steps
are changed, state should be easily recognized and navigation should be simple. (See
figure 3.3) However, despite performance not being Lewis’ goal, it is still interesting to
look at purely for comparison with other techniques. The slowdown of execution when
using ODB varied from 2x to 300x in testing. For complex programs, the minimum
overhead was 7x. Additionally it is important to note, that the address space can be
filled in roughly 20 seconds (on a 700mhz Apple G3). Lewis points out that bugs that
don’t fit in this range can likely be dealt with through the use of garbage collection,
marking methods to not be instrumented or using an event analysis engine to decide
when to enable recording.

Figure 3.3: The ODB debugger window[18, Fig.1]

3.1.7 Why Line - Ko and Myers - 2004

Why Line[17] is not a TTD, but an interrogative debugger. It allows the user to ask
questions about why or why not a program exhibited certain behaviour. The similarity
to a TTD is in the tracing Why Line performs. Why Line performs tracing through
the use of byte code instrumentation, additionally logging IO. In order to highlight the
effect of specific code on the graphics output, Why Line has implemented a custom
emulator for Java’s Graphics2D class. This is similar to the approach presented by
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Lieberman and Fry in Zstep95. In terms of performance Why Line is more comparable
to a tracing debugger, with a slowdown of around 15 times on complex programs and
as little as 1.7 times on simple ones.

3.1.8 Object Oriented Debugging - Lienhard, Girba and
Nierstrasz - 2008

The paper “Practical Object-Oriented Back-In-Time Debugging”[20] is an award win-
ning paper describing the implementation of a TTD based around objects. It differs
from the other approaches, in that it doesn’t follow a logging or re-execution model
for replay. Instead, it relies on encoding the history directly into the representation
of object references on the heap. The researchers point out that other approaches
are limited by slow execution and large history logs. By storing object history in the
same address space as the program, they solve this problem using garbage collection,
as un-referenced objects are garbage collected. However, they lose some backtrack-
ing capabilities as unreachable objects and their history are removed by the garbage
collection as well. Therefore, it is possible that the root cause of a bug might not be
visible to such systems.

The main approach relies on modifying the VM or runtime to store object references
as objects on the heap. These new references are referred to as aliases.(See figure
3.4) An alias contains a pointer to the previous alias as well as the origin object that
instantiated it. This allows pointer traversals to retrieve the history of an object as
well as determine how objects are passed to a method call.(See figure 3.5)

Figure 3.4: a: typical object with references as direct pointers and b: refer-
ences represented by an alias object from[20, Fig. 1]

In the worst case, execution suffered an overhead of 7 times. The baseline VM with
object history tracing introduced a performance overhead of 15%. As object history is
stored on the heap with the objects themselves, looking up previous values is extremely
fast, as there is no need for re-execution and the lookup is equivalent to a linked list
traversal. A potential downside of this approach is, that only the history of data
accessible from the current program point is available. The benefit of this approach
is, that memory consumption is restricted to an upper bound in the best case, and
slowly grows in the worst case (potentially exceeding the memory of the vm).
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Figure 3.5: History of object values represented through a graph of aliases
from [20, Fig. 3]

3.1.9 epdb - Sabin - 2011

epdb[31], or the Extended Python Debugger is a reversible Python debugger developed
by Patrick Sabin at the Vienna University of Technology. epdb is a record and replay
style debugger. It is written in Python, and runs on top of CPython by hooking into
the interpreter by extending the standard pdb debugger.

In order to create a snapshot, Sabin used the fork system call to clone the process.
This makes creating snapshots quite quick. To avoid recording non-deterministic calls,
epdb simply takes a snapshot after any non-deterministic event. This way instead of
re-executing the non-deterministic command, the snapshot will simple be restored
when reverse debugging. To avoid long-running commands, EPDB takes a snapshot
of the result of any instruction that takes longer than 1 second to execute. This helps
speed up re-execution, for example a sleep() command for 10 seconds would not be
re-executed but instead the snapshot could be loaded. The drawback to using fork

is that the OS must manage a large number of processes, placing an upper bound
on the number of snapshots that can be maintained. Sabin found that roughly 1000
snapshots could be stored, which equates to 16 minutes of execution with a 1 second
checkpoint interval.

In order to step back in time, a measure of time is required. For this, epdb counts
instructions using trace information supplied by CPython. Sabin notes that this im-
plementation is quite slow (15 to 110×), and would be faster if implemented at a lower
level.

epdb provides a feature called timelines. Timelines allow the past execution of a
program to be cloned up to a certain point, and from that point forwards be executed
normally. This is useful for answering questions about how the program would have
performed after changing a specific value.
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3.1.10 Tralfamadore - Head - 2012

The Tralfamadore debugger[13] is based on an execution recording and static analysis
engine of the same name. It provides source code level debugging using a cpu level
execution log. While it shows that interesting work on time travelling debuggers is
actively undertaken, Tralfamadore is not particularly relevant to this project, because
it focuses on a single point in code that is potentially hit multiple times throughout a
trace.

3.1.11 Expositor - Phang, Foster and Hicks - 2013

Similarly to Tralfamadore, Expositor[23] validates the idea that TTDs are still relevant,
however it is focused on creating a scriptable debugging experience using a TTD. In
the case of expositor, the TTD is the commercial product UndoDB[35] discussed in
the commercial applications section.

3.1.12 Tardis - Barr and Marron - 2014

The TARDIS[2] time-travelling debugger was implemented by Mark Marron and Earl
Barr as part of Microsoft Research. In their paper “Tardis: Affordable Time-Travel
Debugging in Managed Runtimes”[2] they outline a method for implementing time
travelling debuggers by piggybacking on a managed runtime / VM such as the Java
JVM. They then evaluate the performance of the realization of this design.

TARDIS is the most recent of the implementations discussed in this thesis. Therefore,
it has the advantage of learning from its predecessors. The authors reflect, that while
TTDs have existed for decades, they have not been widely adopted. They attribute this
to “prohibitive runtime overheads”[2] of 10-100 times and “long pauses when initiating
reverse execution.”[2] From their usability research, they found wait times of longer
than 10 seconds cause “rapid system abandonment.”[2] Their goals for Tardis were
therefore to create an affordable time travelling debugger, with an execution overhead
of less than 25% and a time travel latency below 1 second.

Marron and Barr base the starting point of their TTD on the fact that managed run-
times have “already paid much of the cost of providing core features - type safety,
memory management, and virtual IO.”[2] They adopt the standard approach of tak-
ing snapshots of the program state at intervals, logging non-deterministic events and
re-executing from checkpoints to achieve ’reverse execution’. The managed runtime
aids in simplifying this. Memory management allows the heap to be inspected and
manipulated. Type information allows a good level of precision to the introspection.
Combined, these allow for less information to be included in the snapshots, as only
live objects and program state need to be included in a snapshot. The garbage col-
lector (GC) allows for additional optimization. A generational garbage collector’s
remembered-sets reduce the cost of walking the live heap. Lastly, a write barrier
ensures only modified memory locations need to be included in the snapshot. The vir-
tualisation of resources provided by a managed runtime allow calls to non-deterministic
events such as IO to be intercepted and manipulated for replay.
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The authors describe the implementation of a non-intrusive TTD, which can retrofit
existing runtimes. On forward execution, snapshots are taken at regular intervals.
Additionally, at each loop head, procedure call and any point where the garbage
collector may be invoked snapshots are created. Snapshots and logged IO need to
have a total order, so a unique trace timestamp is implemented by incrementing a
tracetime counter whenever a built-in procedure that can produce IO may execute,
or a snapshot is taken. Re-play is done in the standard manner of restoring the
earliest checkpoint before the desired time point, and forward executing to that point
(replaying IO where necessary). This non-intrusive approach does not change the
allocator, memory layout of objects or garbage collector.

A more involved implementation relies on the garbage collector. The best results are
achieved if a generational GC is used. Long-lived values won’t be copied multiple
times, as each explicit snapshot operation will only walk the nursery as opposed to the
whole heap. Additionally implementing a write barrier allows the TTD to only save
modified objects. As the size of snapshots can be quite large, using a separate thread
to compress the heap before saving offers a significant performance boost.

For the non-intrusive snapshotting, a runtime overhead of less than 22% at 5.6MB/s of
logging was achieved. After modifying the garbage collector, performance of TARDIS
was improved to an overhead of 11% at 1.3MB/s of logging. The latency of time-
travel was 0.65 seconds in the worst case, a huge improvement over the 10 second
abandonment threshold. This project was such a success it is being adapted to be
included as the default debugger for the Microsoft Edge Browser.

3.2 Commercial Products

Commercial products do not tend to divulge their implementation details, but instead
are useful as an indication of adoption and trends.

3.2.1 Undo DB

Undo DB[35] is a commercial DB which uses “a ’snapshot-and-replay’ technique that
stores periodic copy-on-write snapshots of the application and non-deterministic inputs
(system calls, thread-switches, shared memory reads, etc).”[35] The execution over-
head is 2-4 times on average, but can reach 10x in pathological cases. This performance
is achieved by scaling the frequency of snapshots dynamically, and maintaining only 25
snapshots. By default, the memory consumption is kept low. UndoDB uses copy-on-
write to create snapshots, so changes between snapshots are not stored. Similarly to
other TTDs, “during replay, non-deterministic events are not performed directly, but
their effects are synthesized based on the contents of the event log.”[35] According to
the UndoDB website, the performance is “many orders of magnitude better”[35] than
gdb’s. For example, running the gzip compression on a 16MB file takes gdb 21 hours
to record using 63GB compared to UndoDB’s 2.6 seconds and 17.8MB of memory
used.
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3.2.2 Chronon Time Travelling Debugger

The Chronon Time Travelling Debugger[6] is a commercial TTD for Java. It runs
on Windows, Linux, OSX and Solaris, and has plugins available for eclipse and In-
teilij IDEA. As a commercial product, the source code is not available to inspect
how Chronon works, nor are real performance figures given. The website states, that
Chronon “reads data from the recording file, almost like reading a database, to in-
stantly reproduce the state of a program at any point in time”[32] and that the orig-
inal executable is not required for replay. This indicates, that Chronon falls into the
category of a logging based TTD. Alongside the ability to step backwards in time,
Chronon offers other advanced features such as method history, variable history and
post-execution logging. Post-execution logging allows a developer to generate a log file
from a recording, by indicating where log messages should be evaluated in the source
code. However, these calls to the logger are not done directly in the source code, but
dynamically after execution, similarly to inserting a breakpoint. Instant-execution
path is another interesting feature. It allows a developer to see the paths taken by a
method call, but unlike code coverage, “the Execution path in Chronon shows you a
separate execution path for each different call to a method. Thus a million different
calls to the same method would result in a million different execution paths.”[6] In or-
der for the two previously mentioned features to be possible, without re-executing the
code, Chronon must also log the execution path. This is somewhat contradictory to a
statement made about the minimal overhead Chronon places on an application:

“The Chronon Recorder puts minimal overhead on your applications. The
overhead is not much more than what simple logging inside your appli-
cation, making Chronon suitable for even the most intensive applications.
We have spent years perfecting our ‘prediction’ technology which analyses
your Java bytecode as it is loaded and creates predictions as to how it will
execute. Thus only the most minimal, non-deterministic portions of your
applications are recorded and even those in a highly compressed format.
Thats much, much less than what traditional logging would generate.”[21]

From this statement, it would also be reasonable to assume that Chronon operates at
the virtual machine level. Rather than instrumenting bytecode directly, it hooks into
the JVM or JIT compiler to perform its logging. This is in line with the observation,
that recent TTDs have been implemented at higher abstraction levels, leading to
improved performance. A clear advantage of the approach taken by Chronon is its
ability to handle multithreaded programs with low overhead, something that few TTDs
allow.

3.2.3 Visual Studio IntelliTrace

Microsoft has provided the IntelliTrace historical debugging feature as part of its Visual
Studio IDE[37] since 2009. IntelliTrace is a pure logging TTD. It records the events
of a debugging session and plays them back, allowing the user to step forwards and
backwards. According to the documentation, IntelliTrace “is not enabled by default
because it adds considerable overhead. Not only does IntelliTrace have to intercept
every method call your application makes, but it also has to deal with a much larger
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set of data when it comes to showing it on the screen or persisting it to disk.”[16]
One of the best features of IntelliTrace is, that the recording can be shared, allowing
a bug to be replayed by multiple different developers at once. The main limitation of
IntelliTrace is, that it does not allow for the local values of variables to be changed
while in replay mode or to continue execution past the replay point.

3.2.4 GDB

In version 7 of GDB[11], reversible debugging was introduced. This allows users to
step forwards and backwards. It is only compatible with certain GDB targets, which
must explicitly enable recording. GDB is a low level, native debugger. To facili-
tate reverse-debugging it logs machine instructions executed in the debugee with the
corresponding change in memory and registers. To reverse execute, it sequentially
reverses the change of each logged instruction. This can be very slow as mentioned in
subsection 3.2.1.

3.2.5 Elm Debugger

The Elm time traveling debugger[7] is an extremely impressive TTD build by Laszlo
Pandy in 2013. The power of this debugger is due to the properties of the language it
works on. Elm is a functional language, based on the functional reactive programming
paradigm. The purity of functional programming, as well as the immutability of
objects makes a TTD straightforward to implement for ELM. Purity with respect to
ELM means that side-effects are modelled explicitly, meaning “To perform a side-
effect, you first create a data structure that represents what you want to do. You
then give that data structure to the language’s runtime system to actually perform
the side-effect.”[7] This is similar to how a runtime takes care of things like memory
management. So in ELM to replay events without side-effects, the runtime simply
needs to be told not to perform any of the side-effects. Immutable data ensures
that data is not overwritten. Lastly, ELM’s basis on FRP means that events are
already tracked over time via ’signals’. “This makes managing replay a matter of
recording the incoming events to the program and discarding the outgoing events. As
long as no one acts on the outgoing events, there will not be unwanted side-effects.”[7]
Perhaps the most impressive aspect of ELM’s debugger is its support for hotswapping.
Hotswapping is the act of replacing code as a program is running. The combination
of the two allows the user to rewind time, change a value, and play back execution
without re-starting the execution.

In order to use Elm’s debugger (similar to PDB in Python) one sets watch or trace
points in the code for values that should be tracked.

The watch function: Debug.watch : String → a → a will track a value
over time (See the y-velocity in the example)
The trace function: Debug.trace : String → Element → Element will
visually trace a selected value over time.

There is some room for improvement for the Elm debugger. Having to modify the
code to enable tracing and watching is less than ideal. For example, Elm does not
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implement any checkpointing. Therefore the entire program must be re-executed on
replay. Another desired feature would be to save a recording for replay at a later
date. This is particularly useful for testing and bug reports. Pandy also suggests that
graphing watched values over execution time would be a useful feature.

3.3 Research Summary

As the sections above have shown, there are many variations of TTD implementations,
but all rely on solving a few crucial problems. Regardless of the type of TTD being
implemented, some representation of time must be uniquely associated with execution.
A tracing based TTD must track the state of the program, and provide an interface for
viewing the data. A record and replay style TTD, must have a mechanism for saving
and restoring state, as well as a controlled manner of replaying execution, accounting
for non-deterministic statements.

Mapping execution time to a unique identifier is the simplest problem, with one general
solution. TTDs count number of statements executed. The implementations differ in
the level at which the counting is performed. Some instrument assembly code or use
bytecode counters [10, 5]. Others count as they step through the program [31, 5] or
modify the runtime [20, 2].

The solutions to logging state differ only at the implementation level. Many favor
instrumenting bytecode [17, 18] while others perform the same at the VM/runtime
level [20, 18]

The solutions to creating snapshots generally fall into two cases. Some make use of the
operating system to perform efficient cloning of processes through the use of a copy-
on-write memory policy.[5, 8, 31] Other implementations try to improve performance,
by snapshotting state at a higher level than pages of memory.[2, 13, 20]

There are two common solutions to replaying non-determinism. Either the affected
calls are dynamically patched at runtime or a checkpoint is made after every non-
deterministic event, negating the need for re-execution.

Logging and re-execution based TTDs both have their place. Over time both solu-
tions have been successful, and continue to be so, with neither solution dominating.
However, there is a trend within the level of implementation. Earlier solutions were
implemented at a lower level, with some requiring a specific OS to be run on [8]
and implementing their own system calls. More recently, the trend points towards
taking advantage of existing services provided by the runtime, for example memory
management, as seen in [2], [31] or [20].

3.4 Python Implementations

Our TTD targets Python[30], so it requires a Python interpreter. As writing a new
interpreter is beyond the scope of this project, we chose to modify an existing Python
interpreter. Luckily, there are many different interpreters for the Python language. In
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fact, there is no official implementation of Python. Python is actually the specification
of the dynamic programming language invented by Guido van Rossum. However, when
referring to Python, people often mean the CPython[28] interpreter and environment
too. Some alternative implementations of Python include Jython[15], PyPy[25] and
Iron Python[14]. We evaluate these environments for their suitability for implementing
support for a TTD. The original implementation of Python was entirely open source,
a principle the community has continued to follow in other implementations.

3.4.1 Python Modules

Before discussing the specific implementations of Python, the introspective modules
of Python merit a discussion. Due to the high amount of introspection that is allowed
by the Python language, it is possible to implement a Python TTD written in Python
(see subsection 3.1.9). The main modules that enable this are the inspect, trace,
dis and sys modules. In particular, the function sys.settrace allows a Python
program to implement a Python debugger. The dis module can disassemble Python
bytecode. inspect provides information about the running program, including linking
the current execution state to the line of code in a file.

However, a TTD with functionality implemented by the interpreter or in C is likely to
be faster than one implemented in Python and for this reason we consider the various
implementations of Python interpreters.

3.4.2 CPython

CPython[28] is the original implementation of Python. When someone refers to the
Python interpreter, they are generally referring to CPython. Cpython was developed in
the 1980s by the creator of Python, Guido van Rossum, as the original implementation
of the Python language and is written in C. It is a simple bytecode interpreter that
makes use of a stack machine. CPython is implemented using reference counting
rather than fully fledged garbage collection. This can be faster and less resource
intensive, but pays a price in ease of development. Reference counting is hard-coded
into the CPython code base. It is prone to human errors, which cause memory leaks if
references are not properly added. Furthermore, the hard-coded nature makes it near
impossible to experiment with other garbage collection techniques.

CPython is a fast implementation of Python, but the cost of modification seems to be
quite high. Being written in C means it has a relatively low performance overhead,
but loses out on features such as garbage collection provided by a VM or managed
runtime.

3.4.3 Jython

Jython[15] is a successful implementation of Python using the Java virtual machine
(JVM) created by Jim Hugunin. Like CPython, it is a simple stack machine. As
a full re-implementation of Python, one of the disadvantages of using Jython, from
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a developer’s perspective, is that it lags behind CPython in its implementation of
features.

As Jython is built on top of the JVM, it can take advantage of certain features provided
by the JVM, such as memory management and typing. Given memory management,
Jython is well poised towards implementing the object-oriented debugger described
in Nierstrasz and Lienhard’s 2008 paper.[20] However, there are certain features of
Python’s introspective modules that Jython does not implement, as it runs on the
JVM. Furthermore, the translation of Python bytecode to Java bytecode and subse-
quent execution is obscured, making a TTD implementation somewhat difficult.

Jython has a lower overhead in terms of modification mostly as a result of being
implemented in Java. However, the reliance on the JVM might prove to be more of a
hindrance than a help.

3.4.4 PyPy

PyPy[24] is an implementation of Python written in Python. Many consider this to be
a great improvement over Jython and CPython, as they would argue Python is simpler
to write than C or Java. If the self-hosting nature of PyPy wasn’t convincing enough,
it is also roughly seven times faster than CPython on a number of benchmarks[26].
This is because PyPy makes use of just in time (JIT) compilation. Code that will
be run in a loop over many iterations is detected and compiled to machine code by
the JIT compiler, which can then be run directly on hardware rather than being
interpreted.

Besides being fast, PyPy has a design that lends itself to developing a TTD (see
section 5.2 for more details). Additionally, PyPy is extremely quick to adopt new
Python features and reach parity with CPython. This is thanks to its strong and
active developer community. Adapting PyPy might prove to difficult, as it is too
clever for its own good (see 5.4) , and interpreter internals must be written in a
proprietary subset of Python.

3.4.5 Iron Python

Iron Python[14] is a Python implementation that runs on Microsoft’s CLR. Originally
started within Microsoft as an open source project by Jim Hugunin, Iron Python allows
Python code to access the .NET framework. This works because Iron Python is built
on the DLR, Microsoft’s Dynamic Language Runtime, and extension of the Common
Language Runtime. Iron Python has always been an open source project, but in 2010
Microsoft abandoned work on it, leaving the community in charge. The last update
to Iron Python was in 2014.

Iron Python is very similar to Jython due to both being created by Jim Hugunin.
Similarly to Jython, Iron Python benefits from running in a VM, which is desirable
for implementing a TTD according to our background research. However, Iron Python
has more or less been abandoned, so Jython seems to be a better fit.
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Figure 4.1: TTD landscape

TTDs sit on a landscape (figure 4.1) where implementations make trade-offs between
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forward execution speed and reverse execution speed. In the top left corner lie full
logging TTDs (ie Visual Studio’s intelli-trace or ODB), which execute slowly forward
but make up this overhead with fast reverse execution. In the opposite corner, full
re-execution TTDs have low execution overhead, but can be slow to travel back in
time. ODB, which stores history in the address space of the debugger sits just center
of a full logging approach (Persistent Data Structure). To the center of a full re-
execution approach lies Tardis, which relies heavily on snapshots, event logging and
re-execution(Checkpointed Re-execution). The speed vs memory trade-off lies along
this same diagonal line. This project aims to split the middle in the region between
Tardis and ODB to achieve an improved balance, ideally moving towards the top right
corner where both forms of execution are fast.

4.1 Required Functionality

To achieve the desired hybrid approach, some basic functionality present in existing
TTD solutions is required. We shall describe these functions briefly in the sections to
follow.

4.1.1 General requirements

Debugging and Introspection The hybrid TTD must provide basic debugging capa-
bilities. These include stepping through the execution of the program, and inspecting
its state at said points of execution. Introspective features include:

• listing the line of code currently being executed as well as the event type (line,
call, return, exception)

• showing the current call stack

• navigating the current call stack

• displaying a variable’s value

Absolute measure of time To travel in time, an absolute measure of time must be
defined. According to Barr and Marron this measure should impose a total order on
events and snapshots and ensure that every execution of a statement has a unique
timestamp.[2] Note, that the term timestamp is overloaded, and in these cases does
not mean the actual time. A desirable feature of such a measure of time is, that it’s
granularity is as coarse as possible. This allows us to maximize the number of events
represented in a given address space.

4.1.2 Logging based TTD basic requirement

Logging of changes to variables This is the key feature of a logging based TTD.
By recording changes to every variable along with its timestamp, the execution of the
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program is partially serialized. This event log can be searched to determine the cause
of a bug, but further exploratory debugging from a past point is not possible.

4.1.3 Re-execution based TTD basic requirement

Re-execution to an arbitrary time point This is the main feature of a re-execution
based TTD. As reverse execution isn’t possible, we re-execute to give the user the illu-
sion of travelling backwards in time. Re-execution is based on the absolute measure of
time, therefore if there are any branches in control flow that are non-deterministic they
must be recorded and replayed in order to reached the desired execution point.

4.1.4 Performance improvements

Checkpoint Creation In order to speed up the reverse execution latency of a re-
execution based TTD, checkpoints are used. A checkpoint must encapsulate the state
of a program at a given timepoint. It therefore requires at least as much information
as a logging based TTD can provide about the state of a program at a given timepoint.
A checkpoint may need to include additional information in order for the execution of
the program to be resumed at a later point.

Checkpoint Restoration A checkpoint and re-execution based TTD must be able
to restore a checkpoint to avoid needing to re-execute large amounts of code. The
time taken to restore a checkpoint should be less than the time required to re-execute
between any given checkpoints. Restoring a checkpoint likely requires the ability to
jump to an arbitrary line of code, and place arbitrary frames on the call stack of the
interpreter.

4.2 Objectives

To guide the implementation of our project, we propose the following performance
based objectives:

O1 (Comparably) Low overhead instruction counting (≤ 15×)
In order to travel back in time, we need an absolute measure of the execution of
a program. To do this we essentially count the number of instructions executed.
As this is a key component of any TTD we would like the overhead incurred
as a result to be low. An existing python TTD, epdb[31] (see section 3.1.9),
incurs an instruction counting overhead of between 15 and 110 times. As epdb
is implemented in python code, we believe an interpreter level implementation
should improve performance.

O2 Forward execution overhead comparable with other state of the art
TTDs (≤ 30×)
For a debugger to be considered usable, it must not be too slow. Many existing
implementations have forward execution overheads that range between 7 and 300
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times. A worst case overhead of 30 times would be a substantial, but hopefully
attainable improvement.

O3 Comparably low memory consumption for snapshots (≥ 10 million
events in 2GB of memory)
TTDs must store some data. Snapshots tend to use less space than full logging
solutions, but both can be quite memory intensive. We would like our TTD to
be competitive not only in terms of speed, but also in resource usage. However,
the amount of data stored depends heavily on the complexity of the program.
We therefore limit our scope to what we consider reasonable. The programs
which we target, will tend to be simple, self-contained pieces of code such as
implementations of abstract data types for an algorithms class or slightly more
complex programs. We assume the programs are being run on a modern machine
typical of a developer, and 4GB of memory is available to the debugger. Bill
Lewis’ Omniscient debugger, ODB[18], can store up to 10 million events in a
2GB address space. He states that 10 million events are enough to debug many
problems. We would like to at-least match this value.

4.3 Hybrid TTD Design

As the debugger executes a program, it increments a global timestamp known as the
instruction count for each instruction executed. An instruction is defined as the
smallest amount of code that a debugger can stop at. This instruction count is the
absolute measure of time used by the debugger to navigate backwards in time.

During forward execution, information is also tracked that allows the debugger to de-
termine when to create a checkpoint. The simplest heuristic is fixed interval check
pointing, which creates a new checkpoint when the execution time since the previous
checkpoint exceeds a pre-determined interval. To signal a new checkpoint’s creation a
global checkpoint counter is incremented after being stored in a mapping from check-
point number to instruction count.

The act of creating a checkpoint is mostly implicit, as checkpoints are created in a
copy-on-write manner. Objects in the address space of the program being debugged
are instantiated with history logging enabled. This history logging replaces single
values with lists of values indexed by checkpoint number. When a value is changed, it
is appended to the end of this list only if the current checkpoint counter exceeds the
checkpoint number of the last added value. If the last value in the list has the same
checkpoint number as the current value then it is replaced by the new value.

This implicit checkpointing mechanism ensures that checkpoints only contain values
that have changed, performing copy on write at the object level rather than the page
level (as is the case in OS fork). This finer granularity leads to an efficient implemen-
tation, as long as the memory required to implement it is not excessive.

Checkpoints must also contain the call stack of the interpreter, as it is required to
restore them. Much of the information in a standard stack frame is derivative from
the function call that placed the frame on the stack. We therefore only store minimal
information. This includes the locals map, file name, function name, line number and
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parent frame for every frame on the stack. As future checkpoints may have a call stack
that contains a prefix of the current checkpoint, the frames are stored using the same
copy-on-write mechanism used to store object history, as shown in figure 4.2. It is
important to note, that the locals map of the frame is not copied in any way. Instead
a reference to it is stored, which ensures the map will not be garbage collected once
the original frame has been popped off the stack. The combination of storing frames
and storing the history of variables in local maps enables us to serialize the state of
the interpreter.

Figure 4.2: The call stack shown at timestamps T0, T1, T2 would be logged as
the list of frames shown on the right. This list only stores one entry for each
unique frame that existed on the call stack. The parent pointers are used to
recreate the state of the call stack on the left. For example starting at f6 and
following the parent pointer reproduces the call stack at T2. Additionally, as
the locals of each frame track their own history, there is no problem with only
logging each frame once.

When a user wishes to reverse execute, the debugger determines the instruction count
to which they would like to execute, and queries the checkpoint list. If a checkpoint
exists with the exact instruction count, it is restored. If not, the latest checkpoint
with an instruction count smaller than the desired checkpoint is restored, and the
remaining ’distance’ is re-executed. This process can be seen in figure 4.3

Restoring a checkpoint consists of two parts. Firstly, the call stack is restored. The
information necessary to restore the call stack is stored in an internal data structure
accessible to the interpreter. Once the call stack has been restored, every value must
be restored to the value it had at that time point. As with creating storing value
history, restoring history is an on-demand operation. All that is required is for the
global instruction counter to be set to the checkpoint’s instruction count and a replay
mode flag to be enabled. Only when a value is actually requested, is the list of past
values traversed to find the correct value. Similarly to how the creation of checkpoints
is limited to only store values that have changed, restoration is limited only to values
that are accessed.
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Figure 4.3: To jump back in time efficiently, we restore the closest checkpoint
before the timestamp, and then re-execute any remaining steps.

The key feature of the proposed hybrid TTD design is, that it is implemented at
the level of the interpreter, which maximizes its efficiency. Since checkpoints are
implemented by modifying objects ’in-place’ rather than storing a copy of the heap,
the runtime overhead of restoring a check pointed value is deferred to the access time.
Similarly, the overhead of creating a checkpoint is spread out over all the instructions
that are executed between two checkpoints.
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Interpreter Choice

Choosing an interpreter was an important step in the implementation of this project.
Rather than spending an unreasonable amount of time writing an interpreter from
scratch, we decided modifying an existing implementation would provide a better result
given the limited amount of time. However, choosing an interpreter was harder than
anticipated, and we ended up experimenting with both Jython and PyPy. In short,
both options were attractive because they are implemented in higher level languages,
which take advantage of a runtime / virtual machine. Jython was used in our initial
experiments. We then switched to PyPy due to an apparent deficiency in Jython, and
later returned to Jython after not being able to brave the learning curve of PyPy. The
details of Jython’s implementation are discussed in section 5.1. PyPy is discussed in
detail in section 5.2. A direct comparison between the two is made in section 5.3 and
a more detailed account of the experience of working with both implementations is
given in section 5.4

5.1 Jython - Details

Jython is an implementation of a Python interpreter written in Java. Version 2.7 of
Jython is meant to be compliant with version 2.7 of CPython. In 2.7, the focus was
placed on compatibility of Jython with CPython rather than performance improve-
ments. However, any performance improvements in the JVM translates directly to a
performance improvement in Jython. For performance reasons, Python code is com-
piled into Java byte code rather than interpreting each Python instruction one by one.
Overall Jython’s speed is comparable with CPython, and it’s compatibility is quite
comprehensive.

5.1.1 Interpreter Design

Jython consists of a Java based interpreter, with the modules of the standard library
being written in a mixture of Java and Python code (similarly to how CPython consists
of a mixture of C and Python code). Certain modules (such as sys) must be written
in Java in order to interface with the JVM correctly. Similarly, any modules that are
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written in C in CPython must be translated to Java. Additionally, any modules where
performance is critical are also written in Java.

The Java based modules make use of a special set of attributes to help facilitate their
translation. These attributes (ExposeType, ExposeGet, ExposeMethod etc) are used
to specify the public interface of each Java object as a Python module. A useful
feature of the attributes is, that the ExposeGet attribute can be used on both fields
directly and on methods. This allows Java backing fields to be dynamically converted
to Jython objects when they are accessed by Python code. Code can be simplified,
as the module can access the backing field without having to worry about any type
conversions and there is no need for a second field to track the equivalent information
as a Jython object. The attributes also allow type hierarchies to be specified, as
Python supports multiple inheritance and Java does not.

As with any Python implementation, Jython must define the built in Python types.
Jython defines an automatic mapping between Java primitives and Python primitives
when exposed on a Java class. However, in Python everything is an object. The
primitives are therefore defined as Java classes, for example the PyInteger class, which
corresponds to an int in Python. PyInteger defines methods that are specific to the
Python implementation of integers. These include operations such as add. In Python
users are not directly concerned with types, so the PyInteger implementation handles
integer overflow by returning a long, which can hold the value. If a long can’t hold the
value, Java’s BigInteger class provides immutable arbitrary precision integers.

For complex types such as List, Dictionary or Frames, Jython defines the classes
PyList, PyDictionary and PyFrame. Such classes are simple Java classes that expose
the fields and methods required by the Python language specification. In many cases,
they are backed by equivalent Java classes where appropriate. PyList uses an ArrayList
as a backing value.

5.1.2 Generating Java Bytecode

The translation from Python to Java bytecode is performed by walking an AST built
when a Python module is imported. The AST is passed to a compiler. This compiler
then creates Module, Class, Function and Code objects (as in Python). The properties
of the code object are filled in as they would be when Python is compiled under
CPython to a Code object, with the exception of the Code object’s co code property.
This would normally hold the bytes which represent the Python bytecode, however
in Jython this information does not exist. The reason for this is, that the Python
bytecode means nothing to Jython1, and it instead writes Java bytecode directly using
the asm library.

The dynamic nature of Python code is achieved in Jython by way of a lookup table.
Each Python module becomes a Java class with a lookup table. Functions and methods
are transformed into Java methods, and called using an int passed to the lookup table.
This allows functions to be treated as first class citizens.

1This is technically not true, as Jython has a module which is able to interpret Python bytecode.
What Jython is not capable of is producing Python bytecode, and for this reason the co code field of
the code object is left blank.
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5.2 PyPy - Details

The PyPy project consists of two main components, the Pypy interpreter and the
RPython translation toolchain. RPython is a restricted subset of the Python language.
For example, in RPython functions cannot be defined at runtime, and a variable may
not ever contain incompatible types (eg int and object). These restrictions allow static
analysis techniques to be applied to the program so it can be reasoned about.

5.2.1 The PyPy Interpreter

The PyPy Interpreter is almost entirely written in RPython. As RPython is a subset of
Python, it can be run on top of any Python interpreter, without invoking the RPython
translation toolchain to translate the interpreter to an executable. This comes at the
cost of speed, but allows for quick testing of interpreter changes as the translation
takes roughly 40 minutes on a modern machine. Additionally, as the interpreter is
being run within a Python environment standard Python debugging tools can be used
to debug it.

PyPy and CPython use similar bytecode and data structures for their interpretation
of Python. This is one of the reasons why PyPy can quickly adopt new features and
reach parity with the CPython implementation (unlike Jython). The overall archi-
tecture of the PyPy interpreter is one of many abstractions. According to Benjamin
Peterson, “PyPy’s powerful abstractions make it the most flexible Python implemen-
tation.”[22] The main abstraction is called object spaces. An object space encapsulates
the knowledge required to represent Python objects and perform operations on them.
This allows the bytecode interpreter to be a simple stack machine, which need only
push and pop objects on the stack and call methods on them, without knowing the
specifics of handling these objects. For example, the definition of addition shows that
the interpreter does not need to inspect the operands, but delegates to the object
space. A distinct advantage of such a solution is that new data type implementations
can be implemented without modifying the interpreter. Additionally, object spaces
can be used to “intercept, proxy, or record operations on objects.”[22] These features
make PyPy an attractive candidate for implementing an object oriented time travel-
ling debugger OR a trace based TTD. Object spaces appear to be an abstraction that
would allow for the implementation of an object oriented debugger. 2

PyPy provides a standard object space. This level of indirection means that a data type
may have multiple implementations. “Operations on data types are then dispatched
using multimethods.” According to Guido van Rossum, the creator of Python, mul-
timethods are “a function that has multiple versions, distinguished by the type of
the arguments”[29], meaning that at runtime depending on the type, the object space
invokes a different version of the method. This allows the interpreter to pick the most
efficient representation of data, all while being completely transparent to the applica-
tion. For example, arbitrary sized numerical values can be stored as longs if they are
small enough, which is both more memory and computationally efficient.

2As a side note, the authors of Practical Object Oriented Debugging published a paper in which they
used PyPy to implement a Smalltalk VM in under a week that outperformed the existing interpreter.[4]
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PyPy distinguishes between Application level code and Interpreter level code. Inter-
preter level code must be written in RPython and then translated. It operates on the
object space of wrapped Python objects. Application level code is written in Python
and run by the byte code interpreter. Some interpreter level code is written in ap-
plication level code, and there is therefore support for converting between the two at
runtime. For example print statements are application level code, but often included
in interpreter level code.

5.2.2 RPython Translation Toolchain

The steps of the translation process can be seen in figure 5.1 First, the translator
loads the RPython program into its process using standard Python module loading.
The translator is written in Python and can make use of dynamic features that the
RPython program is restricted from using.

Figure 5.1: RPython translation steps from [22, Fig. 19.1]

Translator uses a process called ’abstract interpretation’ to build a flow graph. This is
achieved by using a a special object space called the flow object space. The flow object
space consists of only variables and constants. Constants are values known during
the translation whereas values are not. Constant folding is applied, performing any
operation that consists solely of constants. The flow object space records operations
the interpreter asks it to perform, without performing them. It records the branches
of the conditional control flow, to create a flow graph consisting of blocks of one or
more operations linked together.

The annotation phase assigns a type to the results and arguments of each operation
Rtyping expands high-level flow graph operations to low-level ones based on type in-
formation provided by the annotator. Optimizations are then performed on the low
level flow graph. These optimizations include many standard compiler optimizations
such as constant folding, dead code removal or function inlining. Before the flow
graph can be passed to the back end for translation, it needs some back end specific
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transformations. Exception passing must be transformed, and garbage collection im-
plemented, as Python has automatic memory management and low level languages
like C do not. In CPython reference counting garbage collection is used. This is not
an ideal solution, as it hard-codes the Garbage Collection into the code base, which is
prone to human errors. PyPy uses garbage collection transformers to convert the flow
graph. This eliminates the chance that a programmer may forget to add references to
the garbage collection scheme. Similarly implementing a write barrier based garbage
collection is trivial compared to implementing one in CPython. Lastly, the chosen
back end generates low level code. In PyPy this is a C compiler.

5.3 PyPy and Jython comparison

Many see PyPy being written in Python (or a subset of it) as a huge advantage from
the point of view of a developer. However, writing RPython is not always straight-
forwards. RPython is not specified formally, and often changes depending on the
needs of the PyPy project. Additionally, the RPython translator works on whole pro-
grams. Therefore, changes to the PyPy interpreter require the entire interpreter to
be re-translated, which can be very time consuming. Tangent to this issue, modules
containing RPython code must be included and translated at translation time of the
interpreter, and therefore can’t simply be added at runtime.

The layers to PyPy’s architecture make it easy to implement various garbage collection
schemes and perform interesting transformations on the code without modifying the
interpreter. However, these layers can make tracking down a bug difficult. Firstly, the
bug might not be reproducible on the untranslated interpreter. This means a developer
needs to use a debugger on machine generated C code. These levels of indirection can
also cost performance.

The speed of PyPy is thanks to its JIT compiler. The intention of the JIT generator
is to be very simple, requiring only 2 hints, but these are often not enough, and
additional tweaking and hints must be added. In the context of writing an interpreter
to support a TTD the JIT would be a challenge to support. Luckily PyPY has the
option to disable JIT, and the design benefits of PyPy may prove to be worth the loss
in performance.

The main advantage of Jython over PyPy is its accessibility. Building Jython is
significantly faster than PyPy and simpler to set up. While some will argue Python
is a better implementation language than Java, when modifying a large codebase
statically typed languages are often easier to work with. From a personal point of
view, I have more experience with Java and am more confident in assessing the effect
of my changes.

As Jython runs on the JVM, it can take advantage of features such as memory man-
agement, which Barr and Marron place so much emphasis on. The JVM is well known
for allowing users to tweak memory management settings and for this reason is a good
candidate for the basis of a TTD that uses a persistent data structure for logging.
While the start-up time of Jython is generally slower than Python, the runtime speed
is comparable. Particularly in situations with hot spots, the JVM’s JIT speeds up
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Jython performance. This represents a particular advantage over PyPy as the per-
formance of a TTD built in Jython will get the benefit of the JIT without additional
work.

While the architecture of Jython is not as clean or versatile as PyPy, Jython’s im-
plementation of Python objects does provide a level of indirection in which to place
hooks. This is akin to PyPy’s object spaces without the ability to easily swap them
out. This still makes Jython an attractive option for writing a TTD, although the
implementation may not be as clean.

5.4 Interpreter Choice and Experience

The choice of an interpreter implementation was difficult, as the aims of the project
shifted over time, as well as the implementation plan. After some initial research,
Jython was chosen to perform some feasibility testing and prototyping. The initial
features implemented in the interpreter were limited to counting the instructions exe-
cuted by a program being debugged. This was a fairly simple task. As the experiments
also looked at how to implement logging of changes to variables, Jython appeared to
be ill-suited, due to the lack of direct bytecode interpretation. At this stage in the
project, the Java bytecode generation aspect of Jython was not yet understood by my.
This meant that, when stepping through the Jython interpreter running a user pro-
gram, the generated bytecode was skipped by the Java interpreter and made working
with Jython seem impossible.

At this point, it was decided to attempt to reproduce the work done so far in PyPy.
This was fairly simple as the majority of code was written in standard Python. As
previously explained, the PyPy interpreter can be run as interpreted Python code,
which is very slow, or compiled to an executable, which is faster but takes a long
time to build. The biggest obstacle with using PyPy was writing code that was valid
RPython. Since the interpreted version of PyPy need not be RPython compliant, the
feedback loop for determining if code was valid RPython took on average an hour
(at best 9 minutes once I learned how to optimize the build commands to strip away
everything but the bare minimum). This difficult experience proved to be too much of
a disadvantage, and I decided PyPy would not be viable, especially when the project
became more complex. The only consolation was, that I was not alone in this. David
Beazley, a Python and C veteran renowned in the Python community gave a talk at
PyCon US 2012 entitled ”Tinkering with PyPy”[3]. In the talk, Beazley describes
his failed attempts to understand and modify PyPy using only the documentation
available. He gave other similar talks at subsequent conferences.

Finally, I returned to Jython. This was somewhat difficult, as the developer documen-
tation for PyPy was generally quite good (RPython aside) and Jython’s documentation
was either non-existent or out of date by over five years. However, the time spent us-
ing PyPy was not all wasted. Again, the majority of my code was written in plain
Python, so I was able to re-use it once the modifications to Jython reached parity
with PyPy. More importantly than this code, stepping through PyPy gave me a bet-
ter understanding of how Python works ’under the hood’ and many of the concepts in
PyPy could be found in Jython. My experience with PyPy allowed me to understand
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Jython’s bytecode generation, which had previously stumped me.

Both PyPy and Jython are suitable for writing a TTD, however I believe the accessi-
bility of Jython trumps the architecture of PyPy. Furthermore, as I would be working
in a foreign codebase, an implementation written in a strongly typed and less dynamic
language is much easier to reason about when making changes.
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Implementation

The design of the hybrid debugger is based on functionality present at either end of
the TTD spectrum (as described in figure 4.1). We attempted to implement the Hyrid
TTD in 3 steps.

• tdb - a re-execution based debugger, see section 6.1

• odb - an omniscient logging based debugger, see section 6.2

• An experimental hybrid of the above, see section 6.6

6.1 Tdb: Re-execution Debugger

tdb is a very basic implementation of a re-execution based TTD. It’s architecture is
broken into modifications to the interpreter written in Java, and Python modules,
which exposed those implementations as an interactive debugger. An overview can be
seen in figure 6.1.

TdbTraceFunction is an extension of the standard PythonTraceFunction Java class
used by Jython to send trace events to a debugger written in Python. TdbTrace-
Function implements the absolute measure of time used by Tdb. This information is
exposed to the debugger, written in Python, through the modules tdb.

The base debugger, called TBdb, is a copy of Python’s included Bdb. Bdb is Python’s
base debugger class, which allows a developer to write a debugger simply by overriding
4 methods that correspond to the events traced by the debugger: line, call, return and
exception. However, since this implementation is specific to a standard debugger we
found it easier to re-write the class and hence TBdb is the time travelling version.
TPdb is a copy of Pdb that is specific to a TTD. It extends TBdb as well as Cmd, a
basic command line interface. Cmd provides functionality to parse user input and call
the appropriate function. TPdb provides the functionality of the various user debugger
commands. The core of TPdb is a loop, which processes user input. If the user enters
a command that requires travelling back in time, a Re-Execute exception is thrown,
which signals that the program should be restarted and executed uninterrupted to
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Figure 6.1: Architecture of Tdb debugger

the desired instruction count. An overview of this control flow can be seen in figure
6.2

6.1.1 Absolute Measure of Time

As mentioned before, an absolute measure of time is a key component of a TTD. The
measure of time used in tdb is the number of instructions executed. For tdb we define
a single instruction to be the amount of code executed by a step instruction in pdb.
This creates a one to one mapping between the steps at which a program can be halted
in pdb, and an instruction count in tdb. The time travelling debugger will therefore
only be able to stop at precisely the same points in execution as pdb. This is good, as
we would like the granularity of the measure of time to be as coarse as possible while
still allowing precise debugging.

TdbTraceFunction implements this instruction count as a global variable. The in-
struction counter is incremented whenever a trace event is dispatched to the debugger
attached to the TdbTraceFunction. This allows us to use the presence of a trace func-
tion as a filter to ensure only instructions in user level code increment the counter.
Similar to other TTDs, tdb also skips any tracing in the standard library. This avoids
tracing potentially a large amount of instructions that the user has not written.

The motivation behind implementing the measure of time as part of the interpreter
is for maximum performance. A standard debugger is able to mitigate some of the
overhead of tracing functions, by not tracing functions that are stepped over. This is
done by removing the trace function from a frame that a user has decided to skip. This
is not possible in a TTD, as the trace function provides the means of implementing
an absolute measure of time.
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Figure 6.2: (1) the script being debugged is run by Jython, which attaches
the TdbTraceFunction. The TdbTraceFunction recieves line, call, return and
exception events (2) TdbTraceFunction runs the program until the stop condi-
tion is met, and then calls TBdb (3)TBdb stops and calls to TPdb to prompt
the user (4) TPdb presents a prompt to the user and (5) calls to the CMD
module to run the cmd loop and wait for user input. (6) CMD passes back
to TPdb a valid command, calling do cmd with the cmd. (7) Tpdb sets the
next stop condition using the tdb module. (8) TPdb returns control to the
TdbTraceFunction, which continues to run the program

6.1.2 Forward Execution

A standard Python debugger based on Bdb performs forward execution by comparing
the frame of the current trace event to a stop condition. The stop condition consists of
a stop frame and a return frame. However, when reverse executing, it is not possible to
compare frames that haven’t been created yet. For this reason, tdb uses an approach
based on Boothe’s ”Efficient algorithms for bidirectional debugging”[5] described in
section 3.1.4. This approach uses an instruction counter as well as a call depth counter
to allow for controlled debugging in both directions.

The stop condition consists of three values, a stop instruction count (stop ic), the stop
call depth (stop depth) and a stop event (stop event). A negative depth value is used
to denote that any depth is acceptable. A stop instruction count is always provided as
it can be generated from any instruction count by incrementing or decrementing the
current instruction count depending on the direction of travel. Lastly, the stop event
is a string which stores the event type. The debugger will only stop on an event type
which matches the stop event (if the stop event is not null). The basic stop condition
is as follows:
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if (stopIc >= 0 && instructionCount >= stopIc) {

if (stopDepth == -1 || stopDepth >= callDepth) {

if (stopEvent == null || label.equals(stopEvent)) {

... // stop and interact with user

}

}

}

To help explain the semantics of debug navigation commands, we will use the following
simple program:

1 def fib(n):

2 if n <= 1 :

3 return n

4 f1 = fib(n-1)

5 f2 = fib(n-2)

6 return f1 + f2

7 f = fib(3)

8 print f

The program has been simplified, for the purpose of improving the clarity of examples.
Specifically, lines 4,5 and 6 could be combined into a single line. This program can be
represented by the call graph shown below:
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Each vertical tick represents an execution point in the program. These are all the
points at which a debugger can pause execution. Below each tick is the line number
of the instruction being executed.

The y axis represents how many calls deep the current instruction is. 1

Open circles ◦ denote a call event. A call event is not the event that calls a function,
but rather the first event in the new function. Note therefore, that a call event will
always be preceded by a downward sloping line, from the location of the function call.
In the instance of the program above, there is only one function, so all call events have
line number 1. However, the call location varies. For example line 7: f = fib(3) or
lines 4 and 5: f1 = fib(n-1), f2 = fib(n-2) Instruction 0 is marked as a call, as it
is the entry point into the program.

1Note, the call depth starts at 1 as side-effect of how the debugger is invoked. The last instruction
that returns to call depth 0 represents the program exiting
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The program computes the third Fibonacci number (0 indexed) in a recursive fash-
ion. This can be expanded as: fib(3) = fib(2) + fib(1) = (fib(1) + fib(0))

+ fib(1) These calls are labeled on the graph above with dotted arcs.

Closed circles • denote a return instruction. In this example, the fib function returns
on line 3 or 6. The program exits on line 8, which is recorded as a return event by the
debugger.

In later examples, a diamond � will denote the start position of the debugger.

Step Command

The step command executes the next instruction, possibly stepping into a function to
do so. The counter based stop condition is stop instruction count = current instruction count

+ 1 and stop call depth = any call depth. In tdb, any call depth is flagged by a
-1.
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Figure 6.3: Starting at the first instruction, repeatedly calling the step com-
mand will navigate to every execution point in the program.

Next Command

The next command executes the next instruction, stepping over any functions that
might be called. This is analogous to setting a stop condition where the instruction
count is greater than the current count, and the call depth is less than or equal to the
current call depth.
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Figure 6.4: This graph shows the next command being called 10 times, start-
ing at instruction number 6. Note that at instruction 8 we do no step into the
function, but rather to the instruction after its return event. At instruction
18 we step up and out of a function. After stepping out of the function, we
continue stepping at call depth 2, skipping the function at instructions 20-24.

Return

The return command executes to the return of the current function. The debugger
stops at the next return event where the instruction count has been increased and the
call depth has been decreased. There is one exception to this rule, which is that if the
current instruction is a return instruction, then we simply stop at the next event.
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Figure 6.5: This graph shows the return command being called 3 times start-
ing at instruction 7. The first return jumps to instruction 19, which is the
return event that corresponds to the call at 6. Any of the events at call depth
3 between instructions 6 and 19 (ie 6,7,12,13,17,18) will return here.
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Continue

The continue instruction, executes until a breakpoint is reached or the program ter-
minates. Handling breakpoints in forward execution is very simple. Breakpoints are
indexed by a file name, line number pair. For each trace event received during forward
execution, the debugger checks the stop condition as usual, and additionally stops if
the current event’s line and file name match any of the breakpoints.
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Figure 6.6: This graph shows the effect of running the continue command
until the program exits. Notice the two breakpoints denoted by a B. If no
breakpoints were set, the program would jump the the last execution point
without stopping, however since there are breakpoints, execution is caught.

6.1.3 Reverse Execution

Reverse execution is performed in name alone, tdb actually performs reverse execution
by forward executing up to the desired instruction count. This is achieved by throwing
a Re-Execute exception, which breaks execution. The exception is caught in the main
loop, which enters the debugger into ’replay’ mode. In replay mode, the prompt is
disabled until the desired instruction count is reached. As far as the user is aware, the
program has jumped back in time to desired instruction, giving the illusion that the
program traveled backwards in time.

RStep

RStep, similarly to its regular counterpart is the simplest command to implement.
The debugger is set to re-execute and stop when it reaches the current instruction
count minus one.
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Figure 6.7: RStep navigates to each execution point in reverse order.

RNext

The RNext command steps backwards through the program, stepping over any func-
tion returns back to the call of the function. RNext is a bit more involved to implement.
We stray from Boothe’s implementation, as it requires additional passes. We instead
trade-off execution time for memory usage. The instruction count of calls are stored
in a stack. Every call event, the instruction count is added to the stack, and every re-
turn event the instruction count is popped off the stack. To determine the instruction
count that we should jump to after an RNext command, we look at the previous event.
If it is a return event, we jump to the instruction specified by the top of the stack.
Otherwise, we perform an RStep, stepping backwards a single instruction.
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Figure 6.8: This graph shows the effect of calling RNext 12 times starting
at instruction 16. RNext moves backwards over the execution points. If it
encounters a return instruction, if jumps to the instruction before the function
call, skipping the functions execution. For example at instruction 13, rnext
jumps to 8 instead of entering the function at depth 4.
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RReturn

RReturn jumps to the call location of the current function, ie the instruction before
the debugger received a call event. The implementation for RReturn follows from
RNext. We peek at the top of the stack to determine this call instruction count, and
jump to it.
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Figure 6.9: This graph shows the effect of executing the RReturn instruction
4 times from instruction 16. The location reached after calling RReturn is
the first execution point before the previous call ◦ at the same depth as the
current instruction, ie the call location.

6.2 Odb: Omniscient Debugger

The omniscient debugger (odb) is a time travelling debugger written in the style of a
pure logging TTD. The goal of this debugger is to provide logging capabilities that
could later be transformed into a mechanism for efficiently creating checkpoints. Odb
must log enough information to recreate the state at any point in execution that a
debugger would be able to stop at to provide a seamless debugging experience.

Odb is implemented in the odb module, which is backed by the Java modules in the odb
package. Additionally, when the interpreter detects that the odb module is actively
logging the execution of a program, certain data types are switched to a logging mode.
These data types include the default implementations of lists and maps, which are
used to store object attributes, and local variables.

6.2.1 Event Logging

odb must log enough information to re-create the experience of debugging a program.
To do this, odb hooks into the interpreter in the same manner as a regular debugger,
through sys.setodbtrace, a specialized version of sys.settrace. However, unlike a
typical debugger, odb only uses the trace function as a flag to determine which frames
belong to the program being debugged. The OdbTraceFunction is a Java class, which is
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attached as the trace function for any frames in the debugee. OdbTraceFunction passes
trace events (of type Line, Call, Return, Exception) and their associated information
to the odb instance for logging. Besides this logging, the debugee program is allowed
to execute without interruption.

The Line, Call, Return and Exception events that are generated throughout the ex-
ecution of a debugee program are stored in the ’events’ list. Similarly, information
about every frame that appeared on the stack during the execution of the program is
stored in the ’frames’ list.

A standard event consists of a timestamp, line number, and a frame index. The index
points to the position of an OdbFrame object in the frames list. This frame object
is the recorded information that corresponds to the Python stack frame on which the
event was executed. An event is encoded as a long value as shown in figure 6.10.
The first 32 bits make up the frame index, which holds the index of the frame in the
frames list. The next 32 bits are split, with the type taking up the last 2 bits and the
line number using the remaining 30. To convert between the constituent components
of the event and the long representation, standard bit manipulation techniques are
used. This approach is much more memory efficient when compared to using a Java
object, as an object requires at least 2 words for its header, 3 times the size of a long.
However, this efficiency is only realized if the long is stored as a true primitive and
not a boxed long, as discussed in section 6.2.1.

Figure 6.10: The layout of an event encoded as a long

The OdbFrame object is significantly larger than an event, occupying 72 bytes per
instance. This larger size is a result of a trade-off. By storing more information in the
frame objects, the event objects can be smaller. This is particularly effective, since
many events from the same frame share information.

Index int This field stores the index of the current frame object in the frame list.
This allows for quick retrieval of frames adjacent to the current frame.

Parent OdbFrame This field stores a pointer to the parent of the frame object. During
execution, this would be the previous frame on the stack, however since all
frames are stored in the frames list it is possible that a frame’s parent will be
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multiple frames above it. This field helps facilitate the next, rnext, up and down
commands

Name String To re-create the debug experience, we store the name of the function
being executed as it is not always possible to retrieve this from source code. This
value is extracted from the code object of the frame being logged. By storing
this value on the frame, the events need not duplicate this storage. Regardless
of whether the event or frame stores the file name, duplicate file names are not
duplicated in memory as Java interns these strings.

Filename String Just as with the Name field, the file name is stored for the purpose
of recreating the debugging experience and reducing the amount of information
that needs to be stored by individual events.

Lineno int The line number where the function was called from. This would appear
to be extraneous information, as we have a reference to the Call timestamp,
however the Call event is one event too late. Similarly, the line number of the
event at events[frame.timestamp -1] is not always correct as a single line
may have multiple calls OR a return event may be generated due to an event.

Timestamp int This timestamp corresponds to the time at which the frame first
existed, ie the timestamp of this frame’s call event. It is always true that
frames[events[i].frameid].timestamp == i The timestamp field is used to
quickly jump back to the call of a given function in the ’rreturn’ command.

Return Timestamp int This timestamp indexes into the events list to the return
event for this frame.

Return value PyObject As return a value is not necessarily stored as a local before
it is returned, we ensure to store it if it exists.

Locals HistoryMap<String,PyObject> The locals field is a reference to the locals
dictionary used in the execution of the program. As this dictionary has been
instrumented to store history, a reference is sufficient. Essentially, the reference
is keeping this locals dictionary from being garbage collected, as the standard
PyFrame frame objects are garbage collected when they are popped off the stack.

Initializing the Top Frame

As we don’t know whether the first event will be a Line, Call or Exception event,
the creation of any of the events needs to ensure that odb is set up for logging. The
initializeParent() method creates the first frame in the frames list. This has two
purposes. The first is to initialize a pointer to the globals maps. Secondly, by adding
an additional parent frame, we guarantee that all frames that are created as a result
of a call event will have a parent frame. This reduces any edge cases we need to
handle.
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Figure 6.11: Each OdbEvent indexes into the frames list via the
frameId value. OdbFrames in turn index into the events list to ac-
cess the call event at events[frame.timestamp] and the return event at
events[frame.return timestamp]. Each frame’s parent field points di-
rectly to its parent frame in order to allow for call stack restoration. Lastly,
each frame stores its own index in the frame’s list in the index field to facili-
tate relative movement in the frame stack.

Line Event

A line event is the simplest form of event that odb logs, and requires only a frame as
input (in addition to access to the global timestamp). Logging a line event is as simple
as encoding the event type, line number and frame id in a long, and storing it in the
events list. Finally, the global timestamp is incremented. As no new frame is added
to the frames list, the global frame index doesn’t need to be modified.

Call Event

A call event creates not only a new event, but also a new OdbFrame. First the new
OdbFrame is created, and populated with the necessary information from the PyFrame
(the frame used by the interpreter). This frame is then appended to the frames list,
and the currentFrameId counter is incremented. This counter is necessary to efficiently
track the current OdbFrame, as the current frame is not always the last frame in the
list. Once the new frame has been created, a call event is encoded and added to the
events list. Finally, the global timestamp is incremented.

Return Event

A return event completes the logging of the information stored in an OdbFrame. In
particular, the return timestamp and value are recorded. As the parent frame may
not be the previous entry in the frames list, it is explicitly recorded in the OdbFrame
object. The parent is then used to update the currentFrameId
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Exception Event

An exception event is created in almost an identical manner to the line event. The
line number, frame id and event type are encoded as a long and stored in the events
list. Before the global timestamp is incremented, an additional exception object is
created, and stored to the exceptions list. This exception object stores the type, value
and traceback (if present) of an exception along with the event’s timestamp.

Performance considerations

The performance of a logging TTD relies on two factors, the memory footprint of the
stored information and the overhead of creating and traversing said information.

One of the most important considerations is the decision of the data structure used to
store the event history. The event history consists of events, which are indexed by a
monotone continuous integer value. That is to say, the natural numbers in order, with
no missing values. Events are only appended to the list. The append operation should
therefore be fast and efficient, as the appends are happening during the execution of
the program and affect the runtime overhead of the debugger. Preferably the data
structure should not require resizing and copying a backing array to append data past
an initial capacity, as such a scheme performs poorly for large amounts of data. Fast
traversal and random access are also desirable qualities.

A linked list meets half of these requirements, as it appends quickly and is ideal for
quick traversals. However, a linked list is not particularly memory efficient, using 24
bytes per entry and has poor random access performance. An array list is slightly more
memory efficient, although the append operation suffers in performance at larger sizes.
To satisfy all the criteria, the Big List[33] implementation was chosen. Big List is a
list that is optimized for lists with more than one million elements. It is essentially
a tree with 1000 element arrays at the leaves. The tree structure allows for quick
indexing, and efficient appends. Additionally, the memory overhead of a Big List is
low compared to a linked list. As previously explained, events are stored as primitive
long values. BigList has a special long implementation called LongBigList, which
stores unboxed longs, maximizing performance in terms of memory and runtime. For
these reasons LongBigList was chosen to store event history.

6.2.2 Logging Variable History

Logging variable history is achieved by adding an extra dimension to each variable. A
single variable is represented by a HistoryValueList. This HistoryValueList represents
the value of a given variable at various points in time. Each entry in the list is a
HistoryValueList, which consists of the timestamp, and the value the variable had at
that timestamp. The list is ordered by timestamp, and values are only appended to
the end. That is to say, there is no history re-writing, so only monotone increasing
timestamps are valid. However, if a new value is appended with the same timestamp
as the top value, the top value is simply replaced. This is the copy-on-write property of
HistoryValueList. Variables are only logged to a HistoryValueListwhen if their value is
changed, as a result the get operation of a HistoryValueList must ’interpolate’ values.
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If a value is requested at a timestamp which is not present in the list, the value with
the largest timestamp below the requested timestamp is returned. This can be seen
in figure 6.12.

Figure 6.12: Operation of a HistoryValueList with string values

The properties of a HistoryList mean that it can be implemented either as a Map where
the timestamp is the key or any ordered collection. The most common operation will
be an append or peek operation. Additionally, the size of each HistoryList is highly
dependent on the variable it is backing. Therefore, the implementation should be
performant in terms of memory and runtime for all list sizes, with emphasis being
placed on low memory usage. A linked list satisfies many of these properties, but has a
relatively high memory overhead. A hash map is another possibility, however expensive
re-hashing is required when the backing array’s capacity is exceeded. Additionally,
Java’s implementation of an ordered hash map uses a linked list, which adds to the
memory overhead. Instead, a simple ArrayDequeue is used. ArrayDequeue is backed
by an array, which is re-sized using Java’s efficient Array copy method.

Thus far we have described a mechanism for storing the history of a single variable.
What has not been explained is how to substitute this representation of a variable
into a program so that all accesses and modifications of the variable are redirected
to this HistoryValueList. The implementation is similar to Leinhard’s object aliasing
solution described in section 3.1.8. This is possible, because just as in Smalltalk, all
values in Python are objects. More importantly, local and global variables in Python
are stored in a dictionary. In the Jython implementation, locals and globals are stored
in a PyStringMap, which is a dictionary with performance optimizations for key values
that are Strings of PyStrings. PyStringMap as well as the more general PyDictionary
are both backed by an object that implements the Java Map interface. By replacing
this standard map with one that makes use of HistoryValueLists, we can log variables.
The replacement of the backing map is performed during instantiation. We have
chosen to restrict odb to run on a program from beginning to end without disabling
the logging. Therefore, any frame or object that is created in a script being run by odb
will know at runtime whether it should enable logging. This provides the benefit of
not requiring a conditional to check whether logging is enabled as well as its overhead.
An overview of this implementation can be seen in figure 6.13

HistoryMap

HistoryMap is a pseudo implementation of the Java Map interface, which is backed
by a Map of a generic type key to HistoryValueList. HistoryMap implements size,
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Figure 6.13: Rough UML diagram of how locals in a PyFrame object are
logged using an OdbMap backed by a HistoryMap

get, put, remove, clear, contains and putall with an additional timestamp argument.
The timestamp parameter is used to call methods on the HistoryValueList elements
of the map. As the size of the map will change overtime, and we would like to
refrain from doing an expensive traversal to determine the size, we store the size as a
HistoryValueList of integers. When an element is removed, we insert a null into the
HistoryValueList. A null flag is sufficient, as Jython uses PyNone to represent Python
null values.
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The steps for put are as follows
• Check that key and value are both not null
• Lookup the key in the map to get the HistoryValueList
• If the key didn’t exist, put a new HistoryValueList with the given timestamp

and value into the map
• Otherwise insert the new timestamp and value in the HistoryValueList
• Increment the size HistoryValueList

The steps for remove are as follows:

• Check that key is not null

• Lookup the key in the map to get the HistoryValueList

• If the key doesn’t exist return

• Otherwise insert the new timestamp and a null in the HistoryValueList

• Decrement the size HistoryValueList

An example of how a history map stores changes to a map see figure 6.14.

Figure 6.14: The following shows the state of a HistoryMap after performing
the operations listed above at the corresponding timestamp. Note that the
size HistoryValueList does not contain an entry for timestamp 3 as its value
would also be 2.

OdbMap

OdbMap is an implementation of the Java Map interface, which uses HistoryMap as a
backing object. OdbMap is implemented using a delegate pattern, with a slight twist.
In addition to the HistoryMap, a standard Java map object is also used to provide
fast lookups at runtime. OdbMap delegates all write operations to both maps. If
the interpreter is executing forward through a program, the OdbMap delegates read
operations to a standard map. Once normal execution has finished, and replay mode
has been enabled, read operations are delegated to the HistoryMap using the global
odb timestamp. To provide a memory efficient implementation of EntrySet, KeySet
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and ValueSet, OdbMap creates the desired collection dynamically using an iterator
rather than creating a new collection.

6.2.3 Logging Everything Else

Once logging has been implemented for dictionaries, the majority of logging has been
handled.

Object fields/attributes Python object instances store attributes in dictionaries,
allowing us to re-use the OdbMap to log history.

Lists We implemented lists in a similar manner to maps. Again, the special case was
removing objects, which in this situation required shuffling elements in addition
to inserting a null value.

Tuples Tuples are immutable and as such need no work.

Arrays and other built in types Arrays would be simple to implement now that
lists have been implemented, but it was decided place efforts elsewhere in the
project as implementing further collections and objects is not particularly chal-
lenging but very error prone.

Stdout The output of a program plays an important role in debugging. Therefore, it
is important to also ensure that odb logs it. odb replaces stdout with an instance
of OdbStringIO. To ensure that stdout logging is in sync with the rest of odb’s
history, OdbStringIO it is logged using a HistoryValueList of strings. These
saved values are then fetched whenever odb navigates forwards over a timestamp
that OdbStringIO associates with a string.

6.3 ODB operation

Navigation commands in ODB are fairly straightforward to implement as all the in-
formation required is present in either the events or frames list. Rather than reuse the
call graph diagrams from the tdb sections 6.1.2 and 6.1.3, we have instead provided
a layout of the same fib3.py program as stored by odb. This diagram can be seen in
figure 6.15. Examples in this section will reference this diagram.

6.3.1 Step

To step, odb increments the currentTimestamp, and updates the currentFrameId by
decoding the long at events[currentTimestamp].

The step command can be visualized in figure 6.15 as moving down the events list one
item.
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Figure 6.15: This diagram shows the contents of the ’events’ and ’frames’
list after odb has executed the fib3.py program. Events are structured as
<timestamp> EVENT TYPE linenumber. Each event’s timestamp is also its
index in the ’events’ list. The arrow shows which frame the event points to by
its frameId value. From top to bottom, each frame contains its timestamp,
methodname:linenumber, return timestamp. The arrow indicates the par-
ent of the frame, and the number on the right its index in the ’frames’ list.
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6.3.2 Next

The next instruction performs a linear search on the events list, starting at the index
given by the currentTimestamp. It stops at the first event, which has a frame index
equal to the current frame index OR a breakpoint that matches the event’s line number.
If there are no breakpoints set, we can take advantage of the structure of the events
and frames. Since next does not enter into calls, when we encounter a call event we
lookup the corresponding return timestamp from the event’s frame and continue the
search from there.

For example, let us assume odb is currently at event 1, with no breakpoints set, and
we called the next command. odb would inspect the next event, 2, which is a call
event. Therefore, it looks up the frame that event belongs to, frame number 1, and
jumps to the corresponding return timestamp (25) plus 1, 26. From figure 6.15 we
can see, that the events between 2 and 25 inclusive all belong to a child of frame 0.
Next doesn’t step into functions, so we would like to ignore these events, which is
exactly what jumping to 26 achieves.

6.3.3 Return

Return has a special case. If the current event is a return event, then the debugger
simply performs a Step command. If no breakpoints were set, the return instruction
could simply set the currentTimestamp to frame.return timestamp. However, since
we would like to support breakpoints, it must perform a linear search on the events
list from currentTimestamp to frame.return timestamp, stopping if the line matches
one of the breakpoints for this file.

For example, we will again odb is currently at event 1, with no breakpoints set, and
we have called the return command. Since no breakpoints are set, odb looks up
the frame that event 1 belongs to, frame number 0, and jumps to the corresponding
return timestamp, 27. Figure 6.15 clearly shows, that event 27 is a return event that
belongs to frame 0.

6.3.4 Breakpoints

Breakpoints are handled by the BreakpointManager class. The breakpoint manager
contains a set of breakpoints, as well as an index. The index acts like a unique key in a
database, incrementing for each breakpoint added to the set, but never decrementing.
Breakpoints contain fields to store their index, file name and line number. Breakpoints
in the set must be unique in terms of file name and line number. When clearing
a breakpoint, they can be looked up by either the index number or file name line
number pair. The main function of the breakpoint manager used by the other debugger
commands is, the getBreakpointLinesForFile method, which returns the line numbers
that have a breakpoint in a given file. This method is used frequently in the methods
firstBreakpointBetween and lastBreakpointBetween. For a given start and end point,
firstBreakpointBetween performs a linear search over the events. If the file and line
number of an event matches a breakpoint, that event’s timestamp is returned. If no
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breakpoint is hit, the end timestamp is returned. lastBreakpointBetween performs the
same search in reverse.

6.3.5 Continue

If there are no breakpoints, continue jumps to the last event. Otherwise, continue
performs a linear search on the events list, stopping at the first breakpoint. Continue
is implemented as a simple combination of the jump instruction and firstBreakpoint-
Between.

int do_continue (){

int start = OdbTraceFunction.getCurrentTimestamp ();

int end = OdbTraceFunction.getEvents ().size() -1;

return do_jump(firstBreakpointBetween(start , end));

}

6.3.6 Reverse Execution

The reverse commands are almost all identical to their forward execution counterparts,
with the exception of the order of linear search being reversed.

6.4 Other Debug Commands

Where displays the call stack of the current function. To re-create the call stack at
any point in time, odb simply traverses the parent pointer of the current frame
until a null value is reached.

Up moves up the call stack one frame. Similarly to where, odb achieves this by setting
the current frame equal to the frame pointed to by its parent field. The difference
between odb and a standard debugger is, that navigating up the call stack jumps
to that point in time, so one can continue to step through the program after
moving up the call stack.

Down moves down one frame. As there are potentially many children for each frame
depending on the point in the program, a child field is not stored in an OdbFrame.
Instead, as this is an uncommon operation a linear search through the frames
list is used to find the next frame that has a parent equal to the current frame.

Default prompt The default prompt allows the user to type in an expression. The
expression is evaluated in a copy of the locals and globals at the current times-
tamp.

6.5 Omniscient Debugger Specific Commands

The all-knowing nature of an omniscient or logging debugger allows for some additional
commands to be defined
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6.5.1 NextF, PrevF

These are the frame commands, which allow us to navigate the frame list regardless
of its call stack structure. NextF moves to the next frame, and PrevF moves to the
previous frame. This is similar to return and rreturn, however these commands do not
halt for breakpoints.

6.5.2 Events, Frames

A useful debugging technique is to be able to quickly see the execution path of a
program. One way to visualize this is, to see the events and frames stored by odb.

events displays the events list in groups of 20 using the format:

<%instruction count%> %event type% %filename%:%line number%

frames displays data in a similar format for frames. Both use an arrow to indicate
the current frame / event.

6.5.3 History

history displays the history of a variable for the current frame. This is useful for
seeing changes of a variable over time quickly. The history command looks up the
current frame and accesses its locals map, which is a HistoryMap. It then retrieves
a sub list of the specific variable’s history using the getBefore method. This method
takes a variable name as a key, and a timestamp to start the history search. The
returned list contains all HistoryValue entries with a timestamp greater than the given
timestamp.

6.5.4 Eval

eval is a powerful command that quickly evaluates an expression over all the events
in a frame. This can be used to test assertions dynamically when debugging.

Since the expression being evaluated is the same, we start by compiling the expression
to a PyCode object. This allows us to re-use this code object, saving the extreme
overhead of compilation.

Next we perform a slightly modified linear search over the events list starting at the
currentframe.timestamp and ending at currentframe.return timestamp. When-
ever a call event is encountered, we skip to the event after the corresponding return.
Depending on the nature of the program, this can skip large numbers of events.

Any events between this call and return occur in a different frame, and therefore have
a different locals map. Therefore, skipping these events is not a problem, as they are
not considered valid for the expression being evaluated. An exception is made for
recursive methods, by checking the file name and line number of the method.
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When a valid event is reached, the frame’s locals at the event’s timestamp are used
to evaluate the expression. If there is an exception, it is discarded. Exceptions are
common when evaluating expressions with many variables, as the evaluation of the
expression will raise a NameError for all events before the point where all variables
have been instantiated.

Finally, a list of the expression results at specific times is returned. To avoid over
saturating this list, only new values are appended. A variable, m, which is assigned
to once, but is present in 1000 valid events would only display a single value when
running the command eval m.

The two optimizations described above have a significant impact on the performance of
the eval command. Running eval on a frame with a range of around 300k events, where
roughly 3000 events are ’valid’, took several minute without optimization. Applying
the event skipping optimization improved this to a matter of tens of seconds. Profiling
revealed just how slow compiling was, the precompiliation optimization improved the
speed of eval to sub second time.

6.6 Hybrid TTD

The hybrid debugger makes use of the technique implemented separately both in tdb
and odb. tdb provides the basis for re-execution and odb’s object level copy-on-write
history can be extended to create checkpoints. To combine tdb and odb, a method for
restoring the execution state of a checkpoint is required. A set of experiments was
undertaken to assess the technical feasibility of our hybrid design. As a result of these,
we conclude that it should be possible to create a combined TTD from tdb and odb,
and suggest this as a project for future work.

The biggest challenge in implementing the hybrid TTD is restoring the call stack
without re-executing the entire program. An interpreter, which processes bytecode
instructions one at a time, would easily allow for this to be implemented. Given a
serialization of the call stack, the program starts by placing the first method called
on the stack. It then pseudo-executes this method to the next call in the call stack,
skipping all other instructions, but updating the program counter (in the case of
Python this is the frame’s f line field). As part of the call stack serialization, the
opcode stack must also be serialized, so that it too can be restored for each frame.
Conceptually, the checkpoint has now been restored, as the odb style object history
is restored on demand. Therefore, any regular execution from this point would make
use of the logged values from the checkpoint.

This challenge was further complicated by our departure from PyPy. PyPy interprets
Python bytecode in the manner described. Jython, unfortunately does not. As de-
scribed in 5.1.2, Jython translates Python bytecode into Java bytecode. This method
improves the performance of Jython execution, but has the side effect of entangling
the Java call stack with the Jython call stack. Particularly, the generated Java byte-
code makes calls into the Jython interpreter. As a result, a single call in Python code
becomes many Java calls. As the JVM does not allow us to add arbitrary stack frames,
nor jump to a line in a program, the implementation described above is not possible.
We explored two solutions to this problem.

58



CHAPTER 6. IMPLEMENTATION

6.6.1 Modifying Java Bytecode Generation

The first idea involved modifying the bytecode compiler. Every method on the call
stack could be replaced by a fake version. These fake methods are clones of the original,
with previously executed code removed. Method calls which correspond to a call on
the call stack are made to these fake methods instead. Special care would need to be
taken with loops and complex control flow. To implement this idea, a new visitor could
be derived from the existing compiler’s visitors. The call stack checkpoints would need
to contain enough information to determine the lines which created each frame on the
call stack. In particular, multiple method calls in a single line would need to be dealt
with. An example of how a Python program could be modified to produce the same
results as the bytecode re-writing technique can be seen in figure 6.16. We foresaw
many complications in the implementation of this method, as well as a high potential
for the semantics of the original program to be modified.

1 #...

2 #definitions of foo and baz above

3
4 def bar(f):

5 a = 2**f

6 # ... some more instructions

7 #-> b1 = baz() #stopped before this call

8 b2 = bar()

9 return b1 + b2

10
11 def main():

12 a = foo()

13 b = bar(a)

14 c = baz(b)

15
16 ##################################################################

17 #Methods added to recreate call stack: main -> bar

18
19 def fake_bar(f):

20 # instructions before stopped point are removed

21 b1 = baz() #stopped before this call

22 b2 = bar() # calls after the stopped point are normal

23 return b1 + b2

24
25 def fake_main ():

26 # instructions before next method on call stack are removed

27 b = fake_bar(a) # fake method replaces call

28 c = baz(b)

29
30 fake_main () #replaces the call to main()

Figure 6.16: This code snippet shows a simple program stopped on line 7.
The call stack consists of main, which calls bar. In order to re-store this call
stack, and the execution up to line 7, we introduce the fake main and fake bar.
fake main is a clone of main with the executed lines (12 in main) removed.
The call to bar is replaced by fake bar since bar is next on the call stack.
Notice in fake bar that the call to baz remains, as it has yet to be executed.
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6.6.2 Interpreting Python Bytecode

Our second idea took a more pragmatic approach. Jython can not produce Python
bytecode, but given Python 2.5 bytecode, Jython can interpret it. This functionality
comes from a legacy file in Jython. The PyBytecode class has an interpret function,
which interprets a provided byte string as Python bytecode. This would provide us
with the required functionality at a performance cost (as well as being limited to
woefully outdated Python 2.5 code). To generate the Python bytecode, we can call
python25 -m pycompile file.py to generate python bytecode. Then from Jython
we run the file with jython -c ’import pycimport; import file’, which enables
the bytecode meta-importer and imports the file module. This process could easily be
embedded into the Jython interpreter.

Work on the second idea was started. The functionality of the pycimport module was
assessed and odb was shown to work in interpreted mode. However, in lieu of polishing
the odb and tdb implementation, work on checkpoint restoration was abandoned.

6.7 Testing

Python does not directly support attaching multiple debuggers, as there is only a
single global trace function. For this reason, testing was particularly important in
developing odb. There were two main components to test, debugging compatibility
and logging correctness.

6.7.1 Debugger

To test the compliance of odb in relation to pdb, we developed a type of model based
test. This style of testing was a result of hand written unit tests missing test cases.
The model consists of an array of tuples. Each tuple corresponds to a instruction
count, and the elements of the tuple store the instruction count after executing a
specific navigation command at that instruction count. For example, the first entry
might be (1,12,...) which means that a step instruction would result in the debugger
reaching instruction count 1, and a next instruction would jump to instruction count
12. The model implements the debugger commands in the simplest manner possible,
by updating its state with what the model says it should be:

def do_next(self):

self.ic = self.model[self.ic]. next_ic

self.check_model ()

Test cases are generated for ever command at every point in the program. When each
test is run, it performs the same commands on the model and the actual debugger,
and the check model method compares the state of the two.
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6.7.2 Logging

Since logging was essentially implemented by replacing the backing Map of the PyS-
tringMap object, we focused our tests on ensure compatibility between the existing
backing object and the new OdbMap. This was achieved by using the test generators
provided by Google’s guava-test library[12]. Using these test generators, we were able
to specify the properties that our map implementation should have, and generate a
test suite of over 300 tests to run on the existing backing map and OdbMap in both
recording mode and replay mode. This gave us the confidence that the two functioned
equivalently, at least in recording mode. To more thoroughly test replay mode, we
wrote specific tests for the HistoryMap class. Lastly, we supplemented these Java tests
with Python tests of the collections and objects that used the Map.
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Evaluation

Unless otherwise stated, all benchmarks were run on an HP Compaq dc8300 with 16GB
of ram, and an Intel Core i7-3770 3.40GHz with 8 cores. Any benchmarks run using
Jython limit the JVM’s heap size to 4GB, as it was decided this was an amount of
memory that modern systems can afford to allocate.

7.1 Instruction Counting Overhead

Implementing instruction counting efficiently is important to the performance of the
debugger, as it is the basis for all reverse execution. We tried to improve the per-
formance overhead incurred in Sabin’s epdb[31], as this is a Python based TTD that
implements instruction counting without modifying the interpreter. Sabin’s imple-
mentation reportedly ran at roughly 15 times slower than standard CPython, with
a maximum overhead of 110 times. As a benchmark, he used the standard Python
benchmark, pybench. While pybench is no longer considered a reliable or accurate
benchmark, we will use it to be able to compare our performance with epbd.

To evaluate the performance improvement gained by implementing instruction count-
ing in the interpreter, we set up a 3 way comparison. we started by running pybench
on an unmodified version of Jython as the control variable. The benchmark was run
for 10 rounds (the default) and a warp factor of 5 using the following command:

Jython -J-Xmx4096M pybench.py -w 5

The warp factor is a parameter used by pybench to speed up tests. Tests need to run
long enough for the timing to be considered accurate. A high warp factor decreases
the amount of time the tests run for. As Jython uses a JIT and pybench was run
for 10 rounds, the warp factor needed to be reduced from the default of 10 to 5 as
compensation for the speed up over time afforded by the JIT. The warp factor was
determined experimentally, as the default warp factor resulted in a “warp factor set
to high error”.

Next, we ran pybench through the instruction counting program used by Sabin using
the following command:
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Jython -J-Xmx4096M countinst.py pybench.py -w 5

Lastly, we ran pybench under tdb debugger to enable interpreter level instruction
counting enabled using this command:

Jython -J-Xmx4096M -m tdb pybench.py -w 5

The graph in figure 7.1 shows the performance difference between the instruction
counting implemented in Java and Python for the various components of pybench.
The instruction counter written in Python had an average runtime of 41 seconds.
The interpreter level instruction counting average runtime was only 19 seconds. The
average performance improvement is around 48%, meaning that the interpreter level
instruction counting has an overhead equal to roughly half the overhead of software
level instruction counting. Interestingly, the interpreter level counter was actually
slower for the TryRaiseExcept and WithRaiseExcept tests but much faster for the
TryFinally and TryExcept tests. This is likely attributed to Jython’s slow excep-
tion raising in general, as a single Python exception is translated into multiple Java
exceptions.

7.1.1 Summary

The goal, O1, was to have an instruction counting overhead that was comparably
low, around 15 times. The average overhead was a slowdown of 2.27 times using
the interpreter level instruction counting. The maximum overhead was 15 times for
the TryExcept test. We feel we have met this goal comfortably, however we would
have liked to have seen more of an improvement relative to the software instruction
counter. The software level instruction counter, written in python, was on average
5.78 times slower than standard Jython, peaking at an overhead of 58 times. This
conflicts with Sabin’s results on CPython, which were on average 15 times slower but
reached overheads exceeding 100 times. It therefore appears, that Jython has some
inefficiencies in its implementation of tracing, and that such an experiment would yield
even better results on CPython.

7.2 Forward Execution Runtime Overhead

A TTD needs to log data as it executes forward in time. This comes at the cost of
performance. To measure the overhead, we executed a number of standard Python
benchmarks with and without a TTD attached. Each benchmark program was run
10 times, and the average runtime was recorded. The benchmarking programs are:
bm call method, bm call simple, bm fannkuch, bm nbody, bm raytrace from the CPython
’benchmarks’ repository’s1 performance folder.

Additionally, to provide a point of comparison, we ran Sabin’s epdb on CPython to
determine its overhead on the same benchmarks. As a result of epdb’s slow perfor-
mance, we had to adjust the benchmarks to ensure they would terminate. In particular,

1https://hg.python.org/benchmarks
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Figure 7.1: Performance improvement gained by implementing instruction
counting in Java as opposed to Python
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Interpreter and Debugger

Benchmark Name Jython Jython pdb Jython Odb Jython Tdb

bm call method.py 0.030 0.735 0.296 0.058

bm call simple.py 0.015 0.686 0.256 0.041

bm fannkuch.py 0.101 0.615 0.892 0.116

bm nbody.py 0.071 0.626 0.506 0.091

bm raytrace.py 0.252 1.873 1.043 0.255

Table 7.1: Average time in seconds required to run each benchmark program
on Jython

bm call method, bm call simple were simplified to perform 100 times fewer calls and
bm raytrace reduced from a 100x100 pixel grid to a 20x20 pixel grid.

In order to provide a comprehensive analysis of the performance of our TTDs, we ran
the benchmark on 7 different interpreter/debugger combinations:

Jython The baseline performance test for benchmarks running on the Jython inter-
preter.

Jython pdb A comparison of the standard debugger running on Jython. A break-
point was set on the last line of the top level function to ensure the debugger
was actually invoked.2

Jython odb Our omniscient debugger implementation. No breakpoints set, as the
omniscient debugger runs the entire program by default.

Jython tdb Our re-execution debugger implementation. No breakpoint set, as tdb
traces every frame by default.

CPython The baseline performance test for benchmarks running on the CPython
interpreter. Python version 3.4 was used for all CPython based runs.

CPython pdb The standard debugger running on CPython. As with the Jython
benchmarks, a breakpoint was set on the last line.

CPython epdb Another implementation of a time travelling debugger, running on
CPython. Provided for comparisons sake.

The results of the Jython and Cpython benchmark runs can be seen in tables 7.1
and 7.2 respectively. To help visualize the relative overhead, these results have been
compiled into the graph shown in figure 7.2. For each of the Jython runs, the time
taken was divided by the time Jython required to complete the benchmark. The bars
of the graph therefore represent how many times slower the various debuggers are than
Jython or CPython running without a debugger attached. Notice the y axis has a log
scale.

2If we did not include a breakpoint the overhead would be negligible. This is because pdb has an
optimization, which checks if there are any breakpoints before running. If there are no breakpoints,
the trace function is removed from the current frames, and the program will execute without any
overhead. While this test slightly misrepresents the performance of pdb, we believe it is still fair as it
demonstrates the overhead of pdb when actually debugging a program. Furthermore, the breakpoint
is set in the outermost frame, so inner frames may still drop the trace function, reducing the overhead.
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Interpreter and Debugger

Benchmark Name CPython CPython pdb CPython epdb

bm call method.py 0.006 0.496 203.627

bm call simple.py 0.005 0.492 211.342

bm fannkuch.py 0.014 0.396 210.897

bm nbody.py 0.015 0.775 125.576

bm raytrace.py 0.017 0.435 175.506

Table 7.2: Average time in seconds required to run each benchmark program
on CPython 3.4

pdb The overhead of debugging a program using pdb is more significant for CPython
than Jython with an average of 49 times slower compared to Jython’s 16 times. How-
ever, these values are skewed a bit. The two bm call method/simple benchmarks had
the largest impact on the overhead of the debugger. The overhead of running pdb
on these two benchmarks was 76 and 99 times for CPython and 25 and 45 times for
Jython. This is due to the benchmarks being almost entirely call based, which are
slower to debug than simple line events. Excluding these two benchmarks, the average
slowdown of running pdb on CPython and Jython respectively reduces to 29 and 7
times.

epdb epdb is shockingly slow. The overhead of epdb ranges from 8k to a staggering
42k times slower than CPython. While these overheads are immediately apparent
from Sabin’s report, the execution times we observed are similar enough to give us
confidence that epdb has been setup correctly.

tdb The overhead of tdb is on average just 1.45 times! tdb must trace every instruc-
tion to track the instruction count, so this low overhead is quite impressive. To achieve
this, the instruction counting and call depth tracking code is written as high perfor-
mance java code embedded in the Jython interpreter. When the TdbTraceFunction
determines the debugger should stop, it makes a call to the TBdb python module to
allow for user interaction.

odb As a logging TTD, odb can be thought of as a taking a checkpoint at each
execution point in the program. One would therefore expect odb to have a significant
forward execution overhead, when logging the program. odb’s results are better than
expected, when compared to the overhead that pdb exhibits. With a range of 4 to 17
times slower than standalone Jython, odb outperforms pdb in all but one benchmark.
There is no competition between odb and epdb, with odb’s largest overhead being over
500 smaller than epdb’s smallest overhead. The comparison is not entirely fair, as
epdb takes care of resource handling and non-deterministic events. The lack of such
events or the use of resources such as files allows us to claim the comparison is still
valid.
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7.2.1 Summary

We believe that the comparatively low overhead of odb can be attributed to the main
logic being written at the interpreter level. The trace function (a python function)
is never actually called by the OdbTraceFunction (the java function that implements
tracing for odb). It is purely used as a flag to determine which frames are debugee
code. However, when compared to tdb, which is also implemented at the interpreter
level, we can see that odb has a logging overhead of roughly 4-5 times.

Goal O2 was to have a forward execution overhead comparable with state of the art
TTDs, aiming for a worst case overhead of 30 times. Both odb and tdb satisfy this goal.
We believe our hybrid design would perform similarly to odb, with a slight performance
improvement, as less information would need to be logged.
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Figure 7.2: This graph shows the relative overhead of each debugger. The
values represent how many times slower the debugger took to execute than
the same interpreter without a debugger. The Jython values are compared to
the Jython interpreter, and the Cpython values are compared to the Cpython
interpreter. Therefore, note that a lower overhead does not necessarily mean
the absolute speed of the implementation is faster. For absolute time, see
tables 7.1 and 7.2

7.3 Reverse Execution Latency

An important characteristic of a successful TTD is that reverse execution does not
take too long. Depending on the implementation, the time to jump back in time (or
the reverse execution latency) may be linear depending on the temporal distance being
travelled or even bounded by a constant. This would be an important metric to assess
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the hybrid design by. However, odb and tdb have predictable performance. tdb re-
executes from the beginning of a program, so its latency decreases linearly depending
on the distance travelled back in time. For example, re-executing to the first instruction
is the equivalent of only running the first instruction, while re-executing to the previous
instruction requires re-executing all but the last instruction. odb has already logged
all the required information, and given the limit on the number of events which can be
stored in memory, jumping to a past timepoint will take a constant amount of time.
We have therefore not run any specific benchmarks, as the hybrid implementation was
not completed.

7.4 Snapshot Creation Performance

While we have not been able to fully implement a hybrid debugger that makes use of
our copy on write method to create snapshots, odb can be analysed as a TTD that
snapshots the state at every execution point. Many existing implementations measure
the efficiency of snapshot creation by the amount of data logged per second. We believe
this is not a comparable metric, as it depends heavily on the program and performance
of the test machine. Instead, we offer an analysis of the amount of memory used by
odb.

To test the limits of our event logging, we wrote two very simple programs.3 The
first tries to create as many events as possible by simply iterating through a loop, and
the second tries to create as many frames as possible by calling a function in a loop.
To find a rough limit, we modify the number of iterations, observing the heap in the
visualVM profiler.

While finding the limit is quite difficult due to garbage collection, these programs
allow us to find the usable limits of odb, by stopping the program if it takes too long
to run. From these experiments, we determined that odb can log between 50 million
events executed by 8.5 million function calls /frames and 100 million events executed
by a single function/frame. Of course, debugging a program that makes and edits a
2 million element list would limit the amount of memory available for logging events.
As a comparison, ODB, which is also written in java, can store 10 million events in
a 2 GB address space. Storing between 50 and 100 million events in a 4GB address
space is therefore an improvement and satisfies goal O3. We credit this efficiency with
our implementation of events as 64 bit integers, and the use of a LongBigList to store
the events without boxing.

7.5 Compared to the state of the art

The cutting edge of TTD implementation has followed a trend of taking advantage of a
managed runtime’s features in order to efficiently implement a TTD. This project ex-
tends these proposed by the Tardis paper discussed in section 3.1.12. However, rather
than simply re-implementing a Tardis like system for Python, a number of techniques

3As stated at the start of this chapter, Jython was run with 4GB of heap space.
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from other successful TTDs are combined with the hope of marrying both ends of the
TTD spectrum to produce a more effective TTD. We also took inspiration from the
implementation by Leinhard et al. (section 3.1.8), which used replaced heap references
with aliases to store history. This inspiration manifested itself in our approach to copy
one write logging, stored at the interpreter level.

While we were not able to implement the planned hybrid debugger in full, we can
discuss the performance of odb. odb has a forward execution overhead on par with the
Leinhard et al. implementation and many times better than the epdb, another python
TTD. However, Tardis remains unrivaled with an overhead of just 11%, but to do so
requires a modified version of the .NET CLR. No other TTD has come close to this
figure, and neither did we. This doesn’t discount our approach however, as our copy
on write logging appears to be efficient when compared to the number of events that
the logging TTD ODB by Bill Lewis can store.
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Conclusions and Future Work

8.1 Conclusions

The aim of this project was to implement a hybrid Python TTD, by combining existing
TTD styles to create a novel solution with improved performance. We have demon-
strated the viability of our hybrid TTD design by successfully implementing two TTDs,
tdb and odb, demonstrating the functionality required by this design. However, the
construction of a hybrid of the two was not achieved.

Prior to this thesis, only one fully fledged Python TTDs existed, epdb. Respectively,
tdb and odb are now the fastest known implementations of a re-execution TTD and
persistent data structure TTD for Python.

The minimal overhead imposed by the re-execution style debugger, tdb, and the logging
style debugger, odb, lead us to believe that a hybrid of the two would be competitive
with state of the art TTDs. While we were unable to complete the hybrid implemen-
tation, we believe it to be straightforward given our design and enough time.

We have shown, that Sabin’s thoughts on improving the performance of instruction
counting, by implementing it as part of the interpreter, are true. The results we
observe from running his instruction counting overhead experiments on Jython are less
than the overhead Sabin observed using CPython. We surmise that the performance
improvement gained by implementing interpreter level instruction counting would be
greater on CPython, and Jython’s tracing interface could be optimised.

Our work has contributed further evidence in support of Barr and Maron’s claim that
piggybacking on a VM or managed runtime simplifies the implementation of a low
overhead TTD. Our design makes use of the JVM’s garbage collection, Java objects
and exploits the JVM’s JIT compiler speeds up instruction counting and logging.

The straightforward nature of our design could be extended to other languages. Par-
ticularly, our work on embedding object history into the interpreter can be applied to
any language where the underlying representation uses objects as an atomic unit of
data. Based on our work, we believe that tdb and odb could successfully be combined
to form a production quality hybrid TTD, and suggest this as a future project.
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8.2 Future Work

The nature of this project necessitated certain constraints, notably the handling of
multi-threaded programs and programs with side-effects such as file manipulation.
These provide the basis for many improvements to be made to the project. These
improvements range from solving technical challenges, to transforming tdb into a user
friendly and powerful debugger. These ideas are described below:

8.2.1 Finishing the Hybrid

A logical piece of future work would be to finish the implementation of the hybrid
debugger. The challenge in this work is restoring the call stack, as Jython translates
Python code to Java bytecode and runs it directly. Some additional details have been
provided in section 6.6.

8.2.2 Handling Side-Effects

Sabin’s epdb focuses fairly heavily on the handling of resources outside of the debugger
such as the file system. For a TTD to be useful for a wider range of applications, it
must be able to handle side effects to the environment in some way.

8.2.3 Advanced checkpointing heuristics

While a TTD may implement efficient checkpointing, at a certain point it will run out
of memory. To deal with this, more advanced heuristics for checkpointing, and discard-
ing of checkpoints could be implemented. This could include exponential checkpoint
culling, which tries to distribute checkpoints throughout the lifetime of the program
so that more recent checkpoints are closer together. Additionally, adaptive checkpoint
intervals or heuristics could be used to improve the runtime overhead of the debugger,
by reducing the number of checkpoints made depending on the type of code being
executed.

8.2.4 Graphical Interface / IDE integration

One of the pieces of feedback from the project fair was that participants preferred a
graphical interface. While this was beyond the scope of the project, we agree that
a TTD would be greatly enhanced by adding a graphical interface. The more easily
a developer can find information (or perhaps even discover it accidentally) the faster
they can solve bugs. Additionally, it was suggested to create an IDE plugin.
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8.2.5 Multi-threading

Our implementation is not suitable for multi-threaded programs. Handling multi-
threaded programs may make for an interesting future project. Common approaches
are to multiplex all threads into a single thread for TTD execution (which incurs a
large overhead).

8.2.6 Time Travelling Interpreter

Given the ability to re-do this project, I would have forgone the effort of trying to
modify an existing interpreter, and instead written a prototype interpreter with time
travel in mind. The decision was made to use existing interpreters as the barrier
of entry and workload for writing a new interpreter seemed too high. However, in
retrospect the amount of time spent trying to understand existing interpreters could
have been spent writing a toy interpreter to demonstrate the concept.

8.2.7 PyPy again?

Despite PyPy’s complexity, we believe it, or similar interpreters, are the future of
interpreter design. For example, Stackless Python[34], a Python implementation that
doesn’t depend on the C call stack for its own stack, now uses PyPy as its underlying
implementation. I believe someone experienced in the nuances of PyPy would be able
to quickly implement an efficient TTD.
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